Right Place at the Right Time: How Changes in Protocadherins Affect Synaptic Connections Contributing to the Etiology of Neurodevelopmental Disorders
Abstract
:1. Introduction
2. Protocadherins in the Central Nervous System
2.1. Overall Structure and Classification
2.2. Tissue Distribution
3. Functional Roles of Neuronal Protocadherins
3.1. Cell-Cell Adhesion
3.2. Synapse Maturation and Circuit Formation
4. Protocadherins in Neurodevelopmental Disorders
4.1. PCDH19
4.2. PCDH10
4.3. Other Protocadherins
4.3.1. PCDH9
4.3.2. PCDH8
4.3.3. PCDH17
4.3.4. PCDH15
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Niemi, M.E.K.; Martin, H.C.; Rice, D.L.; Gallone, G.; Gordon, S.; Kelemen, M.; MaAloney, K.; McRae, J.; Radford, E.J.; Yu, S.; et al. Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature 2018, 562, 268–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tărlungeanu, D.C.; Novarino, G. Genomics in neurodevelopmental disorders: An avenue to personalized medicine. Exp. Mol. Med. 2018, 50, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hormozdiari, F.; Kichaev, G.; Yang, W.Y.; Pasaniuc, B.; Eskin, E. Identification of causal genes for complex traits. Bioinformatics 2015, 31, i206–i213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Loo, K.M.; Martens, G.J. Genetic and environmental factors in complex neurodevelopmental disorders. Curr. Genom. 2007, 8, 429–444. [Google Scholar]
- Peek, S.L.; Mah, K.M.; Weiner, J.A. Regulation of neural circuit formation by protocadherins. Cell Mol. Life Sci. 2017, 74, 4133–4157. [Google Scholar] [CrossRef]
- Tsukasaki, Y.; Miyazaki, N.; Matsumoto, A.; Nagae, S.; Yonemura, S.; Tanoue, T.; Iwasaki, K.; Takeichi, M. Giant cadherins and Dachsous self-bond to organize properly spaced intercellular junctions. Proc. Natl. Acad. Sci. USA 2014, 111, 16011–16016. [Google Scholar] [CrossRef] [Green Version]
- Gumbiner, B.M. Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 2005, 6, 622–634. [Google Scholar] [CrossRef]
- Takeichi, M. The cadherin superfamily in neuronal connections and interactions. Nat. Rev. Neurosci. 2007, 8, 11–20. [Google Scholar] [CrossRef]
- Nelson, W.J. Regulation of cell-cell adhesion by the cadherin-catenin complex. Biochem. Soc. Trans. 2008, 36, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Nollet, F.; Kools, P.; van Roy, F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J. Mol. Biol. 2000, 299, 551–572. [Google Scholar] [CrossRef]
- Redies, C.; Vanhalst, K.; Roy, F. Delta-protocadherins: Unique structures and functions. Cell Mol. Life Sci. 2005, 62, 2840–2852. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Maniatis, T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 1999, 97, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Halbleib, J.M.; Nelson, W.J. Cadherins in development: Cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006, 20, 3199–3214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.Y.; Chung, H.S.; Sun, W.; Kim, H. Spatiotemporal expression pattern of non-clustered protocadherin family members in the developing rat brain. Neuroscience 2007, 147, 996–1021. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yasuda, S.; Takana, H.; Yamagata, K.; Kim, H. Non-clustered protocadherin. Cell Adh. Migr. 2011, 5, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Hertel, N.; Krishna, K.; Nuernberger, M.; Redies, C. A cadherin-based code for the divisions of the mouse basal ganglia. J. Comp. Neurol. 2008, 508, 511–528. [Google Scholar] [CrossRef]
- Kim, S.Y.; Mo, J.W.; Choi, S.Y.; Han, S.B.; Moon, B.H.; Rhyu, I.J.; Sun, W.; Kim, H. The expression of non-clustered protocadherins in adult rat hippocampal formation and the connecting brain regions. Neuroscience 2010, 170, 189–199. [Google Scholar] [CrossRef]
- Morishita, H.; Yagi, T. Protocadherin family: Diversity, structure, and function. Curr. Opin. Cell Biol. 2007, 19, 584–592. [Google Scholar] [CrossRef]
- Li, Y.; Serwanski, D.R.; Miralles, C.P.; Fiondella, C.G.; Loturco, J.J.; Rubio, M.E.; De Blas, A.L. Synaptic and nonsynaptic localization of protocadherin-gammaC5 in the rat brain. J. Comp. Neurol. 2010, 518, 3439–3463. [Google Scholar] [CrossRef] [Green Version]
- Bisogni, A.J.; Ghazanfar, S.; Williams, E.O.; Marsh, H.M.; Yang, J.Y.; Lin, D.M. Tuning of delta-protocadherin adhesion through combinatorial diversity. Elife 2018, 7, e41050. [Google Scholar] [CrossRef]
- Goodman, K.M.; Rubinstein, R.; Thu, C.A.; Bahna, F.; Mannepalli, S.; Ahlsén, G.; Rittenhouse, C.; Maniatis, T.; Honig, B.; Shapiro, L. Structural basis of diverse homophilic recognition by clustered α- and β-protocadherins. Neuron 2016, 90, 709–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, K.M.; Rubinstein, R.; Thu, C.A.; Mannepalli, S.; Bahna, F.; Ahlsén, G.; Rittenhouse, C.; Maniatis, T.; Honig, B.; Shapiro, L. γ-Protocadherin structural diversity and functional implications. Elife 2016, 5, e20930. [Google Scholar] [CrossRef] [PubMed]
- Goodman, K.M.; Rubinstein, R.; Dan, H.; Bahna, F.; Mannepalli, S.; Ahlsén, G.; Aye Thu, C.; Sampogna, R.V.; Maniatis, T.; Honig, B.; et al. Protocadherin cis-dimer architecture and recognition unit diversity. Proc. Natl. Acad. Sci. USA 2017, 114, E9829–E9837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, O.J.; Brasch, J.; Katsamba, P.S.; Ahlsen, G.; Noble, A.J.; Dan, H.; Sampogna, R.V.; Potter, C.S.; Carregher, B.; Honig, B.; et al. Family-wide structural and biophysical analysis of binding interactions among non-clustered δ-protocadherins. Cell Rep. 2020, 30, 2655–2671.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiner, D.; Weiner, J.A. Combinatorial hemophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc. Natl. Acad. Sci. USA 2010, 107, 14893–14898. [Google Scholar] [CrossRef] [Green Version]
- Hirano, S.; Yan, Q.; Suzuki, S.T. Expression of novel protocadherin, OL-protocadherin, in a subset of functional systems of the developing mouse brain. J. Neurosci. 1999, 19, 995–1005. [Google Scholar] [CrossRef] [Green Version]
- Yamagata, K.; Andreasson, K.I.; Sugiura, H.; Maru, E.; Dominique, M.; Irie, Y.; Miki, N.; Hayashi, Y.; Yoshioka, M.; Kaneko, K.; et al. Arcadlin is a neural activity-regulated cadherin involved in long term potentiation. J. Biol. Chem. 1999, 274, 19437–19479. [Google Scholar] [CrossRef] [Green Version]
- Tai, K.; Kubota, M.; Shiono, K.; Tokutsu, H.; Suzuki, S.T. Adhesion properties and retinofugal expression of chicken protocadherin-19. Brain Res. 2010, 1344, 13–24. [Google Scholar] [CrossRef]
- Chen, X.; Gumbiner, B.M. Crosstalk between different adhesion molecules. Curr. Opin. Cell Biol. 2006, 18, 572–578. [Google Scholar] [CrossRef]
- Yasuda, S.; Tanaka, H.; Sugiura, H.; Okamura, K.; Sakaguchi, T.; Tran, U.; Takemiya, T.; Mizoguchi, A.; Yagita, Y.; Sakurai, T.; et al. Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases. Neuron 2007, 56, 456–471. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Yamamoto, A.; Bouwmeester, T.; Agius, E.; Robertis, E.M. The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 1998, 125, 4681–4690. [Google Scholar] [PubMed]
- Kazmierczak, P.; Sakaguchi, H.; Tokita, J.; Wilson-Kubalek, E.M.; Milligan, R.A.; Müller, U.; Kachar, B. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 2007, 449, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xiao, H.; Chiou, T.T.; Jin, H.; Bonhomme, B.; Miralles, C.P.; Pinal, N.; Ali, R.; Chen, W.V.; Maniatis, T.; et al. Molecular and functional interaction between protocadherin-gammaC5 and GABAA receptors. J. Neurosci. 2012, 32, 11780–11797. [Google Scholar] [CrossRef] [PubMed]
- Mutoh, T.; Hamada, S.; Senzaki, K.; Murata, Y.; Yagi, T. Cadherin-related neuronal receptor1 (CNR1) has cell adhesion activity with beta1 integrin mediated through the RGD site of CNR1. Exp. Cell Res. 2004, 294, 494–508. [Google Scholar] [CrossRef] [PubMed]
- Brasch, J.; Goodman, K.M.; Noble, A.J.; Rapp, M.; Mannepalli, S.; Bahna, F.; Dandey, V.P.; Bepler, T.; Berger, B.; Maniatis, T.; et al. Visualization of clustered protocadherin neuronal self-recognition complexes. Nature 2019, 569, 280–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefevbre, J.L.; Kostadinov, D.; Chen, W.V.; Maniatis, T.; Sanes, J.R. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 2012, 488, 517–521. [Google Scholar]
- Ing-Esteves, S.; Kostadinov, D.; Marocha, J.; Sing, A.D.; Joseph, K.S.; Laboulaye, M.A.; Sanes, J.R.; Lefevbre, J.L. Combinatorial effects of alpha- and gamma-protocadherins on neuronal survival and dendritic self-avoidance. J. Neurosci. 2018, 38, 2713–2729. [Google Scholar] [CrossRef] [Green Version]
- Garrett, A.M.; Weiner, J.A. Control of CNS synapse development by {gamma}-protocadherin-mediated astrocyte-neuron contact. J. Neurosci. 2009, 29, 11723–11731. [Google Scholar] [CrossRef] [Green Version]
- Molumby, M.J.; Keeler, A.B.; Weiner, J.A. Homophilic protocadherin cell-cell interactions promote dendrite complexity. Cell Rep. 2016, 15, 1037–1050. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, S.; Hamada, S.; Kumode, Y.; Esumi, S.; Katori, S.; Fukuda, E.; Uchiyama, Y.; Hirabayashi, T.; Mombaerts, P.; Yagi, T. The protocadherin-alpha family is involved in axonal coalescence of olfactory sensory neurons into glomeruli of the olfactory bulb in mouse. Mol. Cell Neurosci. 2008, 38, 66–79. [Google Scholar] [CrossRef]
- Prasad, T.; Weiner, J.A. Direct and indirect regulation of spinal cord Ia afferent terminal formation by the γ-protocadherins. Front. Mol. Neurosci. 2011, 4, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katori, S.; Noguchi-Katori, Y.; Okayama, A.; Kawamura, Y.; Luo, W.; Sakimura, K.; Hirabayashi, T.; Iwasato, T.; Yagi, T. Protocadherin-αC2 is required for diffuse projections of serotoninergic axons. Sci. Rep. 2017, 7, 15908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.C.; Zhou, Y.X.; Qiao, P.; Zheng, J.; Wu, Q.; Shen, Q. The protocadherin alpha cluster is required for axon extension and myelination in the developing central nervous system. Neural. Regen Res. 2018, 13, 427–433. [Google Scholar]
- Garrett, A.M.; Schreiner, D.; Lobas, M.A.; Weiner, J.A. γ-protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway. Neuron 2012, 74, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suo, L.; Lu, H.; Ying, G.; Capecchi, M.R.; Wu, Q. Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase. J. Mol. Cell Biol. 2012, 4, 362–376. [Google Scholar] [CrossRef] [Green Version]
- Uemura, M.; Nakao, S.; Suzuki, S.T.; Takeichi, M.; Hirano, S. OL-Protocadherin is essential for growth of striatal axons and thalamocortical projections. Nat. Neurosci. 2007, 10, 1151–1159. [Google Scholar] [CrossRef]
- Hayashi, S.; Inoue, Y.; Kiyonari, H.; Abe, T.; Misaki, K.; Moriguchi, H.; Tanaka, Y.; Takeichi, M. Protocadherin-17 mediates collective axon extension by recruiting actin regulator complexes to interaxonal contacts. Dev. Cell 2014, 30, 673–687. [Google Scholar] [CrossRef] [Green Version]
- Hirano, S. Pioneers in the ventral telencephalon: The role of OL-protocadherin-dependent striatal axon growth in neural circuit formation. Cell Adh. Migr. 2007, 1, 176–178. [Google Scholar] [CrossRef] [Green Version]
- Piper, M.; Dwivedy, A.; Leung, L.; Bradley, R.S.; Holt, C.E. NF-protocadherin and TAF1 regulate retinal axon initiation and elongation in vivo. J. Neurosci. 2008, 28, 100–105. [Google Scholar] [CrossRef]
- Leung, L.C.; Urbančič, V.; Baudet, M.L.; Dwivedy, A.; Bayley, T.G.; Lee, A.C.; Harris, W.A.; Holt, C.E. Coupling of NF-protocadherin signaling to axon guidance by cue-induced translation. Nat. Neurosci. 2013, 16, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Emond, M.R.; Duy, P.Q.; Hao, L.T.; Beattie, C.E.; Jontes, J.D. Protocadherin-18b interacts with Nap1 to control motor axon growth and arborization in zebrafish. Mol. Biol. Cell 2014, 25, 633–642. [Google Scholar] [CrossRef]
- Weiner, J.A.; Wang, X.; Tapia, J.C.; Sanes, J.R. Gamma protocadherins are required for synaptic development in the spinal cord. Proc. Natl. Acad. Sci. USA 2005, 102, 8–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.V.; Alvarez, F.J.; Lefebvre, J.L.; Friedman, B.; Nwakeze, C.; Geiman, E.; Smith, C.; Thu, C.A.; Tapia, J.C.; Tasic, B.; et al. Functional significance of isoform diversification in the protocadherin gamma gene cluster. Neuron 2012, 75, 402–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jontes, J.D.; Phillips, G.R. Selective stabilization and synaptic specificity: A new cell-biological model. Trends Neurosci. 2006, 29, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Kohmura, N.; Senzaki, S.; Hamada, S.; Kai, N.; Yasuda, R.; Watanable, M.; Ishii, H.; Yasuda, M.; Mishina, M.; Yagi, T. Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 1998, 20, 1137–1151. [Google Scholar] [CrossRef] [Green Version]
- Phillips, G.R.; Huang, J.K.; Wang, Y.; Tanaka, H.; Shapiro, L.; Zhang, W.; Shan, W.S.; Arndt, K.; Frank, M.; Gordon, R.E.; et al. The presynaptic particle web: Ultrastructure, composition, dissolution, and reconstitution. Neuron 2001, 32, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Phillips, G.R.; Tanaka, H.; Frank, M.; Elste, A.; Fidler, L.; Benson, D.L.; Colman, R. Gamma-protocadherins are target to subsets of synapses and intracellular organelles in neurons. J. Neurosci. 2003, 23, 5096–5104. [Google Scholar] [CrossRef] [Green Version]
- Molumby, M.J.; Anderson, R.M.; Newbold, D.J.; Koblesky, N.K.; Garrett, A.M.; Schreiner, D.; Radley, J.J.; Weiner, J.A. γ-protocadherins interact with neuroligin-1 and negatively regulate dendritic spine morphogenesis. Cell Rep. 2017, 18, 2702–2714. [Google Scholar] [CrossRef]
- Takeichi, M.; Abe, K. Synaptic contact dynamics controlled by cadherin and catenins. Trends Cell Biol. 2005, 15, 216–221. [Google Scholar] [CrossRef]
- Schoch, H.; Kreibich, A.S.; Ferri, S.L.; White, R.S.; Bohorquez, D.; Banerjee, A.; Port, R.G.; Dow, H.C.; Cordero, L.; Pallathra, A.A.; et al. Sociability deficits and altered amygdala circuits in mice lacking Pcdh10, an autism associated gene. Biol. Psychiatry 2017, 81, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Hoshina, N.; Tanimura, A.; Yamasaki, M.; Inoue, T.; Fukabori, R.; Kuroda, T.; Yokoyama, K.; Tezuka, T.; Sagara, H.; Hirano, S.; et al. Protocadherin 17 regulates presynaptic assembly in topographic corticobasal ganglia circuits. Neuron 2013, 78, 839–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, E.; Kimura, R.; Sukuzi, S.T.; Hirano, S. Distribution of OL-protocadherin protein in correlation with specific neural compartments and local circuits in the postnatal mouse brain. Neuroscience 2003, 117, 593–614. [Google Scholar] [CrossRef]
- Dibbens, L.M.; Tarpey, P.S.; Hynes, K.; Bayly, M.A.; Scheffer, I.E.; Smith, R.; Bomar, J.; Sutton, E.; Vandeleur, L.; Shoubridge, C.; et al. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat. Genet. 2008, 40, 776–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, S.G.; Chance, P.F.; Zou, C.H.; Spinner, N.B.; Golden, J.A.; Smietana, S. Epilepsy and mental retardation limited to females: An X-linked dominant disorder with male sparing. Nat. Genet. 1997, 17, 92–95. [Google Scholar] [CrossRef]
- Juberg, R.C.; Hellman, C.D. A new familial form of convulsive disorder and mental retardation limited to females. J. Pediatr. 1971, 79, 726–732. [Google Scholar] [CrossRef]
- Vlaskamp, D.R.M.; Bassett, A.S.; Sullivan, J.E.; Robblee, J.; Sadleir, L.G.; Scheffer, I.E.; Andrade, D.M. Schizophrenia is a later-onset feature of pcdh19 girls clustering epilepsy. Epilepsia 2019, 60, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Kolc, K.L.; Sadleir, L.G.; Scheffer, I.E.; Ivancevic, A.; Roberts, R.; Pham, D.H.; Gecz, J. A systematic review and meta-analysis of 271 pcdh19-variant individuals identifies psychiatric comorbidities, and association of seizure onset and disease severity. Mol. Psychiatry 2018, 24, 241–251. [Google Scholar] [CrossRef]
- Kolc, K.L.; Sadleir, L.G.; Depienne, C.; Marini, C.; Scheffer, I.E.; Møller, R.S.; Trivisano, M.; Specchio, N.; Pham, D.; Kumar, R.; et al. A standardized patient-centered characterization of the phenotypic spectrum of pcdh19 girls clustering epilepsy. Transl. Psychiatry 2020, 10, 127. [Google Scholar] [CrossRef]
- Niazi, R.; Fanning, E.A.; Depienne, C.; Sarmady, M.; Tayoun, A.N.A. A mutation update for the pcdh19 gene causing early-onset epilepsy in females with an unusual expression pattern. Hum. Mutat. 2019, 40, 243–257. [Google Scholar] [CrossRef]
- Depienne, C.; LeGuern, E. Pcdh19-related infantile epileptic encephalopathy: An unusual x-linked inheritance disorder. Hum. Mutat. 2012, 33, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Depienne, C.; Bouteiller, D.; Keren, B.; Cheuret, E.; Poirier, K.; Trouillard, O.; Benyahia, B.; Quelin, C.; Carpentier, W.; Julia, S.; et al. Sporadic infantile epileptic encephalopathy caused by mutations in pcdh19 resembles Dravet syndrome but mainly affects females. PLoS Genet. 2009, 5, e1000381. [Google Scholar] [CrossRef]
- van Harssel, J.J.; Weckhuysen, S.; van Kempen, M.J.; Hardies, K.; Verbeek, N.E.; de Kovel, C.G.; Gunning, W.B.; van Daalen, E.; de Jonge, M.V.; Jansen, A.C.; et al. Clinical and genetic aspects of pcdh19-related epilepsy syndromes and the possible role of pcdh19 mutations in males with autism spectrum disorders. Neurogenetics 2013, 14, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, A.; Trivisano, M.; Cusmai, R.; De Palma, L.; Fusco, L.; Compagnucci, C.; Bertini, E.; Vigevano, F.; Specchio, N. Pcdh19-related epilepsy in two mosaic male patients. Epilepsia 2016, 57, e51–e55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiffault, I.; Farrow, E.; Smith, L.; Lowry, J.; Zellmer, L.; Black, B.; Abdelmoity, A.; Miller, N.; Soden, S.; Saunders, C. Pcdh19-related epileptic encephalopathy in a male mosaic for a truncating variant. Am. J. Med. Genet. A 2016, 170, 1585–1589. [Google Scholar] [CrossRef] [PubMed]
- de Lange, I.M.; Rump, P.; Neuteboom, R.F.; Augustijn, P.B.; Hodges, K.; Kistemaker, A.I.; Brouwer, O.F.; Mancini, G.M.S.; Newman, H.A.; Vos, Y.J.; et al. Male patients affected by mosaic pcdh19 mutations: Five new cases. Neurogenetics 2017, 18, 147–153. [Google Scholar] [CrossRef]
- Perez, D.; Hsieh, D.T.; Rohena, L. Somatic mosaicism of pcdh19 in a male with early infantile epileptic encephalopathy and review of the literature. Am. J. Med. Genet. A 2017, 173, 1625–1630. [Google Scholar] [CrossRef]
- Tan, Y.; Hou, M.; Ma, S.; Liu, P.; Xia, S.; Wang, Y.; Chen, L.; Chen, Z. Chinese cases of early infantile epileptic encephalopathy: A novel mutation in the pcdh19 gene was proved in a mosaic male- case report. BMC Med. Genet. 2018, 19, 92. [Google Scholar] [CrossRef]
- Romasko, E.J.; DeChene, E.T.; Balciuniene, J.; Akgumus, G.T.; Helbig, I.; Tarpinian, J.M.; Keena, B.A.; Vogiatzi, M.G.; Zackai, E.H.; Izumi, K.; et al. Pcdh19-related epilepsy in a male with klinefelter syndrome: Additional evidence supporting pcdh19 cellular interference disease mechanism. Epilepsy Res. 2018, 145, 89–92. [Google Scholar] [CrossRef]
- Gaitan, Y.; Bouchard, M. Expression of the delta-protocadherin gene pcdh19 in the developing mouse embryo. Gene. Expr. Patterns 2006, 6, 893–899. [Google Scholar] [CrossRef]
- Schaarschuch, A.; Hertel, N. Expression profile of N-cadherin and protocadherin-19 in postnatal mouse limbic structures. J. Comp. Neurol. 2018, 526, 663–680. [Google Scholar] [CrossRef]
- Bassani, S.; Cwetsch, A.W.; Gerosa, L.; Serratto, G.M.; Folci, A.; Hall, I.F.; Mazzanti, M.; Cancedda, L.; Passafaro, M. The female epilepsy protein pcdh19 is a new GABAAR-binding partner that regulates GABAergic transmission as well as migration and morphological maturation of hippocampal neurons. Hum. Mol. Genet. 2018, 27, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- Fujitani, M.; Zhang, S.; Fujiki, R.; Fujihara, Y.; Yamashita, T. A chromosome 16p13.11 microduplication causes hyperactivity through dysregulation of mir-484/protocadherin-19 signaling. Mol. Psychiatry 2017, 22, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Hertel, N.; Redies, C.; Medina, L. Cadherin expression delineates the divisions of the postnatal and adult mouse amygdala. J. Comp. Neurol. 2012, 520, 3982–4012. [Google Scholar] [CrossRef] [PubMed]
- Marini, C.; Darra, F.; Specchio, N.; Mei, D.; Terracciano, A.; Parmeggiani, L.; Ferrari, A.; Sicca, F.; Mastrangelo, M.; Spaccini, L.; et al. Focal seizures with affective symptoms are a major feature of pcdh19 gene-related epilepsy. Epilepsia 2012, 53, 2111–2119. [Google Scholar] [CrossRef]
- Higurashi, N.; Takahashi, Y.; Kashimada, A.; Sugawara, Y.; Sakuma, H.; Tomonoh, Y.; Inoue, T.; Hoshina, M.; Satomi, R.; Ohfu, M.; et al. Immediate suppression of seizure clusters by corticosteroids in pcdh19 female epilepsy. Seizure 2015, 27, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Compagnucci, C.; Petrini, S.; Higuraschi, N.; Trivisano, M.; Specchio, N.; Hirose, S.; Bertini, E.; Terracciano, A. Characterizing pcdh19 in human induced pluripotent stem cells (ipscs) and ipsc-derived developing neurons: Emerging role of a protein involved in controlling polarity during neurogenesis. Oncotarget 2015, 6, 26804–26813. [Google Scholar] [CrossRef]
- Homan, C.C.; Pederson, S.; To, T.H.; Tan, C.; Piltz, S.; Corbett, M.A.; Wolvetang, E.; Thomas, P.Q.; Jolly, L.A.; Gecz, J. Pcdh19 regulation of neural progenitor cell differentiation suggests asynchrony of neurogenesis as a mechanism contributing to pcdh19 girls clustering epilepsy. Neurobiol. Dis. 2018, 116, 106–119. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.; Ren, S.Q.; Zhang, X.J.; Shen, Z.; Ghosh, T.; Xianyu, A.; Gao, P.; Li, Z.; Lin, S.; Yu, Y.; et al. Tbr2 coordinates neurogenesis expansion and precise microcircuit organization via protocadherin 19 in the mammalian cortex. Nat. Commun. 2019, 10, 3946. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, S.; Inoue, Y.; Hattori, S.; Kaneko, M.; Shioi, G.; Miyakawa, T.; Takeichi, M. Loss of X-linked Protocadherin-19 differentially affects the behavior of heterozygous female and hemizygous male mice. Sci. Rep. 2017, 7, 5801. [Google Scholar] [CrossRef]
- Pederick, D.T.; Richards, K.L.; Piltz, S.G.; Kumar, R.; Mincheva-Tasheva, S.; Mandelstam, S.A.; Dale, R.C.; Scheffer, I.E.; Gecz, J.; Petrou, S.; et al. Abnormal cell sorting underlies the unique x-linked inheritance of pcdh19 epilepsy. Neuron 2018, 97, 59–66.e55. [Google Scholar] [CrossRef] [Green Version]
- Cooper, S.R.; Emond, M.R.; Duy, P.Q.; Liebau, B.G.; Wolman, M.A.; Jontes, J.D. Protocadherins control the modular assembly of neuronal columns in the zebrafish optic tectum. J. Cell Biol. 2015, 211, 807–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Light, S.E.W.; Jontes, J.D. Multiplane calcium imaging reveals disrupted development of network topology in zebrafish. eNeuro 2019, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, S.; Emond, M.R.; Jontes, J.D. Protocadherin-19 and N-cadherin interact to control cell movements during anterior neurulation. J. Cell Biol. 2010, 191, 1029–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emond, M.R.; Biswas, S.; Blevins, C.J.; Jontes, J.D. A complex of protocadherin-19 and N-cadherin mediates a novel mechanism of cell adhesion. J. Cell Biol. 2011, 195, 1115–1121. [Google Scholar] [CrossRef] [Green Version]
- Cooper, S.R.; Jontes, J.D.; Sotomayor, M. Structural determinants of adhesion by protocadherin-19 and implications for its role in epilepsy. Elife 2016, 5, e18529. [Google Scholar] [CrossRef]
- Chen, B.; Brinkmann, K.; Chen, Z.; Pak, C.W.; Liao, Y.; Shi, S.; Henry, L.; Grishin, N.V.; Bogdan, S.; Rosen, M.K. The wave regulatory complex links diverse receptors to the actin cytoskeleton. Cell 2014, 156, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Emon, M.R.; Biswas, S.; Morrow, M.L.; Jontes, J.D. Proximity-dependent proteomics reveals extensive interactions of protocadherin-19 with regulators of rho GTPases and the microtubule cytoskeleton. Neuroscience 2020, 452, 26–36. [Google Scholar] [CrossRef]
- Kurian, M.; Korff, C.M.; Ranza, E.; Bernasconi, A.; Lübbig, A.; Nangia, S.; Ramelli, G.P.; Wohlrab, G.; Nordli, D.R.; Bast, T. Focal cortical malformations in children with early infantile epilepsy and pcdh19 mutations: Case report. Dev. Med. Child Neurol. 2018, 60, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Lenge, M.; Marini, C.; Canale, E.; Napolitano, A.; De Masi, S.; Trivisano, M.; Mei, D.; Longo, D.; Rossi Espagnet, M.C.; Lucenteforte, E.; et al. Quantitative MRI-based analysis identifies developmental limbic abnormalities in pcdh19 encephalopathy. Cereb. Cortex 2020, 30, 6039–6050. [Google Scholar] [CrossRef]
- Lim, J.; Ryu, J.; Kang, S.; Noh, H.J.; Kim, C.H. Autism-like behaviors in male mice with a pcdh19 deletion. Mol. Brain 2019, 12, 95. [Google Scholar] [CrossRef]
- Rakotomamonjy, J.; Sabetfakhri, N.P.; McDermott, S.L.; Guemez-Gamboa, A. Characterization of seizure susceptibility in pcdh19 mice. Epilepsia 2020, 61, 2313–2320. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Shard, C.; Ranieri, E.; Hynes, K.; Pham, D.H.; Leach, D.; Buchanan, G.; Corbett, M.; Shoubridge, C.; Kumar, R.; et al. Mutations of protocadherin 19 in female epilepsy (pcdh19-fe) lead to allopregnanolone deficiency. Hum. Mol. Genet. 2015, 24, 5250–5259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belelli, D.; Lambert, J.J. Neurosteroids: Endogenous regulators of the GABA(A) receptor. Nat. Rev. Neurosci. 2005, 6, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Serratto, G.M.; Pizzi, E.; Murru, L.; Mazzoleni, S.; Pelucchi, S.; Marcello, E.; Mazzanti, M.; Passafaro, M.; Bassani, S. The epilepsy-related protein pcdh19 regulates tonic inhibition, GABA. Mol. Neurobiol. 2020, 57, 5336–5351. [Google Scholar] [CrossRef]
- Sullivan, J.; Specchio, N.; Chez, M.; Pinna, G.; Locci, A.; Jarrar, R.; Poduri, A.; Ridel, K.; Masuoka, L.; Gasior, M.; et al. Preliminary evidence of a predictive clinical biomarker in PCDH19-related epilepsy: Significant treatment effect of ganaxolone in biomarker-positive patients. In Proceedings of the American Epilepsy Society Annual Meeting, New Orleans Ernest, N. Morial Convention Center, New Orleans, LA, USA, 30 November–4 December 2018. [Google Scholar]
- ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Study of Adjunctive Ganaxolone Treatment in Female Children with Protocadherin 19 (PCDH19)-Related Epilepsy (Violet Study). Available online: https://clinicaltrials.gov/ct2/show/NCT03865732 (accessed on 16 December 2019).
- Nakao, S.; Uemura, M.; Aoki, E.; Suzuki, S.T.; Takeichi, M.; Hirano, S. Distribution of OL-protocadherin in axon fibers in the developing chick nervous system. Mol. Brain Res. 2005, 134, 294–308. [Google Scholar] [CrossRef]
- Schuetze, M.; Park, M.T.; Choi, I.Y.; MacMaster, F.P.; Chakravarty, M.M.; Bray, S.L. Morphological alterations in the thalamus, striatum, and pallidum in Autism Spectrum Disorder. Neuropsychopharmacology 2016, 41, 2627–2637. [Google Scholar] [CrossRef] [Green Version]
- Hirano, S.; Takeichi, M. Cadherins in brain morphogenesis and wiring. Physiol. Rev. 2012, 92, 597–634. [Google Scholar] [CrossRef]
- Nakao, S.; Platek, A.; Hirano, S.; Takeichi, M. Contact-dependent promotion of cell migration by the OL-protocadherin-Nap1 interaction. J. Cell Biol. 2008, 182, 395–410. [Google Scholar] [CrossRef] [Green Version]
- Port, R.G.; Gajewski, C.; Krizman, E.; Dow, H.C.; Hirano, S.; Brodkin, E.S.; Carlson, G.C.; Robinson, M.B.; Roberts, T.P.L.; Siegel, S.J. Protocadherin 10 alters δ-oscillations, amino acid levels, and their coupling; baclofen partially restores these oscillatory deficits. Nerobiol. Dis. 2017, 108, 324–338. [Google Scholar] [CrossRef]
- Rojas, D.C.; Wilson, L.B. γ-band abnormalities as markers of autism spectrum disorders. Biomark Med. 2014, 8, 353–368. [Google Scholar] [CrossRef] [Green Version]
- Morrow, E.M.; Yoo, S.Y.; Flavell, S.W.; Kim, T.L.; Lin, Y.; Hill, R.S.; Mukaddes, N.M.; Balkhy, S.; Gascon, G.; Hashmi, A.; et al. Identifying autism loci and genes by tracing recent shared ancestry. Science 2008, 321, 218–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucan, M.; Abrahams, B.S.; Wang, K.; Glessner, J.T.; Herman, E.I.; Sonnenblick, L.I.; Alvarez Retuerto, A.I.; Imielinski, M.; Hadley, D.; Bradfield, J.P.; et al. Genome-wide analysis of exonic copy number variants in a family—Based study point to novel autism susceptibility genes. PLoS Genet. 2009, 5, e1000536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagni, C.; Greenough, W.T. From mRNP trafficking to spine dysmorphogenesis: The roots of Fragile X syndrome. Nat. Rev. Neurosci. 2005, 6, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, B.E.; Zang, T.; Wilkerson, J.R.; Taniguchi, M.; Maksimova, M.A.; Smith, L.N.; Cowan, C.W.; Huber, K.M. Fragile X mental retardation protein is required for synapse elimination by the activity-dependent transcription factor MEF2. Neuron 2010, 66, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Tsai, N.P.; Wilkerson, J.R.; Guo, W.; Maksimova, M.A.; DeMartino, G.N.; Cowan, C.W.; Huber, K.M. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell 2012, 151, 1581–1594. [Google Scholar] [CrossRef] [Green Version]
- Asahina, H.; Masuba, A.; Hirano, S.; Yuri, K. Distribution of protocadherin 9 protein in the developing mouse nervous system. Neuroscience 2012, 225, 88–104. [Google Scholar] [CrossRef]
- Bruining, H.; Matsui, A.; Oguro-Ando, A.; Kahn, R.S.; Van’t Spijker, H.M.; Akkermans, G.; Stiedl, O.; van Engeland, H.; Koopmans, B.; van Lith, H.A.; et al. Genetic mapping in mice reveals the involvement of Pcdh9 in long-term social and object recognition and sensorimotor development. Biol. Psychiatry 2015, 78, 485–495. [Google Scholar] [CrossRef]
- Xiao, X.; Zheng, F.; Chang, H.; Ma, Y.; Yao, Y.G.; Luo, X.J.; Li, M. The gene encoding protocadherin 9 (PCDH9), a novel risk factor for major depressive disorder. Neuropsychopharmacology 2018, 43, 1128–1137. [Google Scholar] [CrossRef]
- Sugiura, H.; Tanaka, H.; Yasuda, S.; Takemiya, T.; Yamagata, K. Transducing neuronal activity into dendritic spine morphology: New roles for p38 MAP kinase and N-cadherin. Neuroscientist 2009, 15, 90–104. [Google Scholar] [CrossRef]
- Butler, M.G.; Rafi, S.K.; Hossain, W.; Stephan, D.A.; Manzardo, A.M. Whole exome sequencing in females with autism implicates novel and candidate genes. Int. J. Mol. Sci. 2015, 16, 1312–1335. [Google Scholar] [CrossRef] [Green Version]
- Abrahams, B.S.; Tentler, D.; Perederiy, J.V.; Oldham, M.C.; Coppola, G.; Geschwind, D.H. Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc. Natl. Acad. Sci. USA 2007, 104, 17849–17854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.; Hoshina, N.; Zhang, C.; Ma, Y.; Cao, H.; Wang, Y.; Wu, D.D.; Bergen, S.E.; Landén, M.; Hultman, C.M.; et al. The protocadherin 17 gene affects cognition, personality, amygdala structure and function, synapse development and risk of major mood disorders. Mol. Psychiatry 2018, 23, 400–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murcia, C.L.; Woychik, R.P. Expression of Pcdh15 in the inner ear, nervous system and various epithelia of the developing embryo. Mech. Dev. 2001, 105, 163–166. [Google Scholar] [CrossRef]
- Ahmed, Z.M.; Riazzudin, S.; Bernstein, S.L.; Ahmed, Z.; Khan, S.; Griffith, A.J.; Morell, R.J.; Friedman, T.B.; Riazuddin, S.; Wilcox, E.R. Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am. J. Hum. Genet. 2001, 69, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregório, S.P.; Sallet, P.C.; Do, K.A.; Lin, E.; Gattaz, W.F.; Dias-Neto, E. Polymorphisms in genes involved in neurodevelopment may be associated with altered brain morphology in schizophrenia: Preliminary evidence. Psychiatry Res. 2009, 165, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sorte, H.S.; Gjevik, E.; Sponheim, E.; Eiklid, K.L.; Rødningen, O.K. Copy number variation findings among 50 children and adolescents with autism spectrum disorder. Psychiatr. Genet. 2013, 23, 61–69. [Google Scholar] [CrossRef]
- Fromer, M.; Pocklington, A.J.; Kavanagh, D.H.; Williams, H.J.; Dwyer, S.; Gormley, P.; Georgieva, L.; Rees, E.; Palta, P.; Ruderfer, D.M.; et al. De novo mutations mutations in schizophrenia implicate synaptic networks. Nature 2014, 506, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Georgieva, L.; Rees, E.; Moran, J.L.; Chambert, K.D.; Milanova, V.; Craddock, N.; Purcell, S.; Sklar, P.; McCarroll, S.; Holmans, P.; et al. De novo CNVs bipolar affective disorder and schizophrenia. Hum. Mol. Genet. 2014, 23, 6677–7783. [Google Scholar] [CrossRef]
- Noor, A.; Lionel, A.C.; Cohen-Woods, S.; Moghimi, N.; Rucker, J.; Fennell, A.; Thiruvahindrapuram, B.; Kaufman, L.; Degagne, B.; Wei, J.; et al. Copy number variant study of bipolar disorder in Canadian and UK populations implicates synaptic genes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2014, 165B, 303–313. [Google Scholar] [CrossRef]
- Kushima, I.; Aleksic, B.; Nakatochi, M.; Shimamura, T.; Okada, T.; Uno, Y.; Morikawa, M.; Ishizuka, K.; Shiino, T.; Kimura, H.; et al. Comparative analyses of copy-number variation in autism spectrum disorder and schizophrenia reveal etiological overlap and biological insights. Cell Rep. 2018, 24, 2838–2856. [Google Scholar] [CrossRef] [Green Version]
- Ishii, T.; Ishikawa, M.; Fujimori, K.; Maeda, T.; Kushima, I.; Arioka, Y.; Mori, D.; Nakatake, Y.; Yamagata, B.; Nio, S.; et al. In Vitro modeling of the bipolar disorder and schizophrenia using patient-derived induced pluripotent stem cells with copy number variations of PCDH15 and RELN. eNeuro 2019, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konopaske, G.T.; Lange, N.; Coyle, J.T.; Benes, F.M. Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiatry 2014, 71, 1323–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clustered PCDHs | Non-Clustered PCDHs | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Major Tissues | α | β | γ | PCDHδ1 | PCDHδ2 | PCDHε | ||||
9 | 8 | 10 | 17 | 19 | 15 | |||||
Nervous | Whole Brain | +++ | +++ | +++ | +++ | +++ | +++ | +++ | +++ | +++ |
Cortex | + | +++ | +++ | +++ | +++ | +++ | +++ | +++ | +++ | |
Hippocampus | ++ | +++ | +++ | +++ | +++ | +++ | +++ | +++ | +++ | |
Cerebellum | ++ | +++ | +++ | +++ | ++ | ++ | +++ | ++ | ++ | |
Retina | +++ | - | - | - | - | - | - | - | ++ | |
Spinal Cord | + | +++ | +++ | +++ | ++ | ++ | +++ | ++ | +++ | |
Tibial Nerve | ++ | +++ | +++ | +++ | ++ | ++ | ++ | ++ | + | |
Muscle | Heart | + | ++ | +++ | ++ | + | + | ++ | ++ | ++ |
Artery | ++ | +++ | +++ | ++ | + | ++ | ++ | ++ | + | |
Smooth Muscle | - | - | - | - | - | - | - | - | - | |
Skeletal Muscle | + | ++ | ++ | ++ | + | + | ++ | ++ | + | |
Internal | Small Intestine | + | ++ | ++ | + | + | ++ | ++ | ++ | ++ |
Colon | + | +++ | +++ | ++ | + | ++ | +++ | +++ | ++ | |
Adipocyte | ++ | +++ | +++ | ++ | + | ++ | ++ | +++ | + | |
Kidney | ++ | ++ | ++ | ++ | + | +++ | ++ | + | ++ | |
Liver | + | ++ | ++ | + | + | + | ++ | + | + | |
Lung | + | +++ | +++ | + | + | ++ | +++ | + | +++ | |
Spleen | + | ++ | ++ | + | + | + | +++ | + | ++ | |
Stomach | + | ++ | ++ | ++ | + | ++ | ++ | ++ | + | |
Esophagus | + | ++ | +++ | ++ | + | +++ | ++ | ++ | + | |
Bladder | + | +++ | +++ | ++ | + | +++ | ++ | ++ | + |
Name | Circuitry Related Functions | Related Diseases | Brain Region Involved |
---|---|---|---|
PCDH19 | Neural association and proliferation | Epilepsy, intellectual disability, ASD | Amygdala, hippocampus, cortex, hypothalamus |
PCDH10 | Synapse elimination, axon guidance and formation | ASD | Basal ganglia, amygdala |
PCDH9 | Neurite localization | ASD, schizophrenia, depression | Cortex, hippocampus |
PCDH8 | Synapse elimination | ASD | Hippocampus |
PCDH17 | Axon growth and fasciculation, synapse development, synaptic vesicles | Bipolar disorder, schizophrenia, depression | Amygdala, basal ganglia |
PCDH15 | Neuronal projections and connectivity | Schizophrenia, bipolar disorder, ASD | Cortex |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancini, M.; Bassani, S.; Passafaro, M. Right Place at the Right Time: How Changes in Protocadherins Affect Synaptic Connections Contributing to the Etiology of Neurodevelopmental Disorders. Cells 2020, 9, 2711. https://doi.org/10.3390/cells9122711
Mancini M, Bassani S, Passafaro M. Right Place at the Right Time: How Changes in Protocadherins Affect Synaptic Connections Contributing to the Etiology of Neurodevelopmental Disorders. Cells. 2020; 9(12):2711. https://doi.org/10.3390/cells9122711
Chicago/Turabian StyleMancini, Maria, Silvia Bassani, and Maria Passafaro. 2020. "Right Place at the Right Time: How Changes in Protocadherins Affect Synaptic Connections Contributing to the Etiology of Neurodevelopmental Disorders" Cells 9, no. 12: 2711. https://doi.org/10.3390/cells9122711
APA StyleMancini, M., Bassani, S., & Passafaro, M. (2020). Right Place at the Right Time: How Changes in Protocadherins Affect Synaptic Connections Contributing to the Etiology of Neurodevelopmental Disorders. Cells, 9(12), 2711. https://doi.org/10.3390/cells9122711