Effect of Cholesterol and Myelin Basic Protein (MBP) Content on Lipid Monolayers Mimicking the Cytoplasmic Membrane of Myelin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Langmuir Monolayers
2.4. Epifluorescence Microscopy
3. Results and Discussion
3.1. Compression Isotherms
3.2. Epifluorescence Microscopy
3.2.1. Varying Cholesterol Content without MBP
3.2.2. Varying Cholesterol Content with MBP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harauz, G.; Musse, A.A. A Tale of Two Citrullines—Structural and Functional Aspects of Myelin Basic Protein Deimination in Health and Disease. Neurochem. Res. 2007, 32, 137–158. [Google Scholar] [CrossRef] [PubMed]
- Boggs, J.M.; Moscarello, M.A.; Papahadjopoulos, D. Structural Organization of Myelin: Role of Lipid Protein Interactions Determined in Model Systems. In Lipid-Protein Interactions; Jost, P.C., Griffith, O.H., Eds.; Wiley-Interscience: New York, NY, USA, 1982; pp. 1–51. [Google Scholar]
- Moscarello, M.A.; Wood, D.D.; Ackerley, C.; Boulias, C. Myelin in Multiple Sclerosis Is Developmentally Immature. J. Clin. Investig. 1994, 94, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Tranquill, L.R.; Cao, L.; Ling, N.C.; Kalbacher, H.; Martin, R.M.; Whitaker, J.N. Enhanced T Cell Responsiveness to Citrulline-Containing Myelin Basic Protein in Multiple Sclerosis Patients. Mult. Scler. 2000, 6, 220–225. [Google Scholar] [CrossRef]
- Dunker, A.K.; Silman, I.; Uversky, V.N.; Sussman, J.L. Function and Structure of Inherently Disordered Proteins. Curr. Opin. Struct. Biol. 2008, 18, 756–764. [Google Scholar] [CrossRef]
- Harauz, G.; Ishiyama, N.; Hill, C.M.; Bates, I.R.; Libich, D.S.; Farès, C. Myelin Basic Protein—Diverse Conformational States of an Intrinsically Unstructured Protein and Its Roles in Myelin Assembly and Multiple Sclerosis. Micron 2004, 35, 503–542. [Google Scholar] [CrossRef]
- Tompa, P.; Fersht, A. Structure and Function of Intrinsically Disordered Proteins, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Uversky, V.N. Intrinsically Disordered Proteins from A to Z. Int. J. Biochem. Cell Biol. 2011, 43, 1090–1103. [Google Scholar] [CrossRef] [Green Version]
- Kurzbach, D.; Platzer, G.; Schwarz, T.C.; Henen, M.A.; Konrat, R.; Hinderberger, D. Cooperative Unfolding of Compact Conformations of the Intrinsically Disordered Protein Osteopontin. Biochemistry 2013, 52, 5167–5175. [Google Scholar] [CrossRef] [PubMed]
- Kurzbach, D.; Schwarz, T.C.; Platzer, G.; Höfler, S.; Hinderberger, D.; Konrat, R. Compensatory Adaptations of Structural Dynamics in an Intrinsically Disordered Protein Complex. Angew. Chem. 2014, 126, 3919–3922. [Google Scholar] [CrossRef]
- Bund, T.; Boggs, J.M.; Harauz, G.; Hellmann, N.; Hinderberger, D. Copper Uptake Induces Self-Assembly of 18.5 KDa Myelin Basic Protein (MBP). Biophys. J. 2010, 99, 3020–3028. [Google Scholar] [CrossRef] [Green Version]
- Vassall, K.A.; Bamm, V.V.; Jenkins, A.D.; Velte, C.J.; Kattnig, D.R.; Boggs, J.M.; Hinderberger, D.; Harauz, G. Substitutions Mimicking Deimination and Phosphorylation of 18.5-KDa Myelin Basic Protein Exert Local Structural Effects That Subtly Influence Its Global Folding. Biochim. Biophys. Acta Biomembr. 2016, 1858, 1262–1277. [Google Scholar] [CrossRef]
- Harauz, G.; Boggs, J.M. Myelin Management by the 18.5-KDa and 21.5-KDa Classic Myelin Basic Protein Isoforms. J. Neurochem. 2013, 125, 334–361. [Google Scholar] [CrossRef] [PubMed]
- Harauz, G.; Ladizhansky, V.; Boggs, J.M. Structural Polymorphism and Multifunctionality of Myelin Basic Protein. Biochemistry 2009, 48, 8094–8104. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.G.; Maggio, B. Compositional Domain Immiscibility in Whole Myelin Monolayers at the Air-Water Interface and Langmuir-Blodgett Films. Biochim. Biophys. Acta Biomembr. 2002, 1561, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.G.; Calderón, R.O.; Maggio, B. Surface Behavior of Myelin Monolayers. Biochim. Biophys. Acta - Biomembr. 1998, 1370, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.G.; Maggio, B. Epifluorescence Microscopy of Surface Domain Microheterogeneity in Myelin Monolayers at the Air-Water Interface. Neurochem. Res. 2000, 25, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Surewicz, W.K.; Epand, R.M.; Epand, R.F.; Hallett, F.R.; Moscarello, M.A. Modulation of Myelin Basic Protein-Induced Aggregation and Fusion of Liposomes by Cholesterol, Aliphatic Aldehydes and Alkanes. Biochim. Biophys. Acta Biomembr. 1986, 863, 45–52. [Google Scholar] [CrossRef]
- Boggs, J.M.; Chia, L.; Rangaraj, G.; Moscarello, M.A. Interaction of Myelin Basic Protein with Different Ionization States of Phosphatidic Acid and Phosphatidylserin. Chem. Phys. Lipids 1986, 39, 165–184. [Google Scholar] [CrossRef]
- Rispoli, P.; Carzino, R.; Svaldo-Lanero, T.; Relini, A.; Cavalleri, O.; Fasano, A.; Liuzzi, G.M.; Carlone, G.; Riccio, P.; Gliozzi, A.; et al. A Thermodynamic and Structural Study of Myelin Basic Protein in Lipid Membrane Models. Biophys. J. 2007, 93, 1999–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widder, K.; Träger, J.; Kerth, A.; Harauz, G.; Hinderberger, D. Interaction of Myelin Basic Protein with Myelin-like Lipid Monolayers at Air–Water Interface. Langmuir 2018, 34, 6095–6108. [Google Scholar] [CrossRef]
- Widder, K.; Harauz, G.; Hinderberger, D. Myelin Basic Protein (MBP) Charge Variants Show Different Sphingomyelin-Mediated Interactions with Myelin-like Lipid Monolayers. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183077. [Google Scholar] [CrossRef]
- Franks, N.P. Structural Analysis of Hydrated Egg Lecithin and Cholesterol Bilayers, I. X-Ray Diffraction. J. Mol. Biol. 1976, 100, 345–358. [Google Scholar] [CrossRef]
- Worcester, D.L.; Franks, N.P. Structural Analysis of Hydrated Egg Lecithin and Cholesterol Bilayers II. Neutron Diffraction. J. Mol. Biol. 1976, 100, 359–378. [Google Scholar] [CrossRef]
- Leathes, J.B. Croonian Lectures On The Role Of Fats In Vital Phenomena. Lancet 1925, 205, 957–962. [Google Scholar] [CrossRef]
- McConnell, H.M.; Radhakrishnan, A. Condensed Complexes of Cholesterol and Phospholipids. Biochim. Biophys. Acta Biomembr. 2003, 1610, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Rosetti, C.M.; Maggio, B.; Oliveira, R.G. The Self-Organization of Lipids and Proteins of Myelin at the Membrane Interface. Molecular Factors Underlying the Microheterogeneity of Domain Segregation. Biochim. Biophys. Acta Biomembr. 2008, 1778, 1665–1675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demel, R.A.; Bruckdorfer, K.R.; van Deenen, L.L. Structural Requirements of Sterols for the Interaction with Lecithin at the Air Water Interface. Biochim. Biophys. Acta 1972, 255, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Yeagle, P.L.; Hutton, W.C.; Huang, C.H.; Martin, R.B. Phospholipid Head-Group Conformations; Intermolecular Interactions and Cholesterol Effects. Biochemistry 1977, 16, 4344–4349. [Google Scholar] [CrossRef]
- Radhakrishnan, A.; Anderson, T.G.; McConnell, H.M. Condensed Complexes, Rafts, and the Chemical Activity of Cholesterol in Membranes. Proc. Natl. Acad. Sci. USA 2000, 97, 12422–12427. [Google Scholar] [CrossRef] [Green Version]
- Silvius, J.R. Role of Cholesterol in Lipid Raft Formation: Lessons from Lipid Model Systems. Biochim. Biophys. Acta Biomembr. 2003, 1610, 174–183. [Google Scholar] [CrossRef] [Green Version]
- McConnell, H.M. Structures and Transitions in Lipid Monolayers at the Air-Water Interface. Annu. Rev. Phys. Chem. 1991, 42, 171–195. [Google Scholar] [CrossRef]
- Inouye, H.; Kirschner, D.A. Membrane Interactions in Nerve Myelin: II. Determination of Surface Charge from Biochemical Data. Biophys. J. 1988, 53, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Bamm, V.V.; Lanthier, D.K.; Stephenson, E.L.; Smith, G.S.T.; Harauz, G. In Vitro Study of the Direct Effect of Extracellular Hemoglobin on Myelin Components. Biochim. Biophys. Acta Mol. Basis Dis. 2015, 1852, 92–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, B. Lipid Monolayers: Why Use Half a Membrane to Characterize Protein Membrane Interactions? Curr. Opin. Struct. Biol. 1999, 9, 438–443. [Google Scholar]
- Maget-Dana, R. The Monolayer Technique: A Potent Tool for Studying the Interfacial Properties of Antimicrobial and Membrane-Lytic Peptides and Their Interactions with Lipid Membranes. Biochim. Biophys. Acta Biomembr. 1999, 1462, 109–140. [Google Scholar] [CrossRef] [Green Version]
- Dörfler, H.-D. Grenzflächen Und Kolloid-Disperse Systeme; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- MacRitchie, F. Air/Water Interface Studies of Proteins. Anal. Chim. Acta 1991, 249, 241–245. [Google Scholar] [CrossRef]
- Giehl, A.; Lemm, T.; Bartelsen, O.; Sandhoff, K.; Blume, A. Interaction of the GM2-Activator Protein with Phospholipid-Ganglioside Bilayer Membranes and with Monolayers at the Air-Water Interface. Eur. J. Biochem. 1999, 261, 650–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvez, P.; Demers, E.; Boisselier, E.; Salesse, C. Analysis of the Contribution of Saturated and Polyunsaturated Phospholipid Monolayers to the Binding of Proteins. Langmuir 2011, 27, 1373–1379. [Google Scholar] [CrossRef]
- Berring, E.E.; Borrenpohl, K.; Fliesler, S.J.; Serfis, A.B. A Comparison of the Behavior of Cholesterol and Selected Derivatives in Mixed Sterol-Phospholipid Langmuir Monolayers: A Fluorescence Microscopy Study. Chem. Phys. Lipids 2005, 136, 1–12. [Google Scholar] [CrossRef]
- Demel, R.A. The Function of Sterol in Membranes. Biochim. Biophys. Acta 1976, 457, 109–132. [Google Scholar] [CrossRef]
- Fidalgo Rodriguez, J.L.; Caseli, L.; Minones Conde, J.; Dynarowicz-Latka, P. New Look for an Old Molecule – Solid/Solid Phase Transition in Cholesterol Monolayers. Chem. Phys. Lipids 2019, 225, 104819. [Google Scholar] [CrossRef]
- Smaby, J.M.; Momsen, M.M.; Brockman, H.L.; Brown, R.E. Phosphatidylcholine Acyl Unsaturation Modulates the Decrease in Interfacial Elasticity Induced by Cholosterol. Biophys. J. 1997, 73, 1492–1505. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Kim, C.; Byun, Y. Preparation of a Dipalmitoylphosphatidylcholine/Cholesterol Langmuir-Blodgett Monolayer That Suppresses Protein Adsorption. Langmuir 2001, 17, 5066–5070. [Google Scholar] [CrossRef]
- Blume, A. Lipids at the Air–Water Interface. ChemTexts 2018, 4, 1–25. [Google Scholar] [CrossRef]
- Alsina, M.A.; Mestres, C.; García Antón, J.M.; Espina, M.; Haro, I.; Reig, F. Interaction Energies of Cholesterol, Phosphatidylserine, and Phosphatidylcholine in Spread Mixed Monolayers at the Air-Water Interface. Langmuir 1991, 7, 975–977. [Google Scholar] [CrossRef]
- Gaines, G.L. Thermodynamic Relationships for Mixed Insoluble Monolayers. J. Colloid Interface Sci. 1966, 21, 315–319. [Google Scholar] [CrossRef]
- Adamson, A.W.; Gast, A.P. Physical Chemistry of Surfaces, 6th ed.; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Rivas, A.A.; Castro, R.M. Interaction of Bovine Myelin Basic Protein with Triphosphoinositide. J. Colloid Interface Sci. 2002, 256, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Kodama, M.; Shibata, O.; Nakamura, S.; Lee, S.; Sugihara, G. A Monolayer Study on Three Binary Mixed Systems of Dipalmitoyl Phosphatidyl Choline with Cholesterol, Cholestanol and Stigmasterol. Colloids Surfaces B Biointerfaces 2004, 33, 211–226. [Google Scholar] [CrossRef]
- Blume, A. A Comparative Study of the Phase Transitions of Phospholipid Bilayers and Monolayers. Biochim. Biophys. Acta Biomembr. 1979, 557, 32–44. [Google Scholar] [CrossRef]
- Blume, A.; Kerth, A. Peptide and Protein Binding to Lipid Monolayers Studied by FT-IRRA Spectroscopy. Biochim. Biophys. Acta Biomembr. 2013, 1828, 2294–2305. [Google Scholar] [CrossRef] [Green Version]
- Sankaram, M.B.; Brophy, P.J.; Marsh, D. Spin-Label ESR Studies on the Interaction of Bovine Spinal Cord Myelin Basic Protein with Dimyristoylphosphatidylglycerol Dispersions. Biochemistry 1989, 28, 9685–9691. [Google Scholar] [CrossRef] [Green Version]
- MacNaughtan, W.; Snook, K.A.; Caspi, E.; Franks, N.P. An X-Ray Diffraction Analysis of Oriented Lipid Multilayers Containing Basic Proteins. Biochim. Biophys. Acta Biomembr. 1985, 818, 132–148. [Google Scholar] [CrossRef]
- Boggs, J.M.; Moscarello, M.A.; Papahadjopoulos, D. Lipid-Protein Interactions; Jost, P., Griffith, O.H., Eds.; Wiley: New York, NY, USA, 1982; Volume 2. [Google Scholar]
- Rosetti, C.M.; Maggio, B. Protein-Induced Surface Structuring in Myelin Membrane Monolayers. Biophys. J. 2007, 93, 4254–4267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McConnell, H.M.; Tamm, L.K.; Weis, R.M. Periodic Structures in Lipid Monolayer Phase Transitions. Proc. Natl. Acad. Sci. USA 1984, 81, 3249–3253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvius, J.R. Partitioning of Membrane Molecules between Raft and Non-Raft Domains: Insights from Model-Membrane Studies. Biochim. Biophys. Acta Mol. Cell Res. 2005, 1746, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slotte, J.P.; Mattjus, P. Visualization of Lateral Phases in Cholesterol and Phosphatidylcholine Monolayers at the Air/Water Interface—A Comparative Study with Two Different Reporter Molecules. Biochim. Biophys. Acta Lipids Lipid Metab. 1995, 1254, 22–29. [Google Scholar] [CrossRef]
- Keller, S.L.; Mc Connell, H.M. Stripe Phases in Lipid Monolayers near a Miscibility Critical Point. Phys. Rev. Lett. 1999, 82, 1602–1605. [Google Scholar] [CrossRef]
- Stottrup, B.L.; Stevens, D.S.; Keller, S.L. Miscibility of Ternary Mixtures of Phospholipids and Cholesterol in Monolayers, and Application to Bilayer Systems. Biophys. J. 2005, 88, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Stottrup, B.L.; Keller, S.L. Phase Behavior of Lipid Monolayers Containing DPPC and Cholesterol Analogs. Biophys. J. 2006, 90, 3176–3183. [Google Scholar] [CrossRef] [Green Version]
- García-Sáez, A.J.; Chiantia, S.; Schwille, P. Effect of Line Tension on the Lateral Organization of Lipid Membranes. J. Biol. Chem. 2007, 282, 33537–33544. [Google Scholar] [CrossRef] [Green Version]
- Rosetti, C.M.; Montich, G.G.; Pastorino, C. Molecular Insight into the Line Tension of Bilayer Membranes Containing Hybrid Polyunsaturated Lipids. J. Phys. Chem. B 2017, 121, 1587–1600. [Google Scholar] [CrossRef]
- Slotte, J.P. Lateral Domain Formation in Mixed Monolayers Containing Cholesterol and Dipalmitoylphosphatidylcholine or N-Palmitoylsphingomyelin. Biochim. Biophys. Acta Biomembr. 1995, 1235, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Worthman, L.A.D.; Nag, K.; Davis, P.J.; Keough, K.M.W. Cholesterol in Condensed and Fluid Phosphatidylcholine Monolayers Studied by Epifluorescence Microscopy. Biophys. J. 1997, 72, 2569–2580. [Google Scholar] [CrossRef] [Green Version]
- Yeagle, P.L. Cholesterol and Related Sterols. In The Membranes of Cells; Elsevier: Amsterdam, The Netherlands, 2016; pp. 189–218. [Google Scholar] [CrossRef]
- Sakanishi, A.; Mitaku, S.; Ikegami, A. Stabilizing Effect of Cholesterol on Phosphatidylcholine Vesicles Observed by Ultrasonic Velocity Measurement. Biochemistry 1979, 18, 2636–2642. [Google Scholar] [CrossRef] [PubMed]
- Polverini, E.; Arisi, S.; Cavatorta, P.; Berzina, T.; Cristofolini, L.; Fasano, A.; Riccio, P.; Fontana, M.P. Interaction of Myelin Basic Protein with Phospholipid Monolayers: Mechanism of Protein Penetration. Langmuir 2003, 19, 872–877. [Google Scholar] [CrossRef]
- Boggs, J.M.; Wood, D.D.; Moscarello, M.A. Hydrophobic and Electrostatic Interactions of Myelin Basic Protein with Lipid. Participation of N-Terminal and C-Terminal Portions. Biochemistry 1981, 20, 1065–1073. [Google Scholar] [CrossRef]
- Cristofolini, L.; Fontana, M.P.; Serra, F.; Fasano, A.; Riccio, P.; Konovalov, O. Microstructural Analysis of the Effects of Incorporation of Myelin Basic Protein in Phospholipid Layers. Eur. Biophys. J. 2005, 34, 1041–1048. [Google Scholar] [CrossRef] [Green Version]
- Ballanyi, K.; Kettenamann, H. Intracellular Na+ Activity in Cultured Mouse Oligodendrocytes. J. Neurosci. Res. 1990, 26, 455–460. [Google Scholar] [CrossRef]
- Kettenmann, H. K+ and Cl− Uptake by Cultured Oligodendrocytes. Can. J. Physiol. Pharmacol. 1987, 65, 1033–1037. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Träger, J.; Widder, K.; Kerth, A.; Harauz, G.; Hinderberger, D. Effect of Cholesterol and Myelin Basic Protein (MBP) Content on Lipid Monolayers Mimicking the Cytoplasmic Membrane of Myelin. Cells 2020, 9, 529. https://doi.org/10.3390/cells9030529
Träger J, Widder K, Kerth A, Harauz G, Hinderberger D. Effect of Cholesterol and Myelin Basic Protein (MBP) Content on Lipid Monolayers Mimicking the Cytoplasmic Membrane of Myelin. Cells. 2020; 9(3):529. https://doi.org/10.3390/cells9030529
Chicago/Turabian StyleTräger, Jennica, Katharina Widder, Andreas Kerth, George Harauz, and Dariush Hinderberger. 2020. "Effect of Cholesterol and Myelin Basic Protein (MBP) Content on Lipid Monolayers Mimicking the Cytoplasmic Membrane of Myelin" Cells 9, no. 3: 529. https://doi.org/10.3390/cells9030529
APA StyleTräger, J., Widder, K., Kerth, A., Harauz, G., & Hinderberger, D. (2020). Effect of Cholesterol and Myelin Basic Protein (MBP) Content on Lipid Monolayers Mimicking the Cytoplasmic Membrane of Myelin. Cells, 9(3), 529. https://doi.org/10.3390/cells9030529