Defocused Images Change Multineuronal Firing Patterns in the Mouse Retina
Abstract
:1. Introduction
2. Results
2.1. Characterization of Major RGCs/Displaced AC Populations in the Mouse Retina Based on Their Light-Evoked Spiking Activities
2.2. Populations of RGCs Firing Patterns Are Changed by Defocused Images
2.3. Dopamine Effects on RGC/AC Firing Pattern Responses to Focused and Defocused Images on MEA Recording
2.4. Focused and Defocused Images Can Change the Excitatory and Inhibitory Conductance of RGCs in the Mouse Retina
2.5. OFF-Delaying RGCs Synchronized Firing May Contribute to Image Edge Detection
3. Discussion
4. Methods
4.1. Ethical Approval
4.2. Animals
4.3. Retina Preparation
4.4. Electrical Recording
4.5. Injection of Neurobiotin
4.6. Patterned Light Stimulation
4.7. Immunocytochemistry
4.8. Imaging and Data Quantification
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. The impact of myopia and high myopia. In Proceedings of the World Health Organization–Brien Holden Vision InstituteGlobal Scientific Meeting on Myopia, University of New South Wales, Sydney, Australia, 16–18 March 2015. [Google Scholar]
- Naidoo, K.S.; Fricke, T.R.; Frick, K.D.; Jong, M.; Naduvilath, T.J.; Resnikoff, S.; Sankaridurg, P. Potential Lost Productivity Resulting from the Global Burden of Myopia: Systematic Review, Meta-analysis, and Modeling. Ophthalmology 2019, 126, 338–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaeffel, F. Test systems for measuring ocular parameters and visual function in mice. Front. Biosci. 2008, 13, 4904–4911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaeffel, F. The mouse model of myopia. In Myopia: Animal Models to Clinical trials; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2011; pp. 303–330. [Google Scholar]
- Norton, T.T. Animal Models of Myopia: Learning How Vision Controls the Size of the Eye. ILAR J. 1999, 40, 59–77. [Google Scholar] [CrossRef] [Green Version]
- Wallman, J.; Turkel, J.; Trachtman, J. Extreme myopia produced by modest change in early visual experience. Science 1978, 201, 1249–1251. [Google Scholar] [CrossRef]
- Schaeffel, F.; Feldkaemper, M. Animal models in myopia research. Clin. Exp. Optom. 2015, 98, 507–517. [Google Scholar] [CrossRef] [Green Version]
- McBrien, N.A.; Norton, T.T. The development of experimental myopia and ocular component dimensions in monocularly lid-sutured tree shrews (Tupaia belangeri). Vision Res. 1992, 32, 843–852. [Google Scholar] [CrossRef]
- Barathi, V.A.; Boopathi, V.G.; Yap, E.P.; Beuerman, R.W. Two models of experimental myopia in the mouse. Vision Res. 2008, 48, 904–916. [Google Scholar] [CrossRef] [Green Version]
- Raviola, E.; Wiesel, T.N. An animal model of myopia. N. Engl. J. Med. 1985, 312, 1609–1615. [Google Scholar] [CrossRef]
- Troilo, D.; Judge, S.J. Ocular development and visual deprivation myopia in the common marmoset (Callithrix jacchus). Vision Res. 1993, 33, 1311–1324. [Google Scholar] [CrossRef]
- Troilo, D.; Gottlieb, M.D.; Wallman, J. Visual deprivation causes myopia in chicks with optic nerve section. Curr. Eye Res. 1987, 6, 993–999. [Google Scholar] [CrossRef]
- Schaeffel, F.; Glasser, A.; Howland, H.C. Accommodation, refractive error and eye growth in chickens. Vision Res. 1988, 28, 639–657. [Google Scholar] [CrossRef]
- Jiang, X.; Kurihara, T.; Kunimi, H.; Miyauchi, M.; Ikeda, S.I.; Mori, K.; Tsubota, K.; Torii, H.; Tsubota, K. A highly efficient murine model of experimental myopia. Sci. Rep. 2018, 8, 2026. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.; Judge, S.J. The effects of spectacle wear in infancy on eye growth and refractive error in the marmoset (Callithrix jacchus). Vision Res. 1999, 39, 189–206. [Google Scholar] [CrossRef] [Green Version]
- Hung, L.F.; Crawford, M.L.; Smith, E.L. Spectacle lenses alter eye growth and the refractive status of young monkeys. Nat. Med. 1995, 1, 761–765. [Google Scholar] [CrossRef]
- Pardue, M.T.; Stone, R.A.; Iuvone, P.M. Investigating mechanisms of myopia in mice. Exp. Eye Res. 2013, 114, 96–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallman, J.; Winawer, J. Homeostasis of eye growth and the question of myopia. Neuron 2004, 43, 447–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, F. Defocused Image Changes Signaling of Ganglion Cells in the Mouse Retina. Cells 2019, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Schaeffel, F.; Wildsoet, C. Can the retina alone detect the sign of defocus? Ophthal. Physl. Opt. 2013, 33, 362–367. [Google Scholar] [CrossRef]
- Park, H.; Tan, C.C.; Faulkner, A.; Jabbar, S.B.; Schmid, G.; Abey, J.; Iuvone, P.M.; Pardue, M.T. Retinal degeneration increases susceptibility to myopia in mice. Mol. Vis. 2013, 19, 2068–2079. [Google Scholar]
- Stone, R.A.; Pardue, M.T.; Iuvone, P.M.; Khurana, T.S. Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms. Exp. Eye Res. 2013, 114, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Doyle, S.E.; McIvor, W.E.; Menaker, M. Circadian rhythmicity in dopamine content of mammalian retina: Role of the photoreceptors. J. Neurochem. 2002, 83, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Bauer, B.; Ehinger, B.; Aberg, L. [3H]-dopamine release from the rabbit retina. Graefes Arch. Clin. Exp. Ophthalmol. 1980, 215, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Witkovsky, P. Dopamine and retinal function. Doc. Ophthalmol. 2004, 108, 17–40. [Google Scholar] [CrossRef] [Green Version]
- Bloomfield, S.A.; Volgyi, B. The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat. Rev. Neurosci. 2009, 10, 495–506. [Google Scholar] [CrossRef]
- Nguyen-Legros, J.; Versaux-Botteri, C.; Vernier, P. Dopamine receptor localization in the mammalian retina. Mol. Neurobiol. 1999, 19, 181–204. [Google Scholar] [CrossRef]
- Farshi, P.; Fyk-Kolodziej, B.; Krolewski, D.M.; Walker, P.D.; Ichinose, T. Dopamine D1 receptor expression is bipolar cell type-specific in the mouse retina. J. Comp. Neurol. 2016, 524, 2059–2079. [Google Scholar] [CrossRef] [Green Version]
- Mazade, R.E.; Flood, M.D.; Eggers, E.D. Dopamine D1 receptor activation reduces local inner retinal inhibition to light-adapted levels. J. Neurophysiol. 2019, 121, 1232–1243. [Google Scholar] [CrossRef]
- Ribelayga, C.; Cao, Y.; Mangel, S.C. The circadian clock in the retina controls rod-cone coupling. Neuron 2008, 59, 790–801. [Google Scholar] [CrossRef] [Green Version]
- Mills, S.L.; Xia, X.B.; Hoshi, H.; Firth, S.I.; Rice, M.E.; Frishman, L.J.; Marshak, D.W. Dopaminergic modulation of tracer coupling in a ganglion-amacrine cell network. Vis. Neurosci. 2007, 24, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Tian, N.; Xu, H.P.; Wang, P. Dopamine D2 receptors preferentially regulate the development of light responses of the inner retina. Eur. J. Neurosci. 2015, 41, 17–30. [Google Scholar] [CrossRef]
- Feldkaemper, M.; Schaeffel, F. An updated view on the role of dopamine in myopia. Exp. Eye Res. 2013, 114, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Pardue, M.T.; Iuvone, P.M.; Qu, J. Dopamine signaling and myopia development: What are the key challenges. Prog. Retin. Eye Res. 2017, 61, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zhang, L.; Wang, Q.; Yang, Y.; Li, Q.; Wu, Y.; Chen, J.; Qu, J.; Zhou, X. Dopamine D1 Receptors Contribute Critically to the Apomorphine-Induced Inhibition of Form-Deprivation Myopia in Mice. Invest. Ophthalmol. Vis. Sci. 2018, 59, 2623–2634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volgyi, B.; Pan, F.; Paul, D.L.; Wang, J.T.; Huberman, A.D.; Bloomfield, S.A. Gap junctions are essential for generating the correlated spike activity of neighboring retinal ganglion cells. PLoS ONE 2013, 8, e69426. [Google Scholar] [CrossRef] [Green Version]
- Pang, J.J.; Gao, F.; Wu, S.M. Light-evoked excitatory and inhibitory synaptic inputs to ON and OFF alpha ganglion cells in the mouse retina. J. Neurosci. 2003, 23, 6063–6073. [Google Scholar] [CrossRef] [Green Version]
- Murphy, G.J.; Rieke, F. Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron 2006, 52, 511–524. [Google Scholar] [CrossRef] [Green Version]
- Della Santina, L.; Inman, D.M.; Lupien, C.B.; Horner, P.J.; Wong, R.O. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J. Neurosci. 2013, 33, 17444–17457. [Google Scholar] [CrossRef]
- Mani, A.; Schwartz, G.W. Circuit Mechanisms of a Retinal Ganglion Cell with Stimulus-Dependent Response Latency and Activation Beyond Its Dendrites. Curr. Biol. 2017, 27, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Pan, F.; Toychiev, A.; Zhang, Y.; Atlasz, T.; Ramakrishnan, H.; Roy, K.; Volgyi, B.; Akopian, A.; Bloomfield, S.A. Inhibitory masking controls the threshold sensitivity of retinal ganglion cells. J. Physiol. 2016, 594, 6679–6699. [Google Scholar] [CrossRef] [Green Version]
- Masland, R.H. The fundamental plan of the retina. Nat. Neurosci. 2001, 4, 877–886. [Google Scholar] [CrossRef]
- Vitale, S.; Ellwein, L.; Cotch, M.F.; Ferris, F.L.; Sperduto, R. Prevalence of refractive error in the United States, 1999–2004. Arch. Ophthalmol. 2008, 126, 1111–1119. [Google Scholar] [CrossRef] [Green Version]
- Flitcroft, D.I. Emmetropisation and the aetiology of refractive errors. Eye 2014, 28, 169–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitzer, M.; Schaeffel, F. Defocus-induced changes in ZENK expression in the chicken retina. Invest. Ophth. Vis. Sci. 2002, 43, 246–252. [Google Scholar]
- Maiello, G.; Walker, L.; Bex, P.J.; Vera-Diaz, F.A. Blur perception throughout the visual field in myopia and emmetropia. J. Vision 2017, 17, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.L., 3rd; Hung, L.F.; Arumugam, B. Visual regulation of refractive development: Insights from animal studies. Eye 2014, 28, 180–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, A.R.; Summers, J.A. The dynamic sclera: Extracellular matrix remodeling in normal ocular growth and myopia development. Exp. Eye Res. 2015, 133, 100–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asari, H.; Meister, M. Divergence of visual channels in the inner retina. Nat. Neurosci. 2012, 15, 1581–1589. [Google Scholar] [CrossRef] [Green Version]
- Gjorgjieva, J.; Sompolinsky, H.; Meister, M. Benefits of pathway splitting in sensory coding. J. Neurosci. 2014, 34, 12127–12144. [Google Scholar] [CrossRef] [Green Version]
- Diedrich, E.; Schaeffel, F. Spatial resolution, contrast sensitivity, and sensitivity to defocus of chicken retinal ganglion cells in vitro. Vis. Neurosci. 2009, 26, 467–476. [Google Scholar] [CrossRef]
- Meister, M.; Berry, M.J., 2nd. The neural code of the retina. Neuron 1999, 22, 435–450. [Google Scholar] [CrossRef] [Green Version]
- Gollisch, T.; Meister, M. Rapid neural coding in the retina with relative spike latencies. Science 2008, 319, 1108–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloomfield, S.A.; Volgyi, B. Response properties of a unique subtype of wide-field amacrine cell in the rabbit retina. Vis. Neurosci. 2007, 24, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Volgyi, B.; Xin, D.; Amarillo, Y.; Bloomfield, S.A. Morphology and physiology of the polyaxonal amacrine cells in the rabbit retina. J. Comp. Neurol. 2001, 440, 109–125. [Google Scholar] [CrossRef]
- Bloomfield, S.A.; Miller, R.F. A physiological and morphological study of the horizontal cell types of the rabbit retina. J. Comp. Neurol. 1982, 208, 288–303. [Google Scholar] [CrossRef]
- Jacoby, J.; Zhu, Y.; DeVries, S.H.; Schwartz, G.W. An Amacrine Cell Circuit for Signaling Steady Illumination in the Retina. Cell Rep. 2015, 13, 2663–2670. [Google Scholar] [CrossRef] [Green Version]
- Borghuis, B.G.; Marvin, J.S.; Looger, L.L.; Demb, J.B. Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina. J. Neurosci. 2013, 33, 10972–10985. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banerjee, S.; Wang, Q.; So, C.H.; Pan, F. Defocused Images Change Multineuronal Firing Patterns in the Mouse Retina. Cells 2020, 9, 530. https://doi.org/10.3390/cells9030530
Banerjee S, Wang Q, So CH, Pan F. Defocused Images Change Multineuronal Firing Patterns in the Mouse Retina. Cells. 2020; 9(3):530. https://doi.org/10.3390/cells9030530
Chicago/Turabian StyleBanerjee, Seema, Qin Wang, Chung Him So, and Feng Pan. 2020. "Defocused Images Change Multineuronal Firing Patterns in the Mouse Retina" Cells 9, no. 3: 530. https://doi.org/10.3390/cells9030530
APA StyleBanerjee, S., Wang, Q., So, C. H., & Pan, F. (2020). Defocused Images Change Multineuronal Firing Patterns in the Mouse Retina. Cells, 9(3), 530. https://doi.org/10.3390/cells9030530