The Microtubule Cytoskeleton during the Early Drosophila Spermiogenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drosophila Strains
2.2. Antibodies and Reagents
2.3. Culture and Drug Treatment Experiments
2.4. Immunofluorescence Preparations
2.5. Image Acquisition
2.6. Transmission Electron Microscopy (TEM)
3. Results
3.1. MT Distribution Significantly Changes during Early Drosophila Spermiogenesis
3.2. γ-Tubulin is Present in Distinct Foci during Early Spermiogenesis
3.3. The Centriole Adjunct is the Main Regulator of Perinuclear MTs
3.4. The Centriole Adjunct is Dispensable for the Formation of the Dense Complex
3.5. The Nucleoporin Nup154 is Restricted to the Dense Complex
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gottardo, M.; Callaini, G.; Riparbelli, M.G. The cilium-like region of the Drosophila spermatocyte: An emerging flagellum? J. Cell Sci. 2013, 126, 5441–5452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, H.; Marshall, W.F. Intraflagellar Transport and Ciliary Dynamics. Cold Spring. Harb. Perspect. Biol. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basiri, M.L.; Ha, A.; Chadha, A.; Clark, N.M.; Polyanovsky, A.; Cook, B.; Avidor-Reiss, T. A migrating ciliary gate compartmentalizes the site of axoneme assembly in Drosophila spermatids. Curr. Biol. 2014, 24, 2622–2631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avidor-Reiss, T.; Leroux, M.R. Shared and Distinct Mechanisms of Compartmentalized and Cytosolic Ciliogenesis. Curr. Biol. 2015, 25, R1143–R1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fingerhut, J.M.; Yamashita, Y.M. mRNA localization mediates maturation of cytoplasmic cilia in Drosophila spermatogenesis. J. Cell Biol. 2020. [Google Scholar] [CrossRef]
- Tokuyasu, K.T. Dynamics of spermiogenesis in Drosophila melanogaster. V. Head-tail alignment. J. Ultrastruct. Res. 1975, 50, 117–129. [Google Scholar] [CrossRef]
- Alieva, I.B.; Staub, C.; Uzbekova, S.; Uzbekov, R.E. A question of flagella origin for spermatids–mother or daughter centriole? In Flagella and Cilia. Types Structure and Functions; Uzbekov, R.E., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2018; pp. 109–126. [Google Scholar]
- Garanina, A.S.; Alieva, I.B.; Bragina, E.E.; Blanchard, E.; Arbeille, B.; Guerif, F.; Uzbekova, S.; Uzbekov, R.E. The centriolar adjunct -appearance and disassembly in spermiogenesis and the potential impact on fertility. Cells 2019, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Anderson, W.A. Cytodifferentiation of Spermatozoa in Drosophila melanogaster: The Effect of Elevated Temperature on Spermiogenesis. Mol. Gen. Genet. 1967, 99, 257–273. [Google Scholar] [CrossRef]
- Basto, R.; Lau, J.; Vinogradova, T.; Gardiol, A.; Woods, C.G.; Khodjakov, A.; Raff, J.W. Flies without centrioles. Cell 2006, 125, 1375–1386. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, T.; Koizumi, M.; Hayashi, S. Sustained elongation of sperm tail promoted by local remodeling of giant mitochondria in Drosophila. Curr. Biol. 2011, 21, 805–814. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.V.; Buchwalter, R.A.; Kao, L.R.; Megraw, T.L. A Splice Variant of Centrosomin Converts Mitochondria to Microtubule-Organizing Centers. Curr. Biol. 2017, 27, 1928–1940. [Google Scholar] [CrossRef] [Green Version]
- Fabian, L.; Brill, J.A. Drosophila spermiogenesis: Big things come from little packages. Spermatogenesis 2012, 2, 197–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokuyasu, K.T. Dynamics of spermiogenesis in Drosophila melanogaster. IV. Nuclear transformation. J. Ultrastruct Res. 1974, 48, 284–303. [Google Scholar] [CrossRef]
- Texada, M.J.; Simonette, R.A.; Johnson, C.B.; Deery, W.J.; Beckingham, K.M. Yuri gagarin is required for actin, tubulin and basal body functions in Drosophila spermatogenesis. J. Cell Sci. 2008, 121, 1926–1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kracklauer, M.P.; Wiora, H.M.; Deery, W.J.; Chen, X.; Bolival, B., Jr.; Romanowicz, D.; Simonette, R.A.; Fuller, M.T.; Fischer, J.A.; Beckingham, K.M. The Drosophila SUN protein Spag4 cooperates with the coiled-coil protein Yuri Gagarin to maintain association of the basal body and spermatid nucleus. J. Cell Sci. 2010, 123, 2763–2772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sitaram, P.; Anderson, M.A.; Jodoin, J.N.; Lee, E.; Lee, L.A. Regulation of dynein localization and centrosome positioning by Lis-1 and asunder during Drosophila spermatogenesis. Development 2012, 139, 2945–2954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augière, C.; Lapart, J.A.; Duteyrat, J.L.; Cortier, E.; Maire, C.; Thomas, J.; Durand, B. salto/CG13164 is required for sperm head morphogenesis in Drosophila. Mol. Biol. Cell 2019, 30, 636–645. [Google Scholar] [CrossRef]
- Baker, J.D.; Adhikarakunnathu, S.; Kernan, M.J. Mechanosensory-defective, male-sterile unc mutants identify a novel basal body protein required for ciliogenesis in Drosophila. Development 2004, 131, 3411–3422. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Campos, M.; Basto, R.; Baker, J.; Kernan, M.; Raff, J.W. The Drosophila pericentrin-like protein is essential for cilia/flagella function, but appears to be dispensable for mitosis. J. Cell Biol. 2004, 165, 673–683. [Google Scholar] [CrossRef]
- Gogendeau, D.; Basto, R. Centrioles in flies: The exception to the rule? Semin. Cell Dev. Biol. 2010, 21, 163–173. [Google Scholar] [CrossRef]
- Belloni, G.; Sechi, S.; Riparbelli, M.G.; Fuller, M.T.; Callaini, G.; Giansanti, M.G. Mutations in Cog7 affect Golgi structure, meiotic cytokinesis and sperm development during Drosophila spermatogenesis. J. Cell Sci. 2012, 125, 5441–5452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaizel-Ohayon, D.; Schejter, E.D. Mutations in centrosomin reveal requirements for centrosomal function during early Drosophila embryogenesis. Curr. Biol. 1999, 9, 889–898. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues-Martins, A.; Bettencourt-Dias, M.; Riparbelli, M.; Ferreira, C.; Ferreira, I.; Callaini, G.; Glover, D.M. DSAS-6 organizes a tube-like centriole precursor, and its absence suggests modularity in centriole assembly. Curr. Biol. 2007, 17, 1465–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, R.R.; Tavares, A.A.; Salzberg, A.; Bellen, H.J.; Glover, D.M. pavarotti encodes a kinesin-like protein required to organize the central spindle and contractile ring for cytokinesis. Genes Dev. 1998, 15, 1483–1494. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Xu, E.Y.; Cecil, J.K.; Turner, F.R.; Megraw, T.L.; Kaufman, T.C. Drosophila centrosomin protein is required for male meiosis and assembly of the flagellar axoneme. J. Cell Biol. 1998, 141, 455–467. [Google Scholar] [CrossRef] [Green Version]
- Riparbelli, M.G.; Persico, V.; Dallai, R.; Callaini, G. Centrioles and Ciliary Structures during Male Gametogenesis in Hexapoda: Discovery of New Models. Cells 2020, 9, 744. [Google Scholar] [CrossRef] [Green Version]
- Gayek, A.S.; Ohi, R. Kinetochore-microtubule stability governs the metaphase requirement for Eg5. Mol. Biol. Cell 2014, 25, 2051–2060. [Google Scholar] [CrossRef] [Green Version]
- Inoue, D.; Obino, D.; Pineau, J.; Farina, F.; Gaillard, J.; Guerin, C.; Blanchoin, L.; Lennon-Dumenil, A.M.; Thery, M. Actin filaments regulate microtubule growth at the centrosome. Embo J. 2019, 38, e99630. [Google Scholar] [CrossRef]
- Uzbekov, R.E.; Avidor-Reiss, T. Principal Postulates of Centrosomal Biology. Version 2020. Cells 2020, 9, 2156. [Google Scholar] [CrossRef]
- Oakley, C.E.; Oakley, B.R. Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipa gene of aspergillus nidulans. Nature 1989, 338, 662–664. [Google Scholar] [CrossRef]
- Joshi, H.C.; Palacios, M.J.; McNamara, L.; Cleveland, D.W. Gamma-tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature 1992, 356, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Conduit, P.T.; Richens, J.H.; Wainman, A.; Holder, J.; Vicente, C.C.; Pratt, M.B.; Dix, C.I.; Novak, Z.A.; Dobbie, I.M.; Schermelleh, L.; et al. A molecular mechanism of mitotic centrosome assembly in Drosophila. eLife 2014, 3, e03399. [Google Scholar] [CrossRef] [PubMed]
- Conduit, P.T.; Wainman, A.; Raff, J.W. Centrosome function and assembly in animal cells. Nat. Rev. Mol. Cell Biol. 2015, 16, 611–624. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Caballe, A.; Wainman, A.; Johnson, S.; Haensele, A.F.M.; Cottee, M.A.; Conduit, P.T.; Lea, S.M.; Raff, J.W. Structural Basis for Mitotic Centrosome Assembly in Flies. Cell 2017, 169, 1078–1089. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Rodrigo, I.; Steinacker, T.L.; Saurya, S.; Conduit, P.T.; Baumbach, J.; Novak, Z.A.; Aydogan, M.G.; Wainman, A.; Raff, J.W. Evidence that a positive feedback loop drives centrosome maturation in fly embryos. eLife 2019, 8, e50130. [Google Scholar] [CrossRef]
- Raff, J.W. Phase Separation and the Centrosome: A Fait Accompli? Trends Cell Biol. 2019, 29, 612–622. [Google Scholar] [CrossRef]
- Lerit, D.A.; Jordan, H.A.; Poulton, J.S.; Fagerstrom, C.J.; Galletta, B.J.; Peifer, M.; Rusan, N.M. Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function. J. Cell Biol. 2015, 210, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Richens, J.H.; Barros, T.P.; Lucas, E.P.; Peel, N.; Pinto, D.M.S.; Wainman, A.; Raff, J.W. The Drosophila Pericentrinlike- protein (PLP) cooperates with Cnn to maintain the integrity of the outer PCM. Biol. Open 2015, 4, 1052–1061. [Google Scholar] [CrossRef] [Green Version]
- Roque, H.; Saurya, S.; Pratt, M.B.; Johnson, E.; Raff, J.W. Drosophila PLP assembles pericentriolar clouds that promote centriole stability, cohesion and MT nucleation. PLoS Genet. 2018, 14, e1007198. [Google Scholar] [CrossRef] [Green Version]
- Gigliotti, S.; Callaini, G.; Andone, S.; Riparbelli, M.G.; Pernas-Alonso, R.; Hoffmann, G.; Graziani, F.; Malva, C. Nup154, a new Drosophila gene essential for male and female gametogenesis is related to the nup155 vertebrate nucleoporin gene. J. Cell Biol. 1998, 142, 1195–1207. [Google Scholar] [CrossRef]
- Tillery, M.M.L.; Blake-Hedges, C.; Zheng, Y.; Buchwalter, R.A.; Megraw, T.L. Centrosomal and Non-Centrosomal Microtubule-Organizing Centers (MTOCs) in Drosophila melanogaster. Cells 2018, 7, 121. [Google Scholar] [CrossRef] [Green Version]
- Wolf, K.W.; Joshi, H.C. Microtubule organization and the distribution of γ-tubulin in spermatogenesis of a beetle, Tenebrio molitor (Tenebrionidae, Coleoptera, Insecta). J. Cell Sci. 1995, 108, 3855–3865. [Google Scholar] [PubMed]
- Riparbelli, M.G.; Whitfield, W.G.; Dallai, R.; Callaini, G. Assembly of the zygotic centrosome in the fertilized Drosophila egg. Mech. Dev. 1997, 65, 135–144. [Google Scholar] [CrossRef]
- Wei, Y.L.; Yang, W.X. The acroframosome-acroplaxome-manchette axis may function in sperm head shaping and male fertility. Gene 2018, 660, 28–40. [Google Scholar] [CrossRef] [PubMed]
- She, Z.Y.; Li, Y.L.; Lin, Y.; Lu, M.H.; Wei, Y.L.; Yu, K.W.; Zhong, N.; Xiao, Y. Kinesin-6 family motor KIF20A regulates central spindle assembly and acrosome biogenesis in mouse spermatogenesis. Biochim. Biophys. Acta Mol. Cell. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Dorogova, N.V.; Akhmametyeva, E.M.; Kopyl, S.A.; Gubanova, N.V.; Yudina, O.S.; Omelyanchuk, L.V.; Chang, L.S. The role of Drosophila Merlin in spermatogenesis. BMC Cell Biol. 2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riparbelli, M.G.; Callaini, G. Male gametogenesis without centrioles. Dev. Biol. 2011, 349, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Rathke, C.; Barckmann, B.; Burkhard, S.; Jayaramaiah-Raja, S.; Roote, J.; Renkawitz-Pohl, R. Distinct functions of Mst77F and protamines in nuclear shaping and chromatin condensation during Drosophila spermiogenesis. Eur. J. Cell Biol. 2010, 89, 326–838. [Google Scholar] [CrossRef]
- Kierszenbaum, A.L. Intramanchette transport (IMT): Managing the making of the spermatid head, centrosome, and tail. Mol. Reprod. Dev. 2002, 63, 1–4. [Google Scholar] [CrossRef]
- Lehti, M.S.; Sironen, A. Formation and function of the manchette and flagellum during spermatogenesis. Reproduction 2016, 151, R43–R54. [Google Scholar] [CrossRef] [Green Version]
- Colozza, G.; Montembault, E.; Quénerch’du, E.; Riparbelli, M.G.; D’Avino, P.P.; Callaini, G. Drosophila nucleoporin Nup154 controls cell viability, proliferation and nuclear accumulation of Mad transcription factor. Tissue Cell 2011, 43, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Galletta, B.J.; Ortega, J.M.; Smith, S.L.; Fagerstrom, C.J.; Fear, J.M.; Mahadevaraju, S.; Oliver, B.; Rusan, N.M. Sperm Head-Tail Linkage Requires Restriction of Pericentriolar Material to the Proximal Centriole End. Dev. Cell 2020, 53, 86–101. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riparbelli, M.G.; Persico, V.; Callaini, G. The Microtubule Cytoskeleton during the Early Drosophila Spermiogenesis. Cells 2020, 9, 2684. https://doi.org/10.3390/cells9122684
Riparbelli MG, Persico V, Callaini G. The Microtubule Cytoskeleton during the Early Drosophila Spermiogenesis. Cells. 2020; 9(12):2684. https://doi.org/10.3390/cells9122684
Chicago/Turabian StyleRiparbelli, Maria Giovanna, Veronica Persico, and Giuliano Callaini. 2020. "The Microtubule Cytoskeleton during the Early Drosophila Spermiogenesis" Cells 9, no. 12: 2684. https://doi.org/10.3390/cells9122684
APA StyleRiparbelli, M. G., Persico, V., & Callaini, G. (2020). The Microtubule Cytoskeleton during the Early Drosophila Spermiogenesis. Cells, 9(12), 2684. https://doi.org/10.3390/cells9122684