CD4+FOXP3+ T Cells in Rheumatoid Arthritis Bone Marrow Are Partially Impaired
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Cell Isolation, Gating Strategy and Phenotypic Analysis
2.3. Cell Separation
2.4. Functional Assay
2.5. Evaluation of Cytokine Production
2.6. Immunohistochemistry
2.7. Statistical Analysis
3. Results
3.1. FOXP3+ T Cells Are Present in the BM of Patients RA
3.2. Proportions of CD4+FOXP3+ T Cells Are Lower in RA than in OA BM
3.3. Low Expression of CXCR4 Is Observed in RA BM CD4+FOXP3+ Cells
3.4. CD4+FOXP3+ Cells from RA BM Are Mostly CD127+
3.5. CD4+FOXP3+ Cells from RA BM Are CD45RO+ Memory Cells
3.6. CD4+FOXP3+ Cells in the BM of RA Patients Demonstrate Limited Suppressive Potential
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BM | bone marrow |
RA | rheumatoid arthritis |
OA | osteoarthritis |
Tregs | regulatory T cells |
tTregs | thymus-derived Tregs |
pTregs | peripherally-induced Tregs |
Tresps | responder CD4+CD25− T cells |
References
- Zhou, X.; Kong, N.; Zou, H.; Brand, D.; Li, X.; Liu, Z.; Zheng, S.G. Therapeutic potential of TGF-beta-induced CD4(+) Foxp3(+) regulatory T cells in autoimmune diseases. Autoimmunity 2011, 44, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hori, S.; Nomura, T.; Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299, 1057–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontenot, J.D.; Gavin, M.A.; Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003, 4, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Long, S.A.; Buckner, J.H. CD4+FOXP3+ T regulatory cells in human autoimmunity: More than a numbers game. J. Immunol. 2011, 187, 2061–2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, D.; Van Vollenhoven, R.; Klareskog, L.; Trollmo, C.; Malmström, V. CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res. Ther. 2004, 6, R335–R346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Amelsfort, J.M.; Jacobs, K.M.; Bijlsma, J.W.; Lafeber, F.P.; Taams, L.S. CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: Differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheumatolatol. 2004, 50, 2775–2785. [Google Scholar] [CrossRef]
- De Kleer, I.M.; Wedderburn, L.R.; Taams, L.S.; Patel, A.; Varsani, H.; Klein, M.; De Jager, W.; Pugayung, G.; Giannoni, F.; Rijkers, G.; et al. CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J. Immunol. 2004, 172, 6435–6443. [Google Scholar] [CrossRef] [Green Version]
- Golab, K.; Grose, R.; Placencia, V.; Wickrema, A.; Solomina, J.; Tibudan, M.; Konsur, E.; Cieply, K.; Marek-Trzonkowska, N.; Trzonkowski, P.; et al. Cell banking for regulatory T cell-based therapy: Strategies to overcome the impact of cryopreservation on the Treg viability and phenotype. Oncotarget 2018, 9, 9728–9740. [Google Scholar] [CrossRef]
- Marek-Trzonkowska, N.; Mysliwiec, M.; Dobyszuk, A.; Grabowska, M.; Techmanska, I.; Juscinska, J.; Wujtewicz, M.A.; Witkowski, P.; Mlynarski, W.; Balcerska, A.; et al. Administration of CD4+CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care 2012, 35, 1817–1820. [Google Scholar] [CrossRef] [Green Version]
- Brunstein, C.G.; Miller, J.S.; Mckenna, D.H.; Hippen, K.L.; Defor, T.E.; Sumstad, D.; Curtsinger, J.; Verneris, M.R.; Macmillan, M.L.; Levine, B.L.; et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: Kinetics, toxicity profile, and clinical effect. Blood 2016, 127, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Safinia, N.; Vaikunthanathan, T.; Fraser, H.; Thirkell, S.; Lowe, K.; Blackmore, L.; Whitehouse, G.; Martinez-Llordella, M.; Jassem, W.; Sanchez-Fueyo, A.; et al. Successful expansion of functional and stable regulatory T cells for immunotherapy in liver transplantation. Oncotarget 2016, 7, 7563–7577. [Google Scholar] [CrossRef] [PubMed]
- Di Rosa, F. Two Niches in the Bone Marrow: A Hypothesis on Life-long T Cell Memory. Trends Immunol. 2016, 37, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Tokoyoda, K.; Zehentmeier, S.; Hegazy, A.N.; Albrecht, I.; Grün, J.R.; Löhning, M.; Radbruch, A. Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 2009, 30, 721–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Rosa, F. Maintenance of memory T cells in the bone marrow: Survival or homeostatic proliferation? Nat. Rev. Immunol. 2016, 16, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alp, O.S.; Radbruch, A. The lifestyle of memory CD8(+) T cells. Nat. Rev. Immunol. 2016, 16, 271. [Google Scholar] [CrossRef] [Green Version]
- Sercan Alp, O.; Durlanik, S.; Schulz, D.; Mcgrath, M.; Grun, J.R.; Bardua, M.; Ikuta, K.; Sgouroudis, E.; Riedel, R.; Zehentmeier, S.; et al. Memory CD8(+) T cells colocalize with IL-7(+) stromal cells in bone marrow and rest in terms of proliferation and transcription. Eur. J. Immunol. 2015, 45, 975–987. [Google Scholar] [CrossRef]
- Okhrimenko, A.; Grun, J.R.; Westendorf, K.; Fang, Z.; Reinke, S.; Von Roth, P.; Wassilew, G.; Kuhl, A.A.; Kudernatsch, R.; Demski, S.; et al. Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory. Proc. Natl. Acad. Sci. USA 2014, 111, 9229–9234. [Google Scholar] [CrossRef] [Green Version]
- Siracusa, F.; Durek, P.; Mcgrath, M.A.; Sercan-Alp, O.; Rao, A.; Du, W.; Cendon, C.; Chang, H.D.; Heinz, G.A.; Mashreghi, M.F.; et al. CD69(+) memory T lymphocytes of the bone marrow and spleen express the signature transcripts of tissue-resident memory T lymphocytes. Eur. J. Immunol. 2019, 49, 966–968. [Google Scholar] [CrossRef] [Green Version]
- Di Rosa, F. T-lymphocyte interaction with stromal, bone and hematopoietic cells in the bone marrow. Immunol. Cell Biol. 2009, 87, 20–29. [Google Scholar] [CrossRef]
- Feuerer, M.; Beckhove, P.; Garbi, N.; Mahnke, Y.; Limmer, A.; Hommel, M.; Hämmerling, G.J.; Kyewski, B.; Hamann, A.; Umansky, V.; et al. Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat. Med. 2003, 9, 1151–1157. [Google Scholar] [CrossRef]
- Nemoto, Y.; Kanai, T.; Makita, S.; Okamoto, R.; Totsuka, T.; Takeda, K.; Watanabe, M. Bone marrow retaining colitogenic CD4+ T cells may be a pathogenic reservoir for chronic colitis. Gastroenterology 2007, 132, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Barnett, B.; Safah, H.; Larussa, V.F.; Evdemon-Hogan, M.; Mottram, P.; Wei, S.; David, O.; Curiel, T.J.; Zou, W. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res. 2004, 64, 8451–8455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudnicka, W.; Burakowski, T.; Warnawin, E.; Jastrzebska, M.; Bik, M.; Kontny, E.; Chorazy-Massalska, M.; Radzikowska, A.; Buler, M.; Maldyk, P.; et al. Functional TLR9 modulates bone marrow B cells from rheumatoid arthritis patients. Eur. J. Immunol. 2009, 39, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Kuca-Warnawin, E.; Burakowski, T.; Kurowska, W.; Prochorec-Sobieszek, M.; Radzikowska, A.; Chorazy-Massalska, M.; Maldyk, P.; Kontny, E.; Maslinski, W. Elevated number of recently activated T cells in bone marrow of patients with rheumatoid arthritis: A role for interleukin 15? Ann. Rheum. Dis. 2011, 70, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Kuca-Warnawin, E.; Kurowska, W.; Prochorec-Sobieszek, M.; Radzikowska, A.; Burakowski, T.; Skalska, U.; Massalska, M.; Plebanczyk, M.; Maldyk-Nowakowska, B.; Slowinska, I.; et al. Rheumatoid arthritis bone marrow environment supports Th17 response. Arthritis Res. Ther. 2017, 19, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnett, F.C.; Edworthy, S.M.; Bloch, D.A.; Mcshane, D.J.; Fries, J.F.; Cooper, N.S.; Healey, L.A.; Kaplan, S.R.; Liang, M.H.; Luthra, H.S.; et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheumatol. 1988, 31, 315–324. [Google Scholar] [CrossRef]
- Altman, R.; Alarcon, G.; Appelrouth, D.; Bloch, D.; Borenstein, D.; Brandt, K.; Brown, C.; Cooke, T.D.; Daniel, W.; Feldman, D.; et al. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheumatol. 1991, 34, 505–514. [Google Scholar] [CrossRef]
- Baecher-Allan, C.; Brown, J.A.; Freeman, G.J.; Hafler, D.A. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol. 2001, 167, 1245–1253. [Google Scholar] [CrossRef] [Green Version]
- Baecher-Allan, C.; Viglietta, V.; Hafler, D.A. Inhibition of human CD4(+)CD25(+high) regulatory T cell function. J. Immunol. 2002, 169, 6210–6217. [Google Scholar] [CrossRef] [Green Version]
- Seddiki, N.; Santner-Nanan, B.; Martinson, J.; Zaunders, J.; Sasson, S.; Landay, A.; Solomon, M.; Selby, W.; Alexander, S.I.; Nanan, R.; et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 2006, 203, 1693–1700. [Google Scholar] [CrossRef]
- Liu, W.; Putnam, A.L.; Xu-Yu, Z.; Szot, G.L.; Lee, M.R.; Zhu, S.; Gottlieb, P.A.; Kapranov, P.; Gingeras, T.R.; Fazekas De St Groth, B.; et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 2006, 203, 1701–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonetta, F.; Chiali, A.; Cordier, C.; Urrutia, A.; Girault, I.; Bloquet, S.; Tanchot, C.; Bourgeois, C. Increased CD127 expression on activated FOXP3+CD4+ regulatory T cells. Eur. J. Immunol. 2010, 40, 2528–2538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booth, N.J.; Mcquaid, A.J.; Sobande, T.; Kissane, S.; Agius, E.; Jackson, S.E.; Salmon, M.; Falciani, F.; Yong, K.; Rustin, M.H.; et al. Different proliferative potential and migratory characteristics of human CD4+ regulatory T cells that express either CD45RA or CD45RO. J. Immunol. 2010, 184, 4317–4326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biton, J.; Boissier, M.C.; Bessis, N. TNFalpha: Activator or inhibitor of regulatory T cells? Jt. Bone Spine 2012, 79, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Koenecke, C.; Lee, C.W.; Thamm, K.; Fohse, L.; Schafferus, M.; Mittrucker, H.W.; Floess, S.; Huehn, J.; Ganser, A.; Forster, R.; et al. IFN-gamma production by allogeneic Foxp3+ regulatory T cells is essential for preventing experimental graft-versus-host disease. J. Immunol. 2012, 189, 2890–2896. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Li, S.; Yang, Y.; Zhang, K.; Dong, S.; Wang, X.; Liu, X.; Ren, Y.; Zhang, M.; Yan, X.; et al. T helper 17 and T helper 1 cells are increased but regulatory T cells are decreased in subchondral bone marrow microenvironment of patients with rheumatoid arthritis. Am. J. Transl. Res. 2016, 8, 2956–2968. [Google Scholar]
- Tokoyoda, K.; Hauser, A.E.; Nakayama, T.; Radbruch, A. Organization of immunological memory by bone marrow stroma. Nat. Rev. Immunol. 2010, 10, 193–200. [Google Scholar] [CrossRef]
- Mcqueen, F.M.; Ostendorf, B. What is MRI bone oedema in rheumatoid arthritis and why does it matter? Arthritis Res. Ther. 2006, 8, 222. [Google Scholar] [CrossRef] [Green Version]
- Sudol-Szopinska, I.; Kontny, E.; Maslinski, W.; Prochorec-Sobieszek, M.; Warczynska, A.; Kwiatkowska, B. Significance of bone marrow edema in pathogenesis of rheumatoid arthritis. Pol. J. Radiol. 2013, 78, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Le Texier, L.; Lineburg, K.E.; Macdonald, K.P. Harnessing bone marrow resident regulatory T cells to improve allogeneic stem cell transplant outcomes. Int. J. Hematol. 2017, 105, 153–161. [Google Scholar] [CrossRef]
- Khan, A.B.; Carpenter, B.; Santos, E.S.P.; Pospori, C.; Khorshed, R.; Griffin, J.; Velica, P.; Zech, M.; Ghorashian, S.; Forrest, C.; et al. Redirection to the bone marrow improves T cell persistence and antitumor functions. J. Clin. Investig. 2018, 128, 2010–2024. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Malek, T.R. Cellular and molecular determinants for the development of natural and induced regulatory T cells. Hum. Immunol. 2012, 73, 773–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atanackovic, D.; Cao, Y.; Luetkens, T.; Panse, J.; Faltz, C.; Arfsten, J.; Bartels, K.; Wolschke, C.; Eiermann, T.; Zander, A.R.; et al. CD4+CD25+FOXP3+ T regulatory cells reconstitute and accumulate in the bone marrow of patients with multiple myeloma following allogeneic stem cell transplantation. Haematologica 2008, 93, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Fontenot, J.D.; Rasmussen, J.P.; Williams, L.M.; Dooley, J.L.; Farr, A.G.; Rudensky, A.Y. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005, 22, 329–341. [Google Scholar] [CrossRef]
- Bonelli, M.; Savitskaya, A.; Steiner, C.W.; Rath, E.; Smolen, J.S.; Scheinecker, C. Phenotypic and functional analysis of CD4+ CD25- Foxp3+ T cells in patients with systemic lupus erythematosus. J. Immunol. 2009, 182, 1689–1695. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, N.; Mariotti-Ferrandiz, M.E.; Wang, Y.; Malissen, B.; Waldmann, H.; Hori, S. Heterogeneity of natural Foxp3+ T cells: A committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl. Acad. Sci. USA 2009, 106, 1903–1908. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, N.; Okamoto, K.; Sawa, S.; Nakashima, T.; Oh-Hora, M.; Kodama, T.; Tanaka, S.; Bluestone, J.A.; Takayanagi, H. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 2014, 20, 62–68. [Google Scholar] [CrossRef]
- Voo, K.S.; Wang, Y.H.; Santori, F.R.; Boggiano, C.; Arima, K.; Bover, L.; Hanabuchi, S.; Khalili, J.; Marinova, E.; Zheng, B.; et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 4793–4798. [Google Scholar] [CrossRef] [Green Version]
- Baratelli, F.; Lin, Y.; Zhu, L.; Yang, S.C.; Heuze-Vourc’h, N.; Zeng, G.; Reckamp, K.; Dohadwala, M.; Sharma, S.; Dubinett, S.M. Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J. Immunol. 2005, 175, 1483–1490. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chen, H.Y.; Liu, W.X.; Jia, X.X.; Zhang, J.G.; Ma, C.L.; Zhang, X.J.; Yu, F.; Cong, B. Prostaglandin E2 restrains human Treg cell differentiation via E prostanoid receptor 2-protein kinase A signaling. Immunol. Lett. 2017, 191, 63–72. [Google Scholar] [CrossRef]
- Oh, J.S.; Kim, Y.G.; Lee, S.G.; So, M.W.; Choi, S.W.; Lee, C.K.; Yoo, B. The effect of various disease-modifying anti-rheumatic drugs on the suppressive function of CD4(+)CD25(+) regulatory T cells. Rheumatol. Int. 2013, 33, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Cari, L.; De Rosa, F.; Nocentini, G.; Riccardi, C. Context-Dependent Effect of Glucocorticoids on the Proliferation, Differentiation, and Apoptosis of Regulatory T Cells: A Review of the Empirical Evidence and Clinical Applications. Int. J. Mol. Sci. 2019, 20, 1142. [Google Scholar] [CrossRef] [PubMed]
- Wehrens, E.J.; Mijnheer, G.; Duurland, C.L.; Klein, M.; Meerding, J.; Van Loosdregt, J.; De Jager, W.; Sawitzki, B.; Coffer, P.J.; Vastert, B.; et al. Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells. Blood 2011, 118, 3538–3548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrath, J.; Muller, M.; Amoudruz, P.; Janson, P.; Michaelsson, J.; Larsson, P.T.; Trollmo, C.; Raghavan, S.; Malmstrom, V. The inflammatory milieu in the rheumatic joint reduces regulatory T-cell function. Eur. J. Immunol. 2011, 41, 2279–2290. [Google Scholar] [CrossRef]
- Bugatti, S.; Caporali, R.; Manzo, A.; Vitolo, B.; Pitzalis, C.; Montecucco, C. Involvement of subchondral bone marrow in rheumatoid arthritis: Lymphoid neogenesis and in situ relationship to subchondral bone marrow osteoclast recruitment. Arthritis Rheumatol. 2005, 52, 3448–3459. [Google Scholar] [CrossRef]
- Marinova-Mutafchieva, L.; Williams, R.O.; Funa, K.; Maini, R.N.; Zvaifler, N.J. Inflammation is preceded by tumor necrosis factor-dependent infiltration of mesenchymal cells in experimental arthritis. Arthritis Rheumatol. 2002, 46, 507–513. [Google Scholar] [CrossRef]
- Zhao, E.; Xu, H.; Wang, L.; Kryczek, I.; Wu, K.; Hu, Y.; Wang, G.; Zou, W. Bone marrow and the control of immunity. Cell Mol. Immunol. 2012, 9, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Di Rosa, F.; Pabst, R. The bone marrow: A nest for migratory memory T cells. Trends Immunol. 2005, 26, 360–366. [Google Scholar] [CrossRef]
- Pillai, V.; Ortega, S.B.; Wang, C.K.; Karandikar, N.J. Transient regulatory T-cells: A state attained by all activated human T-cells. Clin. Immunol. 2007, 123, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.H.; Kovanen, P.E.; Pise-Masison, C.A.; Berg, M.; Radovich, M.F.; Brady, J.N.; Leonard, W.J. IL-2 negatively regulates IL-7 receptor alpha chain expression in activated T lymphocytes. Proc. Natl. Acad. Sci. USA 2002, 99, 13759–13764. [Google Scholar] [CrossRef] [Green Version]
- Van Amelsfort, J.M.; Van Roon, J.A.; Noordegraaf, M.; Jacobs, K.M.; Bijlsma, J.W.; Lafeber, F.P.; Taams, L.S. Proinflammatory mediator-induced reversal of CD4+,CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheumatol. 2007, 56, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Simonetta, F.; Gestermann, N.; Martinet, K.Z.; Boniotto, M.; Tissieres, P.; Seddon, B.; Bourgeois, C. Interleukin-7 influences FOXP3+CD4+ regulatory T cells peripheral homeostasis. PLoS ONE 2012, 7, e36596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrenstein, M.R.; Evans, J.G.; Singh, A.; Moore, S.; Warnes, G.; Isenberg, D.A.; Mauri, C. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J. Exp. Med. 2004, 200, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Haufe, S.; Haug, M.; Schepp, C.; Kuemmerle-Deschner, J.; Hansmann, S.; Rieber, N.; Tzaribachev, N.; Hospach, T.; Maier, J.; Dannecker, G.E.; et al. Impaired suppression of synovial fluid CD4+CD25- T cells from patients with juvenile idiopathic arthritis by CD4+CD25+ Treg cells. Arthritis Rheumatol. 2011, 63, 3153–3162. [Google Scholar] [CrossRef]
- Schmetterer, K.G.; Neunkirchner, A.; Pickl, W.F. Naturally occurring regulatory T cells: Markers, mechanisms, and manipulation. FASEB J. 2012, 26, 2253–2276. [Google Scholar] [CrossRef]
- Fujisaki, J.; Wu, J.; Carlson, A.L.; Silberstein, L.; Putheti, P.; Larocca, R.; Gao, W.; Saito, T.I.; Lo Celso, C.; Tsuyuzaki, H.; et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 2011, 474, 216–219. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Kitani, A.; Strober, W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J. Exp. Med. 2001, 194, 629–644. [Google Scholar] [CrossRef]
- Zhen, G.; Cao, X. Targeting TGFbeta signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol. Sci. 2014, 35, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, A.; Kale, V.P. TGF-beta signaling and its role in the regulation of hematopoietic stem cells. Syst. Synth. Biol. 2015, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
Diagnosis | OA (n = 42) | RA (n = 36) |
---|---|---|
Age (mean years ± SEM), (range) | 57.3 ± 1.3 (34–70) | 51.8 ± 2 (24–71) |
Gender | 29F/13M | 26F/10M |
ESR (range) | 13 ± 1.2 (2–37) | 32.6 ± 2.8 (3–58) |
Disease duration (mean years ± SEM), (range) | Data not available | 20.6 ± 1.7 (7–50) |
Treatment | ||
NSAID: | ||
Meloxicam | 1 | N/A |
Diclofenac | 13 | 19 |
Ketoprofen | 2 | N/A |
Nimesulid | 1 | N/A |
Naproxen | 1 | N/A |
Not-NSAID: | ||
Paracetamol | 8 | N/A |
Tramadol | 4 | N/A |
Paracetamol + Tramadol | 1 | 1 |
DMARD: | ||
Methotrexate | N/A | 11 |
Sulfasalazine | N/A | 3 |
Leflunomide | N/A | 2 |
Azathioprine | N/A | 1 |
Steroids: | ||
Methylprednisolone | N/A | 21 |
Encorton | N/A | 9 |
OA BMMCs | OA PBMCs | ||||||
Mean % of the Cells | Range | Median | Mean % of the Cells | Range | Median | p-Value | |
CD127+CD25+ | 4.8 | 0.0–14.3 | 1.8 | 21.0 | 5.0–36.4 | 21.9 | 0.02 |
CD127+CD25− | 1.8 | 0.2–5.6 | 1.3 | 1.1 | 0.2–1.9 | 1.1 | ns |
CD127–CD25+ | 41.0 | 14.3–62.5 | 47.1 | 59.4 | 43.7–75.0 | 57.6 | ns |
CD127–CD25− | 11.9 | 5.2–38.5 | 6.8 | 8.9 | 5.1–13.3 | 8.5 | ns |
RA BMMCs | RA PBMCs | ||||||
Mean % of the Cells | Range | Median | Mean % of the Cells | Range | Median | p-Value | |
CD127+CD25+ | 7.7 | 0.0–20.0 | 3.9 | 13.6 | 2.2–33.3 | 8.3 | ns |
CD127+CD25− | 1.6 | 0.9–2.5 | 1.4 | 0.9 | 0.2–2.1 | 0.8 | ns |
CD127−CD25+ | 9.3 | 0.0–28.6 | 3.6 | 41.7 | 13.5–77.7 | 40.2 | 0.016 |
CD127−CD25− | 4.5 | 1.7–11.8 | 2.5 | 8.4 | 2.6–22.5 | 4.3 | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massalska, M.; Radzikowska, A.; Kuca-Warnawin, E.; Plebanczyk, M.; Prochorec-Sobieszek, M.; Skalska, U.; Kurowska, W.; Maldyk, P.; Kontny, E.; Gober, H.-J.; et al. CD4+FOXP3+ T Cells in Rheumatoid Arthritis Bone Marrow Are Partially Impaired. Cells 2020, 9, 549. https://doi.org/10.3390/cells9030549
Massalska M, Radzikowska A, Kuca-Warnawin E, Plebanczyk M, Prochorec-Sobieszek M, Skalska U, Kurowska W, Maldyk P, Kontny E, Gober H-J, et al. CD4+FOXP3+ T Cells in Rheumatoid Arthritis Bone Marrow Are Partially Impaired. Cells. 2020; 9(3):549. https://doi.org/10.3390/cells9030549
Chicago/Turabian StyleMassalska, Magdalena, Anna Radzikowska, Ewa Kuca-Warnawin, Magdalena Plebanczyk, Monika Prochorec-Sobieszek, Urszula Skalska, Weronika Kurowska, Pawel Maldyk, Ewa Kontny, Hans-Jürgen Gober, and et al. 2020. "CD4+FOXP3+ T Cells in Rheumatoid Arthritis Bone Marrow Are Partially Impaired" Cells 9, no. 3: 549. https://doi.org/10.3390/cells9030549
APA StyleMassalska, M., Radzikowska, A., Kuca-Warnawin, E., Plebanczyk, M., Prochorec-Sobieszek, M., Skalska, U., Kurowska, W., Maldyk, P., Kontny, E., Gober, H. -J., & Maslinski, W. (2020). CD4+FOXP3+ T Cells in Rheumatoid Arthritis Bone Marrow Are Partially Impaired. Cells, 9(3), 549. https://doi.org/10.3390/cells9030549