PXR and 4β-Hydroxycholesterol Axis and the Components of Metabolic Syndrome
Abstract
:1. Introduction
2. PXR and Obesity
3. PXR and Glucose Homeostasis
4. PXR-4β-Hydroxycholesterol Axis and Blood Pressure Regulation
5. HDL Cholesterol Metabolism and the PXR—4βHC Axis
6. PXR and Hypertriglyceridemia
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, E.S.; Li, C.; Sattar, N. Metabolic Syndrome and Incident Diabetes: Current state of the evidence. Diabetes Care 2008, 31, 1898–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, J.X.; Chaudhary, N.; Akinyemiju, T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic Dis. 2017, 14, E24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M. Metabolic syndrome pandemic. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 629–636. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Heindel, J.J.; Blumberg, B.; Cave, M.; Machtinger, R.; Mantovani, A.; Mendez, M.A.; Nadal, A.; Palanza, P.; Panzica, G.; Sargis, R.; et al. Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol. 2017, 68, 3–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lind, L.; Lind, P.M. Can persistent organic pollutants and plastic-associated chemicals cause cardiovascular disease? J. Intern. Med. 2012, 271, 537–553. [Google Scholar] [CrossRef] [Green Version]
- Neel, B.A.; Sargis, R.M. The Paradox of Progress: Environmental Disruption of Metabolism and the Diabetes Epidemic. Diabetes 2011, 60, 1838–1848. [Google Scholar] [CrossRef] [Green Version]
- Hukkanen, J.; Hakkola, J.; Rysa, J. Pregnane X receptor (PXR) - a contributor to the diabetes epidemic? Drug Metabol. Drug Interact. 2014, 29, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Baillie-Hamilton, P.F. Chemical Toxins: A Hypothesis to Explain the Global Obesity Epidemic. J. Altern. Complement. Med. 2002, 8, 185–192. [Google Scholar] [CrossRef]
- Grün, F.; Blumberg, B. Endocrine disrupters as obesogens. Mol. Cell. Endocrinol. 2009, 304, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Papalou, O.; Kandaraki, E.A.; Papadakis, G.; Diamanti-Kandarakis, E. Endocrine Disrupting Chemicals: An Occult Mediator of Metabolic Disease. Front. Endocrinol. 2019, 10, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakkola, J.; Rysä, J.; Hukkanen, J. Regulation of hepatic energy metabolism by the nuclear receptor PXR. Biochim. Biophys. Acta Bioenerg. 2016, 1859, 1072–1082. [Google Scholar] [CrossRef]
- Hassani-Nezhad-Gashti, F.; Salonurmi, T.; Hautajärvi, H.; Rysä, J.; Hakkola, J.; Hukkanen, J. Pregnane X Receptor Activator Rifampin Increases Blood Pressure and Stimulates Plasma Renin Activity. Clin. Pharmacol. Ther. 2020, 108, 856–865. [Google Scholar] [CrossRef]
- Heindel, J.J.; Newbold, R.; Schug, T.T. Endocrine disruptors and obesity. Nat. Rev. Endocrinol. 2015, 11, 653–661. [Google Scholar] [CrossRef]
- Casals-Casas, C.; Desvergne, B. Endocrine Disruptors: From Endocrine to Metabolic Disruption. Annu. Rev. Physiol. 2011, 73, 135–162. [Google Scholar] [CrossRef] [Green Version]
- Spruiell, K.; Richardson, R.M.; Cullen, J.M.; Awumey, E.M.; Gonzalez, F.J.; Gyamfi, M.A. Role of Pregnane X Receptor in Obesity and Glucose Homeostasis in Male Mice. J. Biol. Chem. 2013, 289, 3244–3261. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Gao, J.; Xu, M.; Ren, S.; Stefanovic-Racic, M.; O’Doherty, R.M.; Xie, W. PXR Ablation Alleviates Diet-Induced and Genetic Obesity and Insulin Resistance in Mice. Diabetes 2013, 62, 1876–1887. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.-Y.; Xu, J.-Y.; Shi, Z.; Englert, N.A.; Zhang, S.-Y. Pregnane X receptor (PXR) deficiency improves high fat diet-induced obesity via induction of fibroblast growth factor 15 (FGF15) expression. Biochem. Pharmacol. 2017, 142, 194–203. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, D. Activation of Pregnane X Receptor by Pregnenolone 16 α-carbonitrile Prevents High-Fat Diet-Induced Obesity in AKR/J Mice. PLoS ONE 2012, 7, e38734. [Google Scholar] [CrossRef] [Green Version]
- Spruiell, K.; Jones, D.Z.; Cullen, J.M.; Awumey, E.M.; Gonzalez, F.J.; Gyamfi, M.A. Role of human pregnane X receptor in high fat diet-induced obesity in pre-menopausal female mice. Biochem. Pharmacol. 2014, 89, 399–412. [Google Scholar] [CrossRef] [Green Version]
- Rysä, J.; Buler, M.; Savolainen, M.J.; Ruskoaho, H.; Hakkola, J.; Hukkanen, J. Pregnane X Receptor Agonists Impair Postprandial Glucose Tolerance. Clin. Pharmacol. Ther. 2013, 93, 556–563. [Google Scholar] [CrossRef]
- Stage, T.B.; Damkier, P.; Christensen, M.M.H.; Nielsen, L.B.-K.; Højlund, K.; Nielsen, F. Impaired Glucose Tolerance in Healthy Men Treated with St. John’s Wort. Basic Clin. Pharmacol. Toxicol. 2015, 118, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Ling, Z.; Shu, N.; Xu, P.; Wang, F.; Zhong, Z.; Sun, B.; Li, F.; Zhang, M.; Zhao, K.; Tang, X.; et al. Involvement of pregnane X receptor in the impaired glucose utilization induced by atorvastatin in hepatocytes. Biochem. Pharmacol. 2016, 100, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Hassani-Nezhad-Gashti, F.; Rysä, J.; Kummu, O.; Näpänkangas, J.; Buler, M.; Karpale, M.; Hukkanen, J.; Hakkola, J. Activation of nuclear receptor PXR impairs glucose tolerance and dysregulates GLUT2 expression and subcellular localization in liver. Biochem. Pharmacol. 2018, 148, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Hukkanen, J.; Rysa, J.; A Makela, K.; Herzig, K.-H.; Hakkola, J.; Savolainen, M.J. The effect of pregnane X receptor agonists on postprandial incretin hormone secretion in rats and humans. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2015, 66, 831–839. [Google Scholar]
- Postic, C.; Shiota, M.; Niswender, K.D.; Jetton, T.L.; Chen, Y.; Moates, J.M.; Shelton, K.D.; Lindner, J.; Cherrington, A.D.; Magnuson, M.A. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 1999, 274, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Burcelin, R.; Muñoz, M.D.C.; Guillam, M.T.; Thorens, B. Liver hyperplasia and paradoxical regulation of glycogen metabolism and glucose-sensitive gene expression in GLUT2-null hepatocytes. Further evidence for the existence of a membrane-based glucose release pathway. J. Biol. Chem. 2000, 275, 10930–10936. [Google Scholar] [CrossRef] [Green Version]
- Bhalla, S.; Ozalp, C.; Fang, S.; Xiang, L.; Kemper, J.K. Ligand-activated Pregnane X Receptor Interferes with HNF-4 Signaling by Targeting a Common Coactivator PGC-1α. J. Biol. Chem. 2004, 279, 45139–45147. [Google Scholar] [CrossRef] [Green Version]
- Kodama, S.; Moore, R.; Yamamoto, Y.; Negishi, M. Human nuclear pregnane X receptor cross-talk with CREB to repress cAMP activation of the glucose-6-phosphatase gene. Biochem. J. 2007, 407, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Kodama, S.; Koike, C.; Negishi, M.; Yamamoto, Y. Nuclear Receptors CAR and PXR Cross Talk with FOXO1 To Regulate Genes That Encode Drug-Metabolizing and Gluconeogenic Enzymes. Mol. Cell. Biol. 2004, 24, 7931–7940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staudinger, J.L.; Goodwin, B.; Jones, S.A.; Hawkins-Brown, D.; MacKenzie, K.I.; Latour, A.; Liui, Y.; Klaasseni, C.D.; Brown, K.K.; Reinhard, J.; et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl. Acad. Sci. USA 2001, 98, 3369–3374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, W.; Barwick, J.L.; Downes, M.; Blumberg, B.; Simon, C.M.; Nelson, M.C.; Neuschwander-Tetri, B.A.; Brunt, E.M.; Guzelian, P.S.; Evans, R.M. Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nat. Cell Biol. 2000, 406, 435–439. [Google Scholar] [CrossRef]
- Gotoh, S.; Negishi, M. Serum- and glucocorticoid-regulated kinase 2 determines drug-activated pregnane X receptor to induce gluconeogenesis in human liver cells. J. Pharmacol. Exp. Ther. 2013, 348, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Gotoh, S.; Negishi, M. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis. Sci. Rep. 2015, 5, 14076. [Google Scholar] [CrossRef] [Green Version]
- Gotoh, S.; Miyauchi, Y.; Moore, R.; Negishi, M. Glucose elicits serine/threonine kinase VRK1 to phosphorylate nuclear pregnane X receptor as a novel hepatic gluconeogenic signal. Cell. Signal. 2017, 40, 200–209. [Google Scholar] [CrossRef]
- Oladimeji, P.; Lin, W.; Brewer, C.T.; Chen, T. Glucose-dependent regulation of pregnane X receptor is modulated by AMP-activated protein kinase. Sci. Rep. 2017, 7, 46751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassani-Nezhad-Gashti, F.; Kummu, O.; Karpale, M.; Rysä, J.; Hakkola, J. Nutritional status modifies pregnane X receptor regulated transcriptome. Sci. Rep. 2019, 9, 16728. [Google Scholar] [CrossRef]
- Zhai, Y.; Pai, H.V.; Zhou, J.; Amico, J.; Vollmer, R.R.; Xie, W. Activation of Pregnane X Receptor Disrupts Glucocorticoid and Mineralocorticoid Homeostasis. Mol. Endocrinol. 2007, 21, 138–147. [Google Scholar] [CrossRef]
- Watlington, C.O.; Kramer, L.B.; Schuetz, E.G.; Zilai, J.; Grogan, W.M.; Guzelian, P.; Gizek, F.; Schoolwerth, A.C. Corticosterone 6 beta-hydroxylation correlates with blood pressure in spontaneously hypertensive rats. Am. J. Physiol. Physiol. 1992, 262, F927–F931. [Google Scholar] [CrossRef]
- Swales, K.E.; Moore, R.; Truss, N.J.; Tucker, A.; Warner, T.D.; Negishi, M.; Bishop-Bailey, D. Pregnane X receptor regulates drug metabolism and transport in the vasculature and protects from oxidative stress. Cardiovasc. Res. 2011, 93, 674–681. [Google Scholar] [CrossRef]
- Hagedorn, K.A.; Cooke, C.-L.; Falck, J.R.; Mitchell, B.F.; Davidge, S.T. Regulation of Vascular Tone During Pregnancy. Hypertension 2007, 49, 328–333. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Fang, X.; Zhou, J.; Chen, Z.; Zhao, B.; Xiao, L.; Liu, A.; Li, Y.-S.J.; Shyy, J.Y.-J.; Guan, Y.; et al. Shear stress activation of nuclear receptor PXR in endothelial detoxification. Proc. Natl. Acad. Sci. USA 2013, 110, 13174–13179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulakazhi Venu, V.K.; Saifeddine, M.; Mihara, K.; Tsai, Y.C.; Nieves, K.; Alston, L.; Mani, S.; McCoy, K.D.; Hollenberg, M.D.; Hirota, S.A. PMC6732469; The pregnane X receptor and its microbiota-derived ligand indole 3-propionic acid regulate endothelium-dependent vasodilation. Am. J. Physiol Endocrinol Metab 2019, 317, E350–E361. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Gigli, S.; Seguella, L.; Nobile, N.; D’Alessandro, A.; Pesce, M.; Capoccia, E.; Steardo, L.; Cirillo, C.; Cuomo, R.; et al. Rifaximin, a non-absorbable antibiotic, inhibits the release of pro-angiogenic mediators in colon cancer cells through a pregnane X receptor-dependent pathway. Int. J. Oncol. 2016, 49, 639–645. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.P.; Paton, J.F.R. The sympathetic nervous system and blood pressure in humans: Implications for hypertension. J. Hum. Hypertens. 2011, 26, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Schweda, F.; Kurtz, A. Regulation of Renin Release by Local and Systemic Factors. Rev. Physiol. Biochem. Pharmacol. 2009, 161, 1–44. [Google Scholar] [CrossRef]
- Diczfalusy, U.; Nylen, H.; Elander, P.; Bertilsson, L. 4beta-Hydroxycholesterol, an endogenous marker of CYP3A4/5 activity in humans. Br. J. Clin. Pharmacol. 2011, 71, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Janowski, B.A.; Willy, P.J.; Devi, T.R.; Falck, J.R.; Mangelsdorf, D.J. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nat. Cell Biol. 1996, 383, 728–731. [Google Scholar] [CrossRef]
- Nury, T.; Samadi, M.; Varin, A.; Lopez, T.; Zarrouk, A.; Boumhras, M.; Riedinger, J.-M.; Masson, D.; Vejux, A.; Lizard, G. Biological activities of the LXRα and β agonist, 4β-hydroxycholesterol, and of its isomer, 4α-hydroxycholesterol, on oligodendrocytes: Effects on cell growth and viability, oxidative and inflammatory status. Biochimie 2013, 95, 518–530. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, I.; Van Der Harst, P.; Kuipers, F.; Van Genne, L.; Goris, M.; Lehtonen, J.Y.; Van Veldhuisen, D.J.; Van Gilst, W.H.; A De Boer, R. Activation of liver X receptor-α reduces activation of the renal and cardiac renin–angiotensin–aldosterone system. Lab. Investig. 2010, 90, 630–636. [Google Scholar] [CrossRef]
- Mitro, N.; Vargas, L.; Romeo, R.; Koder, A.; Saez, E. T0901317 is a potent PXR ligand: Implications for the biology ascribed to LXR. FEBS Lett. 2007, 581, 1721–1726. [Google Scholar] [CrossRef] [Green Version]
- Valbuena-Diez, A.C.; Blanco, F.J.; Oujo, B.; Langa, C.; Gonzalez-Nuñez, M.; Llano, E.; Pendas, A.M.; Díaz, M.; Castrillo, A.; Lopez-Novoa, J.M.; et al. Oxysterol-Induced Soluble Endoglin Release and Its Involvement in Hypertension. Circulation 2012, 126, 2612–2624. [Google Scholar] [CrossRef] [Green Version]
- Morello, F.; De Boer, R.A.; Steffensen, K.R.; Gnecchi, M.; Chisholm, J.W.; Boomsma, F.; Anderson, L.M.; Lawn, R.M.; Gustafsson, J.A.; Lopez-Ilasaca, M.; et al. Liver X receptors alpha and beta regulate renin expression in vivo. J. Clin Invest. 2005, 115, 1913–1922. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Kotani, H.; Yamaguchi, T.; Taguchi, K.; Iida, M.; Ina, K.; Maeda, M.; Kuzuya, M.; Hattori, Y.; Ignarro, L.J. Endothelial cellular senescence is inhibited by liver X receptor activation with an additional mechanism for its atheroprotection in diabetes. Proc. Natl. Acad. Sci. USA 2014, 111, 1168–1173. [Google Scholar] [CrossRef] [Green Version]
- Bochud, M.; Bovet, P.; Burnier, M.; Eap, C.B. CYP3A5andABCB1genes and hypertension. Pharmacogenomics 2009, 10, 477–487. [Google Scholar] [CrossRef]
- Xi, B.; Wang, C.; Liu, L.; Zeng, T.; Liang, Y.; Li, J.; Mi, J. Association of the CYP3A5 polymorphism (6986G>A) with blood pressure and hypertension. Hypertens. Res. 2011, 34, 1216–1220. [Google Scholar] [CrossRef]
- Lee, S.D.; Tontonoz, P. Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis 2015, 242, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Temel, R.E.; Brown, J.M. A new model of reverse cholesterol transport: EnTICEing strategies to stimulate intestinal cholesterol excretion. Trends Pharmacol. Sci. 2015, 36, 440–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Nikkila, E.; Kaste, M.; Ehnholm, C.; Viikari, J. Increase of serum high-density lipoprotein in phenytoin users. BMJ 1978, 2, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, B.; Callaghan, N.; Stapleton, M.; Molloy, W. Serum elevation of high density lipoprotein (HDL) cholesterol in epileptic patients taking carbamazepine or phenytoin. Acta Neurol. Scand. 2009, 65, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Luoma, P.V.; Sotaniemi, E.A.; Pelkonen, R.O.; Myllyla, V.V. Plasma high-density lipoprotein cholesterol and hepatic cytochrome P-450 concentrations in epileptics undergoing anticonvulsant treatment. Scand. J. Clin. Lab. Investig. 1980, 40, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Choong, E.; Polari, A.; Kamdem, R.H.; Gervasoni, N.; Spisla, C.; Sirot, E.J.; Bickel, G.G.; Bondolfi, G.; Conus, P.; Eap, C.B. Pharmacogenetic Study on Risperidone Long-Acting Injection. J. Clin. Psychopharmacol. 2013, 33, 289–298. [Google Scholar] [CrossRef]
- Miller, M.; Burgan, R.G.; Osterlund, L.; Segrest, J.P.; Garber, D.W. A Prospective, Randomized Trial of Phenytoin in Nonepileptic Subjects With Reduced HDL Cholesterol. Arter. Thromb. Vasc. Biol. 1995, 15, 2151–2156. [Google Scholar] [CrossRef] [PubMed]
- Kojima, H.; Sata, F.; Takeuchi, S.; Sueyoshi, T.; Nagai, T. Comparative study of human and mouse pregnane X receptor agonistic activity in 200 pesticides using in vitro reporter gene assays. Toxicology 2011, 280, 77–87. [Google Scholar] [CrossRef]
- Carlson, L.A.; Kolmodin-Hedman, B. HYPER-α-LIPOPROTEINEMIA IN MEN EXPOSED TO CHLORINATED HYDROCARBON PESTICIDES. Acta Medica Scand. 2009, 192, 29–32. [Google Scholar] [CrossRef]
- Salonurmi, T.; Nabil, H.; Ronkainen, J.; Hyotylainen, T.; Hautajarvi, H.; Savolainen, M.J.; Tolonen, A.; Oresic, M.; Kansakoski, P.; Rysa, J.; et al. 4beta-Hydroxycholesterol Signals From the Liver to Regulate Peripheral Cholesterol Transporters. Front. Pharmacol. 2020, 11, 361. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Tremblay-Franco, M.; Zerbinati, C.; Pacelli, A.; Palmaccio, G.; Lubrano, C.; Ducheix, S.; Guillou, H.; Iuliano, L. Effect of obesity and metabolic syndrome on plasma oxysterols and fatty acids in human. Steroids 2015, 99, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Morató, J.; Goday, A.; Langohr, K.; Pujadas, M.; Civit, E.; Pérez-Mañá, C.; Papaseit, E.; Ramon, J.M.; Benaiges, D.; Castañer, O.; et al. Short- and medium-term impact of bariatric surgery on the activities of CYP2D6, CYP3A4, CYP2C9, and CYP1A2 in morbid obesity. Sci. Rep. 2019, 9, 20405–20409. [Google Scholar] [CrossRef]
- Gwag, T.; Meng, Z.; Sui, Y.; Helsley, R.N.; Park, S.-H.; Wang, S.; Greenberg, R.N.; Zhou, C. Non-nucleoside reverse transcriptase inhibitor efavirenz activates PXR to induce hypercholesterolemia and hepatic steatosis. J. Hepatol. 2019, 70, 930–940. [Google Scholar] [CrossRef]
- Meng, Z.; Gwag, T.; Sui, Y.; Park, S.-H.; Zhou, X.; Zhou, C. The atypical antipsychotic quetiapine induces hyperlipidemia by activating intestinal PXR signaling. JCI Insight 2019, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Staudinger, J.L. Clinical applications of small molecule inhibitors of Pregnane X receptor. Mol. Cell. Endocrinol. 2019, 485, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Cave, M.C.; Clair, H.B.; Hardesty, J.E.; Falkner, K.C.; Feng, W.; Clark, B.J.; Sidey, J.; Shi, H.; Aqel, B.A.; McClain, C.J.; et al. Nuclear receptors and nonalcoholic fatty liver disease. Biochim. Biophys. Acta Bioenerg. 2016, 1859, 1083–1099. [Google Scholar] [CrossRef] [Green Version]
Study | Model | Observed Effect on Obesity | Suggested Mechanism |
---|---|---|---|
Ma and Liu 2012 [20] | Male obesity-prone ARK/J mice on HFD (60%) for 7 weeks, treated with PCN or vehicle twice weekly | PCN treatment inhibited weight gain | PCN treatment enhanced thermogenesis, reduced food intake |
He et al. 2013 [18] | WT and Pxr-KO mice on HFD (60%) for 12 weeks | Pxr KO inhibited weight gain | Pxr KO increased energy expenditure |
Pxr-KO mouse line crossed with Ob/Ob mice and fed with chow diet | Pxr KO did not affect weight gain but the Pxr KO mice had decreased fat mass | ||
Alb-VP-Pxr mouse line crossed with Ob/Ob mice and fed with chow diet | Transgenic activation of PXR reduced body weight | ||
Spruiell et al. 2014a [17] | Male WT and Pxr-KO mice on HFD (45%) for 16 weeks | Pxr KO inhibited weight gain | |
Male PXR-humanized mice on HFD (45%) for 16 weeks | PXR humanization inhibited weight gain | Reduced food intake, higher basal serum leptin level | |
Spruiell et al. 2014b [21] | Female PXR-humanized mice on HFD (45%) for 16 weeks | PXR humanization increased weight gain | Suppression of protective role of estrogen |
Zhao et al. 2017 [19] | Male WT and Pxr KO mice on HFD (45%) for 4 weeks | Pxr KO inhibited weight gain | Induction of FGF15 expression in Pxr-KO mice, reduced lipid absorption |
Components of MetS | PXR and/or 4βHC Implicated | Suggested Mechanism | Ref. | ||
---|---|---|---|---|---|
Mouse | Human | Mouse | Human | ||
Abdominal obesity | + (or −) | Effect on energy expenditure | [17,18,20] | ||
Elevated triglycerides | ± (plasma) + (liver steatosis) | Increased lipogenesis | [71,72,74] | ||
Low HDL cholesterol | + | Obesity-repressed 4βHC | [67] | ||
Hypertension | + | + | Vascular vasoconstrictive effects | Vascular vasoconstrictive effects? | [14,44] |
Hyperglycemia | + | + | Reduced hepatic glucose uptake | Increased gluconeogenesis, reduced hepatic glucose uptake | [22,25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hukkanen, J.; Hakkola, J. PXR and 4β-Hydroxycholesterol Axis and the Components of Metabolic Syndrome. Cells 2020, 9, 2445. https://doi.org/10.3390/cells9112445
Hukkanen J, Hakkola J. PXR and 4β-Hydroxycholesterol Axis and the Components of Metabolic Syndrome. Cells. 2020; 9(11):2445. https://doi.org/10.3390/cells9112445
Chicago/Turabian StyleHukkanen, Janne, and Jukka Hakkola. 2020. "PXR and 4β-Hydroxycholesterol Axis and the Components of Metabolic Syndrome" Cells 9, no. 11: 2445. https://doi.org/10.3390/cells9112445
APA StyleHukkanen, J., & Hakkola, J. (2020). PXR and 4β-Hydroxycholesterol Axis and the Components of Metabolic Syndrome. Cells, 9(11), 2445. https://doi.org/10.3390/cells9112445