DNA Methylation-Based Testing in Liquid Biopsies as Detection and Prognostic Biomarkers for the Four Major Cancer Types
Abstract
:1. Introduction
2. Circulating Cell-Free DNA Liquid Biopsies
3. DNA Methylation
4. Cell-Free DNA Methylation-Based Biomarkers
4.1. Lung Cancer
4.1.1. Screening and Diagnosis
4.1.2. Prognosis, Prediction, and Monitoring
4.2. Breast Cancer
4.2.1. Screening and Diagnosis
4.2.2. Prognosis, Prediction, and Monitoring
4.3. Colorectal Cancer
4.3.1. Screening and Diagnosis
4.3.2. Prognosis, Prediction, and Monitoring
4.4. Prostate Cancer
4.4.1. Screening and Diagnosis
4.4.2. Prognosis, Predicition, and Monitoring
5. Cell-Free DNA Methylation as a Candidate “PanCancer” Screening Biomarker
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Goossens, N.; Nakagawa, S.; Sun, X.; Hoshida, Y. Cancer biomarker discovery and validation. Transl. Cancer Res. 2015, 4, 256–269. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J. Tumor markers in clinical practice: A review focusing on common solid cancers. Med. Princ. Pr. 2013, 22, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Costa-Pinheiro, P.; Montezuma, D.; Henrique, R.; Jeronimo, C. Diagnostic and prognostic epigenetic biomarkers in cancer. Epigenomics 2015, 7, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Marrugo-Ramirez, J.; Mir, M.; Samitier, J. Blood-Based Cancer Biomarkers in Liquid Biopsy: A Promising Non-Invasive Alternative to Tissue Biopsy. Int. J. Mol. Sci. 2018, 19, 2877. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Su, L.; Qian, C. Circulating tumor DNA: A promising biomarker in the liquid biopsy of cancer. Oncotarget 2016, 7, 48832–48841. [Google Scholar] [CrossRef] [Green Version]
- Constancio, V.; Barros-Silva, D.; Jeronimo, C.; Henrique, R. Known epigenetic biomarkers for prostate cancer detection and management: Exploring the potential of blood-based liquid biopsies. Expert Rev. Mol. Diagn 2019. [Google Scholar] [CrossRef]
- Poulet, G.; Massias, J.; Taly, V. Liquid Biopsy: General Concepts. Acta. Cytol. 2019. [Google Scholar] [CrossRef]
- Han, X.; Wang, J.; Sun, Y. Circulating Tumor DNA as Biomarkers for Cancer Detection. Genom. Proteom. Bioinf. 2017, 15, 59–72. [Google Scholar] [CrossRef]
- Neumann, M.H.D.; Bender, S.; Krahn, T.; Schlange, T. ctDNA and CTCs in Liquid Biopsy—Current Status and Where We Need to Progress. Comput Struct Biotechnol. J. 2018, 16, 190–195. [Google Scholar] [CrossRef]
- Di Meo, A.; Bartlett, J.; Cheng, Y.; Pasic, M.D.; Yousef, G.M. Liquid biopsy: A step forward towards precision medicine in urologic malignancies. Mol. Cancer 2017, 16, 80. [Google Scholar] [CrossRef]
- Nie, K.; Jia, Y.; Zhang, X. Cell-free circulating tumor DNA in plasma/serum of non-small cell lung cancer. Tumour Biol. 2015, 36, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.C.; Jiang, P.; Chan, C.W.; Sun, K.; Wong, J.; Hui, E.P.; Chan, S.L.; Chan, W.C.; Hui, D.S.; Ng, S.S.; et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc. Natl. Acad. Sci. USA 2013, 110, 18761–18768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandel, P.; Metais, P. Les acides nucléiques du plasma sanguin chez l’homme. C R Seances Soc. Biol. Fil. 1948, 142, 241–243. [Google Scholar]
- Elazezy, M.; Joosse, S.A. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput Struct Biotechnol. J. 2018, 16, 370–378. [Google Scholar] [CrossRef]
- Schwarzenbach, H.; Hoon, D.S.; Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 2011, 11, 426–437. [Google Scholar] [CrossRef]
- Berdasco, M.; Esteller, M. Clinical epigenetics: Seizing opportunities for translation. Nat. Rev. Genet. 2019, 20, 109–127. [Google Scholar] [CrossRef]
- Warton, K.; Samimi, G. Methylation of cell-free circulating DNA in the diagnosis of cancer. Front. Mol. Biosci. 2015, 2, 13. [Google Scholar] [CrossRef]
- Jeronimo, C.; Henrique, R. Epigenetic biomarkers in urological tumors: A systematic review. Cancer Lett. 2014, 342, 264–274. [Google Scholar] [CrossRef]
- Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis 2010, 31, 27–36. [Google Scholar] [CrossRef]
- Feinberg, A.P.; Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983, 301, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Jeronimo, C.; Bastian, P.J.; Bjartell, A.; Carbone, G.M.; Catto, J.W.; Clark, S.J.; Henrique, R.; Nelson, W.G.; Shariat, S.F. Epigenetics in prostate cancer: Biologic and clinical relevance. Eur. Urol. 2011, 60, 753–766. [Google Scholar] [CrossRef] [PubMed]
- Kulis, M.; Esteller, M. DNA methylation and cancer. Adv. Genet. 2010, 70, 27–56. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.D.; Allis, C.D.; Bernstein, E. Epigenetics: A landscape takes shape. Cell 2007, 128, 635–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweet, T.J.; Ting, A.H. WOMEN IN CANCER THEMATIC REVIEW: Diverse functions of DNA methylation: Implications for prostate cancer and beyond. Endocr Relat. Cancer 2016, 23, T169–T178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baylin, S.B.; Jones, P.A. Epigenetic Determinants of Cancer. Cold Spring Harb Perspect Biol. 2016, 8. [Google Scholar] [CrossRef] [Green Version]
- Zane, L.; Sharma, V.; Misteli, T. Common features of chromatin in aging and cancer: Cause or coincidence? Trends Cell Biol. 2014, 24, 686–694. [Google Scholar] [CrossRef] [Green Version]
- Prosch, H.; Schaefer-Prokop, C. Screening for lung cancer. Curr. Opin. Oncol. 2014, 26, 131–137. [Google Scholar] [CrossRef]
- Wu, G.X.; Raz, D.J. Lung Cancer Screening. Cancer Treat. Res. 2016, 170, 1–23. [Google Scholar] [CrossRef]
- Oudkerk, M.; Devaraj, A.; Vliegenthart, R.; Henzler, T.; Prosch, H.; Heussel, C.P.; Bastarrika, G.; Sverzellati, N.; Mascalchi, M.; Delorme, S.; et al. European position statement on lung cancer screening. Lancet Oncol. 2017, 18, e754–e766. [Google Scholar] [CrossRef]
- National Lung Screening Trial Research, T.; Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osarogiagbon, R.U.; Veronesi, G.; Fang, W.; Ekman, S.; Suda, K.; Aerts, J.G.; Donington, J. Early-Stage NSCLC: Advances in Thoracic Oncology 2018. J. Thorac. Oncol. 2019, 14, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Usadel, H.; Brabender, J.; Danenberg, K.D.; Jeronimo, C.; Harden, S.; Engles, J.; Danenberg, P.V.; Yang, S.; Sidransky, D. Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Res. 2002, 62, 371–375. [Google Scholar]
- Bearzatto, A.; Conte, D.; Frattini, M.; Zaffaroni, N.; Andriani, F.; Balestra, D.; Tavecchio, L.; Daidone, M.G.; Sozzi, G. p16(INK4A) Hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small cell lung cancer. Clin. Cancer Res. 2002, 8, 3782–3787. [Google Scholar] [PubMed]
- Ponomaryova, A.A.; Rykova, E.Y.; Cherdyntseva, N.V.; Skvortsova, T.E.; Dobrodeev, A.Y.; Zav’yalov, A.A.; Bryzgalov, L.O.; Tuzikov, S.A.; Vlassov, V.V.; Laktionov, P.P. Potentialities of aberrantly methylated circulating DNA for diagnostics and post-treatment follow-up of lung cancer patients. Lung Cancer 2013, 81, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.P.; Moreira-Barbosa, C.; Salta, S.; Palma de Sousa, S.; Pousa, I.; Oliveira, J.; Soares, M.; Rego, L.; Dias, T.; Rodrigues, J.; et al. Cell-Free DNA Methylation of Selected Genes Allows for Early Detection of the Major Cancers in Women. Cancers 2018, 10, 357. [Google Scholar] [CrossRef] [Green Version]
- Kneip, C.; Schmidt, B.; Seegebarth, A.; Weickmann, S.; Fleischhacker, M.; Liebenberg, V.; Field, J.K.; Dietrich, D. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J. Thorac. Oncol. 2011, 6, 1632–1638. [Google Scholar] [CrossRef] [Green Version]
- Konecny, M.; Markus, J.; Waczulikova, I.; Dolesova, L.; Kozlova, R.; Repiska, V.; Novosadova, H.; Majer, I. The value of SHOX2 methylation test in peripheral blood samples used for the differential diagnosis of lung cancer and other lung disorders. Neoplasma 2016, 63, 246–253. [Google Scholar] [CrossRef]
- Weiss, G.; Schlegel, A.; Kottwitz, D.; Konig, T.; Tetzner, R. Validation of the SHOX2/PTGER4 DNA Methylation Marker Panel for Plasma-Based Discrimination between Patients with Malignant and Nonmalignant Lung Disease. J. Thorac. Oncol. 2017, 12, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Beltran-Garcia, J.; Osca-Verdegal, R.; Mena-Molla, S.; Garcia-Gimenez, J.L. Epigenetic IVD Tests for Personalized Precision Medicine in Cancer. Front. Genet. 2019, 10, 621. [Google Scholar] [CrossRef]
- AG, E. Epi proLung®–Liquid Biopsy Test for Lung Cancer Detection. Available online: https://www.epigenomics.com/products/epi-prolung/ (accessed on 10 July 2019).
- Powrozek, T.; Krawczyk, P.; Nicos, M.; Kuznar-Kaminska, B.; Batura-Gabryel, H.; Milanowski, J. Methylation of the DCLK1 promoter region in circulating free DNA and its prognostic value in lung cancer patients. Clin. Trans. Oncol. 2016, 18, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Powrozek, T.; Krawczyk, P.; Kucharczyk, T.; Milanowski, J. Septin 9 promoter region methylation in free circulating DNA-potential role in noninvasive diagnosis of lung cancer: Preliminary report. Med. Oncol. 2014, 31, 917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooki, A.; Maleki, Z.; Tsay, J.J.; Goparaju, C.; Brait, M.; Turaga, N.; Nam, H.S.; Rom, W.N.; Pass, H.I.; Sidransky, D.; et al. A Panel of Novel Detection and Prognostic Methylated DNA Markers in Primary Non-Small Cell Lung Cancer and Serum DNA. Clin. Cancer Res. 2017, 23, 7141–7152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, S.P.; Diniz, F.; Moreira-Barbosa, C.; Constâncio, V.; Silva, A.V.; Oliveira, J.; Soares, M.; Paulino, S.; Cunha, A.L.; Rodrigues, J.; et al. Subtyping Lung Cancer Using DNA Methylation in Liquid Biopsies. J. Clin. Med. 2019, 8, 1500. [Google Scholar] [CrossRef] [Green Version]
- Constâncio, V.; Nunes, S.P.; Moreira-Barbosa, C.; Freitas, R.; Oliveira, J.; Pousa, I.; Oliveira, J.; Soares, M.; Dias, C.G.; Dias, T.; et al. Early detection of the major male cancer types in blood-based liquid biopsies using a DNA methylation panel. Clin. Epigenetics 2019, 11, 175. [Google Scholar] [CrossRef]
- Fujiwara, K.; Fujimoto, N.; Tabata, M.; Nishii, K.; Matsuo, K.; Hotta, K.; Kozuki, T.; Aoe, M.; Kiura, K.; Ueoka, H.; et al. Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin. Cancer Res. 2005, 11, 1219–1225. [Google Scholar]
- Ulivi, P.; Zoli, W.; Calistri, D.; Fabbri, F.; Tesei, A.; Rosetti, M.; Mengozzi, M.; Amadori, D. p16INK4A and CDH13 hypermethylation in tumor and serum of non-small cell lung cancer patients. J. Cell Physiol 2006, 206, 611–615. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Z.; Wang, T.; Zhang, J.; Hong, L.; Chen, L. Identification of epigenetic aberrant promoter methylation of RASSF1A in serum DNA and its clinicopathological significance in lung cancer. Lung Cancer 2007, 56, 289–294. [Google Scholar] [CrossRef]
- Hsu, H.S.; Chen, T.P.; Hung, C.H.; Wen, C.K.; Lin, R.K.; Lee, H.C.; Wang, Y.C. Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer 2007, 110, 2019–2026. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, H.; Miao, Y.; Wang, R.; Chen, L. Frequent transcriptional inactivation of Kallikrein 10 gene by CpG island hypermethylation in non-small cell lung cancer. Cancer Sci. 2010, 101, 934–940. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Miao, Y.F.; Yi, J.; Geng, J.; Wang, R.; Chen, L.B. Transcriptional inactivation of secreted frizzled-related protein 1 by promoter hypermethylation as a potential biomarker for non-small cell lung cancer. Neoplasma 2010, 57, 228–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Miao, Y.; Yi, J.; Wang, R.; Chen, L. Frequent epigenetic inactivation of deleted in lung and esophageal cancer 1 gene by promoter methylation in non-small-cell lung cancer. Clin. Lung Cancer 2010, 11, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Ostrow, K.L.; Hoque, M.O.; Loyo, M.; Brait, M.; Greenberg, A.; Siegfried, J.M.; Grandis, J.R.; Gaither Davis, A.; Bigbee, W.L.; Rom, W.; et al. Molecular analysis of plasma DNA for the early detection of lung cancer by quantitative methylation-specific PCR. Clin. Cancer Res. 2010, 16, 3463–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wang, R.; Song, H.; Huang, G.; Yi, J.; Zheng, Y.; Wang, J.; Chen, L. Methylation of multiple genes as a candidate biomarker in non-small cell lung cancer. Cancer Lett. 2011, 303, 21–28. [Google Scholar] [CrossRef]
- Begum, S.; Brait, M.; Dasgupta, S.; Ostrow, K.L.; Zahurak, M.; Carvalho, A.L.; Califano, J.A.; Goodman, S.N.; Westra, W.H.; Hoque, M.O.; et al. An epigenetic marker panel for detection of lung cancer using cell-free serum DNA. Clin. Cancer Res. 2011, 17, 4494–4503. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.M.; Park, J.Y.; Kim, D.S. Methylation of TMEFF2 gene in tissue and serum DNA from patients with non-small cell lung cancer. Mol. Cells 2012, 34, 171–176. [Google Scholar] [CrossRef]
- Li, L.; Shen, Y.; Wang, M.; Tang, D.; Luo, Y.; Jiao, W.; Wang, Z.; Yang, R.; Tian, K. Identification of the methylation of p14ARF promoter as a novel non-invasive biomarker for early detection of lung cancer. Clin. Transl. Oncol. 2014, 16, 581–589. [Google Scholar] [CrossRef]
- Balgkouranidou, I.; Chimonidou, M.; Milaki, G.; Tsaroucha, E.; Kakolyris, S.; Georgoulias, V.; Lianidou, E. SOX17 promoter methylation in plasma circulating tumor DNA of patients with non-small cell lung cancer. Clin. Chem Lab. Med. 2016, 54, 1385–1393. [Google Scholar] [CrossRef]
- Hulbert, A.; Jusue-Torres, I.; Stark, A.; Chen, C.; Rodgers, K.; Lee, B.; Griffin, C.; Yang, A.; Huang, P.; Wrangle, J.; et al. Early Detection of Lung Cancer Using DNA Promoter Hypermethylation in Plasma and Sputum. Clin. Cancer Res. 2017, 23, 1998–2005. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Xie, X.; Zheng, B.; Peng, C.; Zhou, H.; Qin, J. The more potential performance of nidogen 2 methylation by tissue or plasma DNA over brichoalveolar lavage DNA in diagnosis of nonsmall cell lung cancer. J. Cancer Res. 2018, 14, S341–S346. [Google Scholar] [CrossRef]
- Yang, Z.; Qi, W.; Sun, L.; Zhou, H.; Zhou, B.; Hu, Y. DNA methylation analysis of selected genes for the detection of early-stage lung cancer using circulating cell-free DNA. Adv. Clin. Exp. Med. 2019, 28, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodard, G.A.; Jones, K.D.; Jablons, D.M. Lung Cancer Staging and Prognosis. Cancer Treat. Res. 2016, 170, 47–75. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Edge, S.; Greene, F.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. AJCC Cancer Staging Manual, 8th ed.; Springer International Publishing: Chicago, IL, USA; American Joint Commission on Cancer: Chicago, IL, USA, 2017; pp. 276–726. [Google Scholar]
- Vinayanuwattikun, C.; Sriuranpong, V.; Tanasanvimon, S.; Chantranuwat, P.; Mutirangura, A. Epithelial-specific methylation marker: A potential plasma biomarker in advanced non-small cell lung cancer. J. Thorac. Oncol. 2011, 6, 1818–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balgkouranidou, I.; Chimonidou, M.; Milaki, G.; Tsarouxa, E.G.; Kakolyris, S.; Welch, D.R.; Georgoulias, V.; Lianidou, E.S. Breast cancer metastasis suppressor-1 promoter methylation in cell-free DNA provides prognostic information in non-small cell lung cancer. Br. J. Cancer 2014, 110, 2054–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhang, B.; Chen, D.; Xia, W.; Zhang, J.; Wang, F.; Xu, J.; Zhang, Y.; Zhang, M.; Zhang, L.; et al. Real-time monitoring efficiency and toxicity of chemotherapy in patients with advanced lung cancer. Clin. Epigenetics 2015, 7, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, B.; Beyer, J.; Dietrich, D.; Bork, I.; Liebenberg, V.; Fleischhacker, M. Quantification of cell-free mSHOX2 Plasma DNA for therapy monitoring in advanced stage non-small cell (NSCLC) and small-cell lung cancer (SCLC) patients. PLoS ONE 2015, 10, e0118195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X.; Liu, X.; Xu, L.; Li, Y.; Wang, H.; Song, L.; Xiao, W. The mSHOX2 is capable of assessing the therapeutic effect and predicting the prognosis of stage IV lung cancer. J. Thorac. Dis. 2019, 11, 2458–2469. [Google Scholar] [CrossRef]
- Ramirez, J.L.; Rosell, R.; Taron, M.; Sanchez-Ronco, M.; Alberola, V.; de Las Penas, R.; Sanchez, J.M.; Moran, T.; Camps, C.; Massuti, B.; et al. 14-3-3sigma methylation in pretreatment serum circulating DNA of cisplatin-plus-gemcitabine-treated advanced non-small-cell lung cancer patients predicts survival: The Spanish Lung Cancer Group. J. Clin. Oncol. 2005, 23, 9105–9112. [Google Scholar] [CrossRef]
- Salazar, F.; Molina, M.A.; Sanchez-Ronco, M.; Moran, T.; Ramirez, J.L.; Sanchez, J.M.; Stahel, R.; Garrido, P.; Cobo, M.; Isla, D.; et al. First-line therapy and methylation status of CHFR in serum influence outcome to chemotherapy versus EGFR tyrosine kinase inhibitors as second-line therapy in stage IV non-small-cell lung cancer patients. Lung Cancer 2011, 72, 84–91. [Google Scholar] [CrossRef]
- Senkus, E.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rutgers, E.; Zackrisson, S.; Cardoso, F. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol 2015, 26. [Google Scholar] [CrossRef]
- Kemp Jacobsen, K.; O’Meara, E.S.; Key, D.; Buist, D.S.M.; Kerlikowske, K.; Vejborg, I.; Sprague, B.L.; Lynge, E.; von Euler-Chelpin, M. Comparing sensitivity and specificity of screening mammography in the United States and Denmark. Int. J. Cancer 2015, 137, 2198–2207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, R.; Mravunac, M.; Hendriks, J.H.; Bekker, B.V. So-called interval cancers of the breast. Pathologic and radiologic analysis of sixty-four cases. Cancer 1982, 49, 2527–2533. [Google Scholar] [CrossRef]
- The benefits and harms of breast cancer screening: An independent review. Lancet 2012, 380, 1778–1786. [CrossRef]
- Shapiro, S.; Strax, P.; Venet, L. Periodic breast cancer screening in reducing mortality from breast cancer. Jama 1971, 215, 1777–1785. [Google Scholar] [CrossRef]
- Hoque, M.O.; Feng, Q.; Toure, P.; Dem, A.; Critchlow, C.W.; Hawes, S.E.; Wood, T.; Jeronimo, C.; Rosenbaum, E.; Stern, J.; et al. Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J. Clin. Oncol. 2006, 24, 4262–4269. [Google Scholar] [CrossRef]
- Kim, J.H.; Shin, M.H.; Kweon, S.S.; Park, M.H.; Yoon, J.H.; Lee, J.S.; Choi, C.; Fackler, M.J.; Sukumar, S. Evaluation of promoter hypermethylation detection in serum as a diagnostic tool for breast carcinoma in Korean women. Gynecol. Oncol. 2010, 118, 176–181. [Google Scholar] [CrossRef]
- Kloten, V.; Becker, B.; Winner, K.; Schrauder, M.G.; Fasching, P.A.; Anzeneder, T.; Veeck, J.; Hartmann, A.; Knüchel, R.; Dahl, E. Promoter hypermethylation of the tumor-suppressor genes ITIH5, DKK3, and RASSF1A as novel biomarkers for blood-based breast cancer screening. Breast Cancer Res. 2013, 15, R4. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Galan, J.; Torres, B.; Del Moral, R.; Munoz-Gamez, J.A.; Martin-Oliva, D.; Villalobos, M.; Nunez, M.I.; Luna Jde, D.; Oliver, F.J.; Ruiz de Almodovar, J.M. Quantitative detection of methylated ESR1 and 14-3-3-sigma gene promoters in serum as candidate biomarkers for diagnosis of breast cancer and evaluation of treatment efficacy. Cancer Biol. 2008, 7, 958–965. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.A.; Pusch, C.M.; Hamed, T.; Rashad, H.; Idris, A.; El-Fadle, A.A.; Blin, N. Epigenetic alterations by methylation of RASSF1A and DAPK1 promoter sequences in mammary carcinoma detected in extracellular tumor DNA. Cancer Genet. Cytogenet 2010, 199, 96–100. [Google Scholar] [CrossRef]
- Salta, S.; Nunes, P.; Fontes-Sousa, M.; Lopes, P.; Freitas, M.; Caldas, M.; Antunes, L.; Castro, F.; Antunes, P.; Palma de Sousa, S.; et al. A DNA Methylation-Based Test for Breast Cancer Detection in Circulating Cell-Free DNA. J. Clin. Med. 2018, 7, 420. [Google Scholar] [CrossRef] [Green Version]
- Dulaimi, E.; Hillinck, J.; Ibanez de Caceres, I.; Al-Saleem, T.; Cairns, P. Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin. Cancer Res. 2004, 10, 6189–6193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulou, E.; Davilas, E.; Sotiriou, V.; Georgakopoulos, E.; Georgakopoulou, S.; Koliopanos, A.; Aggelakis, F.; Dardoufas, K.; Agnanti, N.J.; Karydas, I.; et al. Cell-free DNA and RNA in plasma as a new molecular marker for prostate and breast cancer. Ann. N. Y. Acad. Sci. 2006, 1075, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Skvortsova, T.E.; Rykova, E.Y.; Tamkovich, S.N.; Bryzgunova, O.E.; Starikov, A.V.; Kuznetsova, N.P.; Vlassov, V.V.; Laktionov, P.P. Cell-free and cell-bound circulating DNA in breast tumours: DNA quantification and analysis of tumour-related gene methylation. Br. J. Cancer 2006, 94, 1492–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Auwera, I.; Elst, H.J.; Van Laere, S.J.; Maes, H.; Huget, P.; van Dam, P.; Van Marck, E.A.; Vermeulen, P.B.; Dirix, L.Y. The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. Br. J. Cancer 2009, 100, 1277–1286. [Google Scholar] [CrossRef] [Green Version]
- Shan, M.; Yin, H.; Li, J.; Li, X.; Wang, D.; Su, Y.; Niu, M.; Zhong, Z.; Wang, J.; Zhang, X.; et al. Detection of aberrant methylation of a six-gene panel in serum DNA for diagnosis of breast cancer. Oncotarget 2016, 7, 18485–18494. [Google Scholar] [CrossRef] [Green Version]
- Yazici, H.; Terry, M.B.; Cho, Y.H.; Senie, R.T.; Liao, Y.; Andrulis, I.; Santella, R.M. Aberrant methylation of RASSF1A in plasma DNA before breast cancer diagnosis in the Breast Cancer Family Registry. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2723–2725. [Google Scholar] [CrossRef] [Green Version]
- Radpour, R.; Barekati, Z.; Kohler, C.; Lv, Q.; Bürki, N.; Diesch, C.; Bitzer, J.; Zheng, H.; Schmid, S.; Zhong, X.Y. Hypermethylation of Tumor Suppressor Genes Involved in Critical Regulatory Pathways for Developing a Blood-Based Test in Breast Cancer. PLoS ONE 2011, 6, e16080. [Google Scholar] [CrossRef]
- Yamamoto, N.; Nakayama, T.; Kajita, M.; Miyake, T.; Iwamoto, T.; Kim, S.J.; Sakai, A.; Ishihara, H.; Tamaki, Y.; Noguchi, S. Detection of aberrant promoter methylation of GSTP1, RASSF1A, and RARbeta2 in serum DNA of patients with breast cancer by a newly established one-step methylation-specific PCR assay. Breast Cancer Res. Treat. 2012, 132, 165–173. [Google Scholar] [CrossRef]
- Chimonidou, M.; Strati, A.; Malamos, N.; Georgoulias, V.; Lianidou, E.S. SOX17 promoter methylation in circulating tumor cells and matched cell-free DNA isolated from plasma of patients with breast cancer. Clin. Chem. 2013, 59, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Swellam, M.; Abdelmaksoud, M.D.; Sayed Mahmoud, M.; Ramadan, A.; Abdel-Moneem, W.; Hefny, M.M. Aberrant methylation of APC and RARbeta2 genes in breast cancer patients. Iubmb Life 2015, 67, 61–68. [Google Scholar] [CrossRef]
- Nandi, K.; Yadav, P.; Mir, R.; Khurana, N.; Agarwal, P.; Saxena, A. The Clinical Significance of Rassf1a and Cdh1 Hypermethylation in Breast Cancer Patients. Int. J. Sci. Res. 2008. [Google Scholar] [CrossRef]
- Li, D.; Li, P.; Wu, J.; Yi, J.; Dou, Y.; Guo, X.; Yin, Y.; Wang, D.; Ma, C.; Qiu, L. Methylation of NBPF1 as a novel marker for the detection of plasma cell-free DNA of breast cancer patients. Clin. Chim. Acta 2018, 484, 81–86. [Google Scholar] [CrossRef]
- Mijnes, J.; Tiedemann, J.; Eschenbruch, J.; Gasthaus, J.; Bringezu, S.; Bauerschlag, D.; Maass, N.; Arnold, N.; Weimer, J.; Anzeneder, T.; et al. SNiPER: A novel hypermethylation biomarker panel for liquid biopsy based early breast cancer detection. Oncotarget 2019, 10, 6494–6508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Classification of Tumours of the Breast, 4th ed.; International Agency for Research on Cancer: Lyon, France, 2012. [Google Scholar]
- Dai, X.; Xiang, L.; Li, T.; Bai, Z. Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes. J. Cancer 2016, 7, 1281–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A.; Kaur, J.; Mehta, K. Molecular oncology update: Breast cancer gene expression profiling. Asian J. Oncol. 2015, 1, 65. [Google Scholar] [CrossRef]
- Chimonidou, M.; Tzitzira, A.; Strati, A.; Sotiropoulou, G.; Sfikas, C.; Malamos, N.; Georgoulias, V.; Lianidou, E. CST6 promoter methylation in circulating cell-free DNA of breast cancer patients. Clin. Biochem. 2013, 46, 235–240. [Google Scholar] [CrossRef]
- Gobel, G.; Auer, D.; Gaugg, I.; Schneitter, A.; Lesche, R.; Muller-Holzner, E.; Marth, C.; Daxenbichler, G. Prognostic significance of methylated RASSF1A and PITX2 genes in blood- and bone marrow plasma of breast cancer patients. Breast Cancer Res. Treat. 2011, 130, 109–117. [Google Scholar] [CrossRef]
- Panagopoulou, M.; Karaglani, M.; Balgkouranidou, I.; Biziota, E.; Koukaki, T.; Karamitrousis, E.; Nena, E.; Tsamardinos, I.; Kolios, G.; Lianidou, E.; et al. Circulating cell-free DNA in breast cancer: Size profiling, levels, and methylation patterns lead to prognostic and predictive classifiers. Oncogene 2019, 38, 3387–3401. [Google Scholar] [CrossRef]
- Fu, D.; Ren, C.; Tan, H.; Wei, J.; Zhu, Y.; He, C.; Shao, W.; Zhang, J. Sox17 promoter methylation in plasma DNA is associated with poor survival and can be used as a prognostic factor in breast cancer. Medicine 2015, 94, e637. [Google Scholar] [CrossRef]
- Visvanathan, K.; Fackler, M.S.; Zhang, Z.; Lopez-Bujanda, Z.A.; Jeter, S.C.; Sokoll, L.J.; Garrett-Mayer, E.; Cope, L.M.; Umbricht, C.B.; Euhus, D.M.; et al. Monitoring of Serum DNA Methylation as an Early Independent Marker of Response and Survival in Metastatic Breast Cancer: TBCRC 005 Prospective Biomarker Study. J. Clin. Oncol. 2017, 35, 751–758. [Google Scholar] [CrossRef]
- Zurita, M.; Lara, P.C.; del Moral, R.; Torres, B.; Linares-Fernandez, J.L.; Arrabal, S.R.; Martinez-Galan, J.; Oliver, F.J.; Ruiz de Almodovar, J.M. Hypermethylated 14-3-3-sigma and ESR1 gene promoters in serum as candidate biomarkers for the diagnosis and treatment efficacy of breast cancer metastasis. BMC Cancer 2010, 10, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, H.M.; Widschwendter, A.; Fiegl, H.; Ivarsson, L.; Goebel, G.; Perkmann, E.; Marth, C.; Widschwendter, M. DNA methylation in serum of breast cancer patients: An independent prognostic marker. Cancer Res. 2003, 63, 7641–7645. [Google Scholar] [PubMed]
- Rawson, J.B.; Bapat, B. Epigenetic biomarkers in colorectal cancer diagnostics. Expert Rev. Mol. Diagn 2012, 12, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Payne, S.R. From discovery to the clinic: The novel DNA methylation biomarker (m)SEPT9 for the detection of colorectal cancer in blood. Epigenomics 2010, 2, 575–585. [Google Scholar] [CrossRef]
- Issa, I.A.; Noureddine, M. Colorectal cancer screening: An updated review of the available options. World J. Gastroenterol. 2017, 23, 5086–5096. [Google Scholar] [CrossRef]
- Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet 2014, 383, 1490–1502. [Google Scholar] [CrossRef]
- Simon, K. Colorectal cancer development and advances in screening. Clin. Interv. Aging 2016, 11, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Molnar, B.; Toth, K.; Bartak, B.K.; Tulassay, Z. Plasma methylated septin 9: A colorectal cancer screening marker. Expert Rev. Mol. Diagn 2015, 15, 171–184. [Google Scholar] [CrossRef]
- Lamb, Y.N.; Dhillon, S. Epi proColon((R)) 2.0 CE: A Blood-Based Screening Test for Colorectal Cancer. Mol. Diagn 2017, 21, 225–232. [Google Scholar] [CrossRef]
- Song, L.; Jia, J.; Peng, X.; Xiao, W.; Li, Y. The performance of the SEPT9 gene methylation assay and a comparison with other CRC screening tests: A meta-analysis. Sci. Rep. 2017, 7, 3032. [Google Scholar] [CrossRef] [Green Version]
- Church, T.R.; Wandell, M.; Lofton-Day, C.; Mongin, S.J.; Burger, M.; Payne, S.R.; Castanos-Velez, E.; Blumenstein, B.A.; Rosch, T.; Osborn, N.; et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 2014, 63, 317–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlquist, D.A.; Taylor, W.R.; Mahoney, D.W.; Zou, H.; Domanico, M.; Thibodeau, S.N.; Boardman, L.A.; Berger, B.M.; Lidgard, G.P. The stool DNA test is more accurate than the plasma septin 9 test in detecting colorectal neoplasia. Clin. Gastroenterol. Hepatol. 2012, 10, 272–277.e271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, K.; Wasserkort, R.; Sipos, F.; Kalmar, A.; Wichmann, B.; Leiszter, K.; Valcz, G.; Juhasz, M.; Miheller, P.; Patai, A.V.; et al. Detection of methylated septin 9 in tissue and plasma of colorectal patients with neoplasia and the relationship to the amount of circulating cell-free DNA. PLoS ONE 2014, 9, e115415. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, Y.; Hashimoto, S.; Higaki, S.; Fujii, I.; Suzuki, C.; Hoshida, T.; Matsumoto, T.; Yamaoka, Y.; Takami, T.; Sakaida, I.; et al. Blood free-circulating DNA testing by highly sensitive methylation assay to diagnose colorectal neoplasias. Oncotarget 2018, 9, 16974–16987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.B.; Lee, E.J.; Jung, E.H.; Chun, H.K.; Chang, D.K.; Song, S.Y.; Park, J.; Kim, D.H. Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin. Cancer Res. 2009, 15, 6185–6191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartak, B.K.; Kalmar, A.; Peterfia, B.; Patai, A.V.; Galamb, O.; Valcz, G.; Spisak, S.; Wichmann, B.; Nagy, Z.B.; Toth, K.; et al. Colorectal adenoma and cancer detection based on altered methylation pattern of SFRP1, SFRP2, SDC2, and PRIMA1 in plasma samples. Epigenetics 2017, 12, 751–763. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, S.K.; Symonds, E.L.; Baker, R.T.; Murray, D.H.; McEvoy, A.; Van Doorn, S.C.; Mundt, M.W.; Cole, S.R.; Gopalsamy, G.; Mangira, D.; et al. Evaluation of an assay for methylated BCAT1 and IKZF1 in plasma for detection of colorectal neoplasia. BMC Cancer 2015, 15, 654. [Google Scholar] [CrossRef] [Green Version]
- Symonds, E.L.; Pedersen, S.K.; Baker, R.T.; Murray, D.H.; Gaur, S.; Cole, S.R.; Gopalsamy, G.; Mangira, D.; LaPointe, L.C.; Young, G.P. A Blood Test for Methylated BCAT1 and IKZF1 vs. a Fecal Immunochemical Test for Detection of Colorectal Neoplasia. Clin. Transl. Gastroenterol. 2016, 7, e137. [Google Scholar] [CrossRef]
- Zou, H.Z.; Yu, B.M.; Wang, Z.W.; Sun, J.Y.; Cang, H.; Gao, F.; Li, D.H.; Zhao, R.; Feng, G.G.; Yi, J. Detection of aberrant p16 methylation in the serum of colorectal cancer patients. Clin. Cancer Res. 2002, 8, 188–191. [Google Scholar]
- Leung, W.K.; To, K.F.; Man, E.P.; Chan, M.W.; Bai, A.H.; Hui, A.J.; Chan, F.K.; Sung, J.J. Quantitative detection of promoter hypermethylation in multiple genes in the serum of patients with colorectal cancer. Am. J. Gastroenterol. 2005, 100, 2274–2279. [Google Scholar] [CrossRef]
- Ebert, M.P.; Model, F.; Mooney, S.; Hale, K.; Lograsso, J.; Tonnes-Priddy, L.; Hoffmann, J.; Csepregi, A.; Rocken, C.; Molnar, B.; et al. Aristaless-like homeobox-4 gene methylation is a potential marker for colorectal adenocarcinomas. Gastroenterology 2006, 131, 1418–1430. [Google Scholar] [CrossRef] [PubMed]
- Wallner, M.; Herbst, A.; Behrens, A.; Crispin, A.; Stieber, P.; Goke, B.; Lamerz, R.; Kolligs, F.T. Methylation of serum DNA is an independent prognostic marker in colorectal cancer. Clin. Cancer Res. 2006, 12, 7347–7352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lofton-Day, C.; Model, F.; Devos, T.; Tetzner, R.; Distler, J.; Schuster, M.; Song, X.; Lesche, R.; Liebenberg, V.; Ebert, M.; et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin. Chem. 2008, 54, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Yu, Z.H.; Liu, C.; Xu, L.Z.; Yu, W.; Lu, J.; Zhu, R.M.; Li, G.L.; Xia, X.Y.; Wei, X.W.; et al. Detection of RASSF1A promoter hypermethylation in serum from gastric and colorectal adenocarcinoma patients. World J. Gastroenterol. 2008, 14, 3074–3080. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, W.D.; Papadopoulos, N.; Goodman, S.N.; Bjerregaard, N.C.; Laurberg, S.; Levin, B.; Juhl, H.; Arber, N.; Moinova, H.; et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat. Biotechnol. 2009, 27, 858–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q.; Chen, H.Y.; Bai, E.Q.; Luo, Y.X.; Fu, R.J.; He, Y.S.; Jiang, J.; Wang, H.Q. Development of a multiplex MethyLight assay for the detection of multigene methylation in human colorectal cancer. Cancer Genet. Cytogenet. 2010, 202, 1–10. [Google Scholar] [CrossRef]
- Herbst, A.; Rahmig, K.; Stieber, P.; Philipp, A.; Jung, A.; Ofner, A.; Crispin, A.; Neumann, J.; Lamerz, R.; Kolligs, F.T. Methylation of NEUROG1 in serum is a sensitive marker for the detection of early colorectal cancer. Am. J. Gastroenterol. 2011, 106, 1110–1118. [Google Scholar] [CrossRef]
- Hibi, K.; Goto, T.; Shirahata, A.; Saito, M.; Kigawa, G.; Nemoto, H.; Sanada, Y. Detection of TFPI2 methylation in the serum of colorectal cancer patients. Cancer Lett. 2011, 311, 96–100. [Google Scholar] [CrossRef]
- Wu, P.P.; Zou, J.H.; Tang, R.N.; Yao, Y.; You, C.Z. Detection and Clinical Significance of DLC1 Gene Methylation in Serum DNA from Colorectal Cancer Patients. Chin. J. Cancer Res. 2011, 23, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Cassinotti, E.; Melson, J.; Liggett, T.; Melnikov, A.; Yi, Q.; Replogle, C.; Mobarhan, S.; Boni, L.; Segato, S.; Levenson, V. DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps. Int. J. Cancer 2012, 131, 1153–1157. [Google Scholar] [CrossRef]
- Pack, S.C.; Kim, H.R.; Lim, S.W.; Kim, H.Y.; Ko, J.Y.; Lee, K.S.; Hwang, D.; Park, S.I.; Kang, H.; Park, S.W.; et al. Usefulness of plasma epigenetic changes of five major genes involved in the pathogenesis of colorectal cancer. Int. J. Colorectal. Dis. 2013, 28, 139–147. [Google Scholar] [CrossRef]
- Oh, T.; Kim, N.; Moon, Y.; Kim, M.S.; Hoehn, B.D.; Park, C.H.; Kim, T.S.; Kim, N.K.; Chung, H.C.; An, S. Genome-wide identification and validation of a novel methylation biomarker, SDC2, for blood-based detection of colorectal cancer. J. Mol. Diagn 2013, 15, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tham, C.K.; Ong, S.Y.; Ho, K.S.; Lim, J.F.; Chew, M.H.; Lim, C.K.; Zhao, Y.; Tang, C.L.; Eu, K.W. Serum methylation levels of TAC1. SEPT9 and EYA4 as diagnostic markers for early colorectal cancers: A pilot study. Biomarkers 2013, 18, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Roperch, J.P.; Incitti, R.; Forbin, S.; Bard, F.; Mansour, H.; Mesli, F.; Baumgaertner, I.; Brunetti, F.; Sobhani, I. Aberrant methylation of NPY, PENK, and WIF1 as a promising marker for blood-based diagnosis of colorectal cancer. BMC Cancer 2013, 13, 566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, S.K.; Mitchell, S.M.; Graham, L.D.; McEvoy, A.; Thomas, M.L.; Baker, R.T.; Ross, J.P.; Xu, Z.Z.; Ho, T.; LaPointe, L.C.; et al. CAHM, a long non-coding RNA gene hypermethylated in colorectal neoplasia. Epigenetics 2014, 9, 1071–1082. [Google Scholar] [CrossRef] [Green Version]
- Takane, K.; Midorikawa, Y.; Yagi, K.; Sakai, A.; Aburatani, H.; Takayama, T.; Kaneda, A. Aberrant promoter methylation of PPP1R3C and EFHD1 in plasma of colorectal cancer patients. Cancer Med. 2014, 3, 1235–1245. [Google Scholar] [CrossRef]
- Melotte, V.; Yi, J.M.; Lentjes, M.H.; Smits, K.M.; Van Neste, L.; Niessen, H.E.; Wouters, K.A.; Louwagie, J.; Schuebel, K.E.; Herman, J.G.; et al. Spectrin repeat containing nuclear envelope 1 and forkhead box protein E1 are promising markers for the detection of colorectal cancer in blood. Cancer Prev Res. (Phila) 2015, 8, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Song, Y.F.; Lu, H.N.; Wang, D.P.; Zhang, X.S.; Huang, S.L.; Sun, B.L.; Huang, Z.G. Combined detection of plasma GATA5 and SFRP2 methylation is a valid noninvasive biomarker for colorectal cancer and adenomas. World J. Gastroenterol. 2015, 21, 2629–2637. [Google Scholar] [CrossRef]
- Pedersen, S.K.; Baker, R.T.; McEvoy, A.; Murray, D.H.; Thomas, M.; Molloy, P.L.; Mitchell, S.; Lockett, T.; Young, G.P.; LaPointe, L.C. A two-gene blood test for methylated DNA sensitive for colorectal cancer. PLoS ONE 2015, 10, e0125041. [Google Scholar] [CrossRef]
- Salehi, R.; Atapour, N.; Vatandoust, N.; Farahani, N.; Ahangari, F.; Salehi, A.R. Methylation pattern of ALX4 gene promoter as a potential biomarker for blood-based early detection of colorectal cancer. Adv. Biomed. Res. 2015, 4, 252. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Ho, T.; Brown, G.S.; Baker, R.T.; Thomas, M.L.; McEvoy, A.; Xu, Z.Z.; Ross, J.P.; Lockett, T.J.; Young, G.P.; et al. Evaluation of Methylation Biomarkers for Detection of Circulating Tumor DNA and Application to Colorectal Cancer. Genes 2016, 7, 125. [Google Scholar] [CrossRef] [Green Version]
- Rezvani, N.; Alibakhshi, R.; Vaisi-Raygani, A.; Bashiri, H.; Saidijam, M. Detection of SPG20 gene promoter-methylated DNA, as a novel epigenetic biomarker, in plasma for colorectal cancer diagnosis using the MethyLight method. Oncol. Lett. 2017, 13, 3277–3284. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, S.L.; Krarup, H.B.; Sunesen, K.G.; Johansen, M.B.; Stender, M.T.; Pedersen, I.S.; Madsen, P.H.; Thorlacius-Ussing, O. Hypermethylated DNA, a circulating biomarker for colorectal cancer detection. PLoS ONE 2017, 12, e0180809. [Google Scholar] [CrossRef] [Green Version]
- Rokni, P.; Shariatpanahi, A.M.; Sakhinia, E.; Kerachian, M.A. BMP3 promoter hypermethylation in plasma-derived cell-free DNA in colorectal cancer patients. Genes Genom. 2018, 40, 423–428. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Zhao, G.; Ma, Y.; Chen, Y.; Xue, Q.; Zheng, M.; Fei, S. Performance of a MethyLight assay for methylated SFRP2 DNA detection in colorectal cancer tissue and serum. Int. J. Biol. Markers 2019, 34, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Li, H.; Yang, Z.; Wang, Z.; Xu, M.; Xiong, S.; Li, S.; Wu, X.; Liu, X.; Wang, Z.; et al. Multiplex methylated DNA testing in plasma with high sensitivity and specificity for colorectal cancer screening. Cancer Med. 2019, 8, 5619–5628. [Google Scholar] [CrossRef] [Green Version]
- Jensen, S.Ø.; Øgaard, N.; Ørntoft, M.-B.W.; Rasmussen, M.H.; Bramsen, J.B.; Kristensen, H.; Mouritzen, P.; Madsen, M.R.; Madsen, A.H.; Sunesen, K.G.; et al. Novel DNA methylation biomarkers show high sensitivity and specificity for blood-based detection of colorectal cancer-a clinical biomarker discovery and validation study. Clin. Epigenetics 2019, 11, 158. [Google Scholar] [CrossRef]
- Nishio, M.; Sakakura, C.; Nagata, T.; Komiyama, S.; Miyashita, A.; Hamada, T.; Kuryu, Y.; Ikoma, H.; Kubota, T.; Kimura, A.; et al. RUNX3 promoter methylation in colorectal cancer: Its relationship with microsatellite instability and its suitability as a novel serum tumor marker. Anticancer Res. 2010, 30, 2673–2682. [Google Scholar]
- Tang, D.; Liu, J.; Wang, D.R.; Yu, H.F.; Li, Y.K.; Zhang, J.Q. Diagnostic and prognostic value of the methylation status of secreted frizzled-related protein 2 in colorectal cancer. Clin. Investig. Med. 2011, 34, E88–E95. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chew, M.H.; Tham, C.K.; Tang, C.L.; Ong, S.Y.; Zhao, Y. Methylation of serum SST gene is an independent prognostic marker in colorectal cancer. Am. J. Cancer Res. 2016, 6, 2098–2108. [Google Scholar]
- Nakayama, G.; Kodera, Y.; Ohashi, N.; Koike, M.; Fujiwara, M.; Nakao, A. p16INK4a methylation in serum as a follow-up marker for recurrence of colorectal cancer. Anticancer Res. 2011, 31, 1643–1646. [Google Scholar]
- Tham, C.; Chew, M.; Soong, R.; Lim, J.; Ang, M.; Tang, C.; Zhao, Y.; Ong, S.Y.; Liu, Y. Postoperative serum methylation levels of TAC1 and SEPT9 are independent predictors of recurrence and survival of patients with colorectal cancer. Cancer 2014, 120, 3131–3141. [Google Scholar] [CrossRef]
- Bergheim, J.; Semaan, A.; Gevensleben, H.; Groening, S.; Knoblich, A.; Dietrich, J.; Weber, J.; Kalff, J.C.; Bootz, F.; Kristiansen, G.; et al. Potential of quantitative SEPT9 and SHOX2 methylation in plasmatic circulating cell-free DNA as auxiliary staging parameter in colorectal cancer: A prospective observational cohort study. Br. J. Cancer 2018, 118, 1217–1228. [Google Scholar] [CrossRef]
- Philipp, A.B.; Stieber, P.; Nagel, D.; Neumann, J.; Spelsberg, F.; Jung, A.; Lamerz, R.; Herbst, A.; Kolligs, F.T. Prognostic role of methylated free circulating DNA in colorectal cancer. Int. J. Cancer 2012, 131, 2308–2319. [Google Scholar] [CrossRef]
- Herbst, A.; Wallner, M.; Rahmig, K.; Stieber, P.; Crispin, A.; Lamerz, R.; Kolligs, F.T. Methylation of helicase-like transcription factor in serum of patients with colorectal cancer is an independent predictor of disease recurrence. Eur. J. Gastroenterol. Hepatol. 2009, 21, 565–569. [Google Scholar] [CrossRef]
- Herbst, A.; Vdovin, N.; Gacesa, S.; Ofner, A.; Philipp, A.; Nagel, D.; Holdt, L.M.; Op den Winkel, M.; Heinemann, V.; Stieber, P.; et al. Methylated free-circulating HPP1 DNA is an early response marker in patients with metastatic colorectal cancer. Int. J. Cancer 2017, 140, 2134–2144. [Google Scholar] [CrossRef] [Green Version]
- Barault, L.; Amatu, A.; Siravegna, G.; Ponzetti, A.; Moran, S.; Cassingena, A.; Mussolin, B.; Falcomata, C.; Binder, A.M.; Cristiano, C.; et al. Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer. Gut 2018, 67, 1995–2005. [Google Scholar] [CrossRef]
- Amatu, A.; Schirripa, M.; Tosi, F.; Lonardi, S.; Bencardino, K.; Bonazzina, E.; Palmeri, L.; Patanè, D.A.; Pizzutilo, E.G.; Mussolin, B.; et al. High Circulating Methylated DNA Is a Negative Predictive and Prognostic Marker in Metastatic Colorectal Cancer Patients Treated With Regorafenib. Front. Oncol. 2019, 9, 622. [Google Scholar] [CrossRef] [Green Version]
- COLVERA: Because the Truth Matters. Available online: https://www.clinicalgenomics.com/colvera.html (accessed on 20 July 2019).
- Symonds, E.L.; Pedersen, S.K.; Murray, D.H.; Jedi, M.; Byrne, S.E.; Rabbitt, P.; Baker, R.T.; Bastin, D.; Young, G.P. Circulating tumour DNA for monitoring colorectal cancer-a prospective cohort study to assess relationship to tissue methylation, cancer characteristics and surgical resection. Clin. Epigenetics 2018, 10, 63. [Google Scholar] [CrossRef]
- Young, G.P.; Pedersen, S.K.; Mansfield, S.; Murray, D.H.; Baker, R.T.; Rabbitt, P.; Byrne, S.; Bambacas, L.; Hollington, P.; Symonds, E.L. A cross-sectional study comparing a blood test for methylated BCAT1 and IKZF1 tumor-derived DNA with CEA for detection of recurrent colorectal cancer. Cancer Med. 2016, 5, 2763–2772. [Google Scholar] [CrossRef] [Green Version]
- Murray, D.H.; Symonds, E.L.; Young, G.P.; Byrne, S.; Rabbitt, P.; Roy, A.; Cornthwaite, K.; Karapetis, C.S.; Pedersen, S.K. Relationship between post-surgery detection of methylated circulating tumor DNA with risk of residual disease and recurrence-free survival. J. Cancer Res. Clin. Oncol. 2018, 144, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Hammerich, K.H.; Ayala, G.E.; Wheeler, T.M. Anatomy of the prostate gland and surgical pathology of prostate cancer. Camb. Univ. Camb. 2009, 1–10. [Google Scholar]
- Roobol, M.J.; Carlsson, S.V. Risk stratification in prostate cancer screening. Nat. Rev. Urol. 2013, 10, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, R.M. Clinical practice. Screening for prostate cancer. N. Engl. J. Med. 2011, 365, 2013–2019. [Google Scholar] [CrossRef] [PubMed]
- Etzioni, R.; Penson, D.F.; Legler, J.M.; di Tommaso, D.; Boer, R.; Gann, P.H.; Feuer, E.J. Overdiagnosis due to prostate-specific antigen screening: Lessons from U.S. prostate cancer incidence trends. J. Natl. Cancer Inst. 2002, 94, 981–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, M.A.; Stoyanova, T. Biomarkers for Diagnosis and Prognosis of Prostate Cancer. In Prostatectomy; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Larsen, L.K.; Lind, G.E.; Guldberg, P.; Dahl, C. DNA-Methylation-Based Detection of Urological Cancer in Urine: Overview of Biomarkers and Considerations on Biomarker Design, Source of DNA, and Detection Technologies. Int. J. Mol. Sci. 2019, 20, 2657. [Google Scholar] [CrossRef] [Green Version]
- Ellinger, J.; Haan, K.; Heukamp, L.C.; Kahl, P.; Buttner, R.; Muller, S.C.; von Ruecker, A.; Bastian, P.J. CpG island hypermethylation in cell-free serum DNA identifies patients with localized prostate cancer. Prostate 2008, 68, 42–49. [Google Scholar] [CrossRef]
- Sunami, E.; Shinozaki, M.; Higano, C.S.; Wollman, R.; Dorff, T.B.; Tucker, S.J.; Martinez, S.R.; Mizuno, R.; Singer, F.R.; Hoon, D.S. Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin. Chem. 2009, 55, 559–567. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Giovannucci, E.; Welge, J.; Mallick, P.; Tang, W.Y.; Ho, S.M. Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: A meta-analysis. Br. J. Cancer 2011, 105, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Payne, S.R.; Serth, J.; Schostak, M.; Kamradt, J.; Strauss, A.; Thelen, P.; Model, F.; Day, J.K.; Liebenberg, V.; Morotti, A.; et al. DNA methylation biomarkers of prostate cancer: Confirmation of candidates and evidence urine is the most sensitive body fluid for non-invasive detection. Prostate 2009, 69, 1257–1269. [Google Scholar] [CrossRef]
- Dumache, R.; Puiu, M.; Motoc, M.; Vernic, C.; Dumitrascu, V. Prostate cancer molecular detection in plasma samples by glutathione S-transferase P1 (GSTP1) methylation analysis. Clin. Lab. 2014, 60, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Brait, M.; Banerjee, M.; Maldonado, L.; Ooki, A.; Loyo, M.; Guida, E.; Izumchenko, E.; Mangold, L.; Humphreys, E.; Rosenbaum, E.; et al. Promoter methylation of MCAM, ERalpha and ERbeta in serum of early stage prostate cancer patients. Oncotarget 2017, 8, 15431–15440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haldrup, C.; Pedersen, A.L.; Ogaard, N.; Strand, S.H.; Hoyer, S.; Borre, M.; Orntoft, T.F.; Sorensen, K.D. Biomarker potential of ST6GALNAC3 and ZNF660 promoter hypermethylation in prostate cancer tissue and liquid biopsies. Mol. Oncol. 2018, 12, 545–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, B.E.; Aguayo, A.; Martinez, B.; Rodriguez, F.; Marmolejo, M.; Svyryd, Y.; Luna, L.; Munoz, L.A.; Jimenez, M.A.; Sotomayor, M.; et al. Using Genetic and Epigenetic Markers to Improve Differential Diagnosis of Prostate Cancer and Benign Prostatic Hyperplasia by Noninvasive Methods in Mexican Patients. Clin. Genitourin Cancer 2018, 16, e867–e877. [Google Scholar] [CrossRef]
- Reis, I.M.; Ramachandran, K.; Speer, C.; Gordian, E.; Singal, R. Serum GADD45a methylation is a useful biomarker to distinguish benign vs malignant prostate disease. Br. J. Cancer 2015, 113, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Bastian, P.J.; Palapattu, G.S.; Yegnasubramanian, S.; Rogers, C.G.; Lin, X.; Mangold, L.A.; Trock, B.; Eisenberger, M.A.; Partin, A.W.; Nelson, W.G. CpG island hypermethylation profile in the serum of men with clinically localized and hormone refractory metastatic prostate cancer. J. Urol. 2008, 179, 529–534; discussion 534–535. [Google Scholar] [CrossRef] [Green Version]
- Dumache, R.; Puiu, M.; Minciu, R.; Bardan, R.; David, D.; Tudor, A.; Bumbacila, B. Retinoic acid receptor beta2 (RARbeta2): Nonivasive biomarker for distinguishing malignant versus benign prostate lesions from bodily fluids. Chirurgia (Bucur) 2012, 107, 780–784. [Google Scholar]
- Wang, L.; Lin, Y.L.; Li, B.; Wang, Y.Z.; Li, W.P.; Ma, J.G. Aberrant promoter methylation of the cadherin 13 gene in serum and its relationship with clinicopathological features of prostate cancer. J. Int. Med. Res. 2014, 42, 1085–1092. [Google Scholar] [CrossRef]
- Garzotto, M. The natural and treated history of prostate cancer. In Prostate Cancer; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Fine, S.W. Evolution in Prostate Cancer Staging: Pathology Updates From AJCC 8th Edition and Opportunities That Remain. Adv. Anat. Pathol. 2018, 25, 327–332. [Google Scholar] [CrossRef]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef]
- Gordetsky, J.; Epstein, J. Grading of prostatic adenocarcinoma: Current state and prognostic implications. Diagn. Pathol. 2016, 11, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Bergh, R.C.; van Casteren, N.J.; van den Broeck, T.; Fordyce, E.R.; Gietzmann, W.K.; Stewart, F.; MacLennan, S.; Dabestani, S.; Bellmunt, J.; Bolla, M.; et al. Role of Hormonal Treatment in Prostate Cancer Patients with Nonmetastatic Disease Recurrence After Local Curative Treatment: A Systematic Review. Eur. Urol. 2016, 69, 802–820. [Google Scholar] [CrossRef]
- Shapiro, D.; Tareen, B. Current and emerging treatments in the management of castration-resistant prostate cancer. Expert Rev. Anticancer 2012, 12, 951–964. [Google Scholar] [CrossRef]
- Reibenwein, J.; Pils, D.; Horak, P.; Tomicek, B.; Goldner, G.; Worel, N.; Elandt, K.; Krainer, M. Promoter hypermethylation of GSTP1, AR, and 14-3-3sigma in serum of prostate cancer patients and its clinical relevance. Prostate 2007, 67, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, R.J.; Dijkstra, S.; Smit, F.P.; Vandersmissen, J.; Van de Voorde, H.; Mulders, P.F.A.; van Oort, I.M.; Van Criekinge, W.; Schalken, J.A. Epigenetic markers in circulating cell-free DNA as prognostic markers for survival of castration-resistant prostate cancer patients. Prostate 2018, 78, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Bastian, P.J.; Palapattu, G.S.; Lin, X.; Yegnasubramanian, S.; Mangold, L.A.; Trock, B.; Eisenberger, M.A.; Partin, A.W.; Nelson, W.G. Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin. Cancer Res. 2005, 11, 4037–4043. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.L.; Deng, Q.K.; Wang, Y.H.; Fu, X.L.; Ma, J.G.; Li, W.P. Aberrant Protocadherin17 (PCDH17) Methylation in Serum is a Potential Predictor for Recurrence of Early-Stage Prostate Cancer Patients After Radical Prostatectomy. Med. Sci. Monit. 2015, 21, 3955–3960. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.K.; Lei, Y.G.; Lin, Y.L.; Ma, J.G.; Li, W.P. Prognostic Value of Protocadherin10 (PCDH10) Methylation in Serum of Prostate Cancer Patients. Med. Sci. Monit. 2016, 22, 516–521. [Google Scholar] [CrossRef]
- Lin, Y.L.; Li, Y.L.; Ma, J.G. Aberrant Promoter Methylation of Protocadherin8 (PCDH8) in Serum is a Potential Prognostic Marker for Low Gleason Score Prostate Cancer. Med. Sci. Monit. 2017, 23, 4895–4900. [Google Scholar] [CrossRef] [Green Version]
- Mahon, K.L.; Qu, W.; Lin, H.M.; Spielman, C.; Cain, D.; Jacobs, C.; Stockler, M.R.; Higano, C.S.; de Bono, J.S.; Chi, K.N.; et al. Serum Free Methylated Glutathione S-transferase 1 DNA Levels, Survival, and Response to Docetaxel in Metastatic, Castration-resistant Prostate Cancer: Post Hoc Analyses of Data from a Phase 3 Trial. Eur. Urol. 2018. [Google Scholar] [CrossRef]
- Adler, A.; Geiger, S.; Keil, A.; Bias, H.; Schatz, P.; deVos, T.; Dhein, J.; Zimmermann, M.; Tauber, R.; Wiedenmann, B. Improving compliance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in Germany. BMC Gastroenterol. 2014, 14, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.H.; Ida, H.; Lau, Q.C.; Goh, B.C.; Chieng, W.S.; Loh, M.; Ito, Y. Detection of promoter hypermethylation in serum samples of cancer patients by methylation-specific polymerase chain reaction for tumour suppressor genes including RUNX3. Oncol. Rep. 2007, 18, 1225–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Toung, J.M.; Jassowicz, A.F.; Vijayaraghavan, R.; Kang, H.; Zhang, R.; Kruglyak, K.M.; Huang, H.J.; Hinoue, T.; Shen, H.; et al. Targeted methylation sequencing of plasma cell-free DNA for cancer detection and classification. Ann. Oncol. 2018, 29, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, Q.; Kang, S.; Same, M.; Zhou, Y.; Sun, C.; Liu, C.C.; Matsuoka, L.; Sher, L.; Wong, W.H.; et al. CancerDetector: Ultrasensitive and non-invasive cancer detection at the resolution of individual reads using cell-free DNA methylation sequencing data. Nucleic Acids Res. 2018, 46, e89. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Li, Q.; Chen, Q.; Zhou, Y.; Park, S.; Lee, G.; Grimes, B.; Krysan, K.; Yu, M.; Wang, W.; et al. CancerLocator: Non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of cell-free DNA. Genome Biol. 2017, 18, 53. [Google Scholar] [CrossRef] [Green Version]
- Moss, J.; Magenheim, J.; Neiman, D.; Zemmour, H.; Loyfer, N.; Korach, A.; Samet, Y.; Maoz, M.; Druid, H.; Arner, P.; et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun. 2018, 9, 5068. [Google Scholar] [CrossRef] [Green Version]
- IvyGene Diagnostics: Early Cancer Confirmation Test. Available online: https://www.ivygenelabs.com/ivygene-technology/core-test/ (accessed on 21 July 2019).
- Hao, X.; Luo, H.; Krawczyk, M.; Wei, W.; Wang, W.; Wang, J.; Flagg, K.; Hou, J.; Zhang, H.; Yi, S.; et al. DNA methylation markers for diagnosis and prognosis of common cancers. Proc. Natl. Acad. Sci. USA 2017, 114, 7414–7419. [Google Scholar] [CrossRef] [Green Version]
- Daber, R.; Sukhadia, S.; Morrissette, J.J. Understanding the limitations of next generation sequencing informatics, an approach to clinical pipeline validation using artificial data sets. Cancer Genet. 2013, 206, 441–448. [Google Scholar] [CrossRef]
- Soto, J.; Rodriguez-Antolin, C.; Vallespin, E.; de Castro Carpeno, J.; Ibanez de Caceres, I. The impact of next-generation sequencing on the DNA methylation-based translational cancer research. Transl. Res. 2016, 169, 1–18.e11. [Google Scholar] [CrossRef] [Green Version]
- Sigalotti, L.; Covre, A.; Colizzi, F.; Fratta, E. Quantitative Methylation-Specific PCR: A Simple Method for Studying Epigenetic Modifications of Cell-Free DNA. Methods Mol. Biol. 2019, 1909, 137–162. [Google Scholar] [CrossRef]
Lung Cancer | ||||||
---|---|---|---|---|---|---|
Genes | Number of Cases/Controls | Sensitivity (%) | Specificity (%) | Sources | Methods | References |
APCme | 89 LC/50 AC | 47 | 100 | Serum/Plasma | qMSP | [33] |
p16INK4ame | 35 NSCLC/15 AC | 34 | 100 | Plasma | F-MSP | [34] |
MGMTme/p16INK4ame/RASSF1Ame/DAPKme/RARβme | 91 LC/109 BPD | 50 | 85 | Serum | MSP | [47] |
p16INK4ame/CDH13me | 61 NSCLC/15 BPD | 39 | 100 | Serum | MSP | [48] |
RASSF1Ame | 80 LC/50 AC a | 34 | 100 | Serum | MSP | [49] |
CDH13me/p16INK4ame/FHITme/ RARβme/RASSF1Ame/ZMYND10me | 63 NSCLC/36 BPD | 73 | 83 | Plasma | Two-step MSP | [50] |
KLK10me | 78 NSCLC/50 AC a | 38 | 96 | Plasma | MSP | [51] |
SFRP1me | 78 NSCLC/50 AC a | 28 | 96 | Plasma | MSP | [52] |
DLEC1me | 78 NSCLC/50 AC a | 36 | 96 | Plasma | MSP | [53] |
Kif1ame/DCCme/RARβ2me/NISCHme | 70 LC/80 BPD | 73 | 71 | Plasma | qMSP | [54] |
APCme/RASSF1Ame/CDH13me/ KLK10me/DLEC1me | 110 NSCLC b/50 AC a | 84 | 74 | Plasma | MSP | [55] |
APCme/CDH1me/MGMTme/DCCme RASSF1Ame/AIM1me | 76 LC/30 AC | 84 | 57 | Serum | qMSP | [56] |
SHOX2me | 188 LC/155 AC a,c | 60 | 90 | Plasma | qMSP | [37] |
TMEFF2me | 316 NSCLC/50 AC | 9 | 100 | Serum | Two-step MSP | [57] |
RARβ2me | 60 NSCLC/32 AC | 72 | 62 | Plasma | qMSP | [35] |
RASSF1Ame | 66 | 57 | ||||
SEPT9me | 70 LC/100 AC | 44 | 92 | Plasma | qMSP | [43] |
p14ARFme | 107 NSCLC/20 BPD | 25 | 95 | Plasma | Two-step MSP | [58] |
DCLK1me | 65 LC/95 AC | 49 | 92 | Plasma | qMSP | [42] |
SOX17me | 48 Operable NSCLC/49 AC | 56 | 98 | Plasma | qMSP | [59] |
74 Advanced NSCLC/49 AC | 36 | |||||
SHOX2me | 38 LC/31 BPD | 81 | 79 | Plasma | qMSP | [38] |
SHOX2me/PTGER4me | 50 LC/122 AC a | 67 90 | 90 73 | Plasma | Multiplex qMSP | [39] |
CDO1me/TAC1me/SOX17me | 150 NSCLC b/60 AC | 93 | 62 | Plasma | qMSP | [60] |
MARCH11me/HOXA9me/CDO1me/ UNCXme/PTGDRme/AJAP1me | 43 LUAD d/42 AC | 72 | 71 | Plasma | qMSP | [44] |
40 LUSC d/42 AC | 60 | |||||
NID2me | 46 NSCLC/30 BPD | 46 | 80 | Plasma | qMSP | [61] |
APCme | 73 LC e/103 AC e | 36 | 94 | Plasma | Multiplex qMSP | [36] |
FOXA1me | 72 | 74 | ||||
RARβ2me | 25 | 95 | ||||
RASSF1Ame | 22 | 98 | ||||
SOX17me | 38 | 95 | ||||
CDH13me/WT1me/CDKN2Ame/HOXA9me/ PITX2me/CALCAme/RASSF1Ame/DLEC1me | 39 LC/11 BPD | 72 | 91 | Plasma | qMSP | [62] |
APCme/RASSF1Ame | 129 LC/28 BDP | 38 | 93 | Plasma | qMSP | [45] |
FOXA1me/RARβ2me/RASSF1Ame/SOX17me | 102 LC f/136 AC f | 66 | 70 | Plasma | qMSP | [46] |
Breast Cancer | ||||||
---|---|---|---|---|---|---|
Genes | Number of Cases/Controls | Sensitivity (%) | Specificity (%) | Sources | Methods | References |
APCme/DAPkinaseme/RASSF1Ame | 34 BrC/20 AC + 8 Benign | 94 | 100 | Serum | MSP | [83] |
ATMme/RASSF1Ame | 50 BrC/14 AC | 36 | 100 | Plasma | qMSP | [84] |
RARβ2me/RASSF1Ame | 20 BrC/10 AC | 95 | 100 | Plasma a | MSP | [85] |
APCme/GSPT1me/RARβ2me/RASSF1Ame | 47 BrC/38 AC | 62 | 87 | Plasma | qMSP | [77] |
14-3-3-σme/ESR1meb | 106 BrC/74 AC | 81 | 55 | Serum | qMSP | [80] |
APCme/ESR1me/RASSF1Ame | 79 BrC/19 AC | 53 | 84 | Serum | qMSP | [86] |
RASSF1Ame | 61 BrC/29 AC | 18 | 100 | Plasma | MSP | [88] |
DAPK1me/RASSF1Ame | 26 BrC/16 AC 26 BrC/12 Benign | 96 | 92 | Serum | MSP | [81] |
57 | ||||||
APCme/BIN1me/BRCA1me/CST6me/GSTP1me/p16 (CDKN2A)me/p21 (CDKN1A)me/TIMP3me | 36 BrC/30 AC | 91.7 | - | Plasma | Mass Spectrometry | [89] |
RARβme/RASSF1Ame | 119 BrC/125 AC | 94.1 | 88.8 | Serum | Two-step qMSP | [78] |
GSTP1me/RARβ2me/RASSF1Ame | 101 BrC c/87 AC | 22 | 93 | Serum | One-step MSP | [90] |
SOX17me | 114 BrC/49 AC | 38 | 98 | Plasma | qMSP | [91] |
ITIH5me/DKK3me/RASSF1Ame | 138 BrC/135 AC | 67 | 69 | Serum | qMSP | [79] |
138 BrC/39 Benign | 82 | |||||
APCme RARβ2me | 121 BrC/66 AC + 79 Benign | 93.4 | 95.4 | Serum | MSP | [92] |
95.6 | 92.4 | |||||
SFNme/p16me/hMLH1me/HOXD13me/PCDHGB7me/RASSF1Ame | 125 BrC/104 Benign | 82.4 | 78.1 | Serum | qMSP | [87] |
125 BrC/104 AC | 79.6 | 72.4 | ||||
CDH1me/RASSF1Ame | 50 BrC/25 AC | 76 | 90 | Serum | MSP | [93] |
NBPF1me | 52 BrC c/30 AC | 67.1 d | 59.1 d | Plasma | MSP | [94] |
APCme | 108 BrC/103 AC | 32.4 | 94.2 | Plasma | Multiplex qMSP | [36] |
FOXA1me | 38.9 | 79.6 | ||||
RASSF1Ame | 19.4 | 100 | ||||
SCGB3A1me | 21.3 | 92.2 | ||||
APCme/FOXA1me/RASSF1Ame | 44 BrC/39 AC | 81.8 | 76.9 | Plasma | Multiplex qMSP | [82] |
PER1me/NKX2-6me/SPAG6me | 111 BrC/14 Benign | 58 | 79 | Plasma | Pyrosequencing | [95] |
Colorectal Cancer | ||||||
---|---|---|---|---|---|---|
Genes | Number of Cases/Controls | Sensitivity (%) | Specificity (%) | Sources | Methods | References |
p16INK4ame | 52 CRC/44 AC a | 27 | 100 | Serum | MSP | [122] |
APCme/hMLH1me/HLTFme | 49 CRC/41 AC | 57 | 90 | Serum | qMSP | [123] |
ALX4me | 30 CRC/30 AC | 83 | 70 | Serum | qMSP | [124] |
HPP1me | 38 CRC/20 AC | 49 | 100 | Serum | qMSP | [125] |
HLTFme | 67 | |||||
hMLH1me | 47 | |||||
SEPT9me | 133 CRC/179 AC | 69 | 86 | Plasma | qMSP | [126] |
TMEFF2me | 65 | 69 | ||||
NGFRme | 51 | 84 | ||||
RASSF1Ame | 45 CRC/30 AC | 29 | 100 | Serum | MSP | [127] |
VIMme | 81 CRC/110 AC | 59 | 93 | Plasma | Methyl BEAMing | [128] |
APCme/MGMTme/RASSF2Ame/ WIF1me | 243 CRC b/276 AC | 87 | 92 | Plasma | MSP | [118] |
64 Adenoma/276 AC | 75 | |||||
ALX4me/SEPT9me/TMEFF2me | 182 CRC/170 AC | 81 | 90 | Plasma | Multiplex qMSP | [129] |
NEUROG1me | 97 CRC b/45 AC | 61 | 91 | Serum | qMSP | [130] |
TFPI2me | 215 CRC/20 AC | 18 | 100 | Serum | qMSP | [131] |
DLC1me | 85 CRC/45 AC | 42 | 91 | Serum | MSP | [132] |
CYCD2me/HIC1me/PAX5me/ RASSF1Ame/RB1me/SRBCme | 30 CRC b/30 AC | 84 | 68 | Plasma | Microarray | [133] |
HIC1me/MDG1me/RASSF1Ame | 30 Adenoma/30 AC | 55 | 65 | |||
SMAD4me | 60 CRC/100 AC a | 52 | 64 | Plasma | MSP-SSCP | [134] |
FHITme | 50 | 84 | ||||
DAPK1me | 50 | 74 | ||||
APCme | 57 | 86 | ||||
CDH1me | 60 | 84 | ||||
SDC2me | 131 CRC/125 AC | 87 | 95 | Serum | qMSP | [135] |
TAC1me/SEPT9me | 26 CRC c/26 AC | 73 | 92 | Serum | qMSP | [136] |
NPYme/PENKme/WIF1me | 32 CRC/161 AC | 87 59 | 80 95 | Serum | Multiplex qMSP | [137] |
CAHMme | 73 CRC/74 AC | 55 | 93 | Plasma | qMSP | [138] |
73 Adenoma/74 AC | 4 | |||||
PPP1R3Cme/EFHD1me | 120 CRC/96 AC | 53 (2 genes) | 96 (2 genes) | Plasma | MSP | [139] |
90 (at least 1 gene) | 64 (at least 1 gene) | |||||
SYNE1me/FOXE1me | 66 CRC/140 AC | 58 | 91 | Plasma | Multiplex qMSP | [140] |
GATA5me/SFRP2me | 57 CRC/47 AC | 43 | 91 | Plasma | MSP | [141] |
30 Adenoma/47 AC | 27 | |||||
BCAT1me/IKZF1me | 74 CRC/144 AC | 77 | 92 | Plasma | qMSP | [142] |
BCAT1me/IKZF1me | 129 CRC/450 AC | 66 | 95 | Plasma | qMSP | [120] |
338 Advanced Adenoma/450 AC | 6 | |||||
346 Non-Advanced Adenoma/450 AC | 7 | |||||
BCAT1me/IKZF1me | 66 CRC/1315 AC a | 62 | 92 | Plasma | qMSP | [121] |
170 Advanced Adenoma | 9 | --- | ||||
278 Non-Advanced Adenoma | 9 | --- | ||||
ALX4me | 25 CRC/25 AC | 68 | 88 | Serum | MSP | [143] |
FGF5me | 20 CRC/40 AC | 85 | 82 | Plasma | qMSP | [144] |
GRASPme | 44 CRC/44 AC | 55 | 93 | Plasma | qMSP | [145] |
IRF4me | 22 CRC/24 AC | 59 | 96 | |||
PDX1me | 20 CRC/20 AC | 45 | 70 | |||
SDC2me | 44 CRC/44 AC | 59 | 84 | |||
SEPT9me | 44 CRC/44 AC | 59 | 95 | |||
SOX21me | 20 CRC/20 AC | 85 | 50 | |||
SPG20me | 37 CRC/37 AC | 81 | 97 | |||
SEPT9me | Meta-analysis | 78 (1/3) | 84 (1/3) | Plasma/ Serum | --- | [113] |
73 (2/3) | 96 (2/3) | |||||
ALX4me/BMP3me/NPTX2me/RARβme/SDC2me/SEPT9me/VIMme | 193 CRC/102 AC | 91 | 73 | Plasma | Two-step qMSP | [146] |
SFRP1me/SFRP2me/SDC2me/ PRIMA1me | 47 CRC/37 AC | 92 | 97 | Plasma | qMSP | [119] |
37 Adenoma/37 AC | 89 | 87 | ||||
BMP3me | 45 CRC/50 AC | 40 | 94 | Plasma | BS-HRM | [147] |
TWIST1me | 18 CRC/25 AC | 44 | 92 | Serum | Multiplex ddMSP | [117] |
70 Advanced Adenoma/25 AC | 30 | |||||
25 Non-Advanced Adenoma/25 AC | 36 | |||||
SEPT9me | 98 CRC/253 AC | 61 | 98 | Plasma | qMSP | [117] |
101 Adenoma/253 AC | 8 | |||||
APCme | 72 CRC d/103 AC d | 21 | 94 | Plasma | Multiplex qMSP | [36] |
FOXA1me | 50 | 88 | ||||
RARβ2me | 17 | 95 | ||||
RASSF1Ame | 14 | 99 | ||||
SCGB3A1me | 26 | 90 | ||||
SEPT9me | 11 | 100 | ||||
SOX17me | 24 | 90 | ||||
SFRP2me | 62 CRC/55 AC | 69 | 87 | Serum | qMSP | [148] |
SEPT9 me/SDC2me | 117 CRC/166 AC | 88.9 | 92.9 | Plasma | qMSP | [149] |
C9orf50me/KCNQ5me/CLIP4me | 143 CRC/91 AC | 91 | 99 | Plasma | ddMSP | [150] |
SEPT9me/SOX17me | 100 CRC e/136 AC e | 12 | 100 | Plasma | Multiplex qMSP | [46] |
Prostate Cancer | ||||||
---|---|---|---|---|---|---|
Genes | Number of Cases/Controls | Sensitivity (%) | Specificity (%) | Sources | Methods | References |
GSTP1me/PTGS2me/RPRMme/TIG1me | 168 PCa/42 BPH | 47 | 93 | Serum | qMSP | [172] |
MDR1me | 192 PCa/35 AC a | 32 | 100 | Serum | qMSP | [181] |
GSTP1me/RASSF1Ame/RARβ2me | 83 PCa/40 AC | 29 | 100 | Serum | MSP | [173] |
GSTP1me | 80 PCa/51 AC a | 26 | 80 | Plasma | qMSP | [175] |
RASSF2Ame | 28 | |||||
HIST1H4Kme | 17 | |||||
TFAP2Eme | 12 | |||||
GSTP1me | Meta-analysis | 40 | 90 | Plasma/Serum | Non-qMSP | [174] |
36 | 96 | qMSP | ||||
RARβ2m | 91 PCa/94 BPH | 93 | 89 | Serum | qMSP | [182] |
GSTP1me | 31 PCa/44 BPH | 93 | 89 | Plasma | MSP | [176] |
CDH13me | 98 PCa/47 AC b | 45 | 100 | Serum | MSP | [183] |
GADD45ame | 34 PCa/48 BPH | 38 | 98 | Serum | Pyrosequencing | [180] |
MCAMme/ERαme/ERβme | 84 PCa/30 AC | 75 | 70 | Serum | qMSP | [177] |
CCDC181me/ST6GALNAC3me/HAPLN3me | 27 PCa/10 BPH | 67 | 100 | Serum | ddMSP | [178] |
ZNF660me | 22 | |||||
FOXA1me/RARβ2m/RASSF1Ame/GSTP1me | 121 PCa/136 AC | 72 | 72 | Plasma | Multiplex qMSP | [46] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constâncio, V.; Nunes, S.P.; Henrique, R.; Jerónimo, C. DNA Methylation-Based Testing in Liquid Biopsies as Detection and Prognostic Biomarkers for the Four Major Cancer Types. Cells 2020, 9, 624. https://doi.org/10.3390/cells9030624
Constâncio V, Nunes SP, Henrique R, Jerónimo C. DNA Methylation-Based Testing in Liquid Biopsies as Detection and Prognostic Biomarkers for the Four Major Cancer Types. Cells. 2020; 9(3):624. https://doi.org/10.3390/cells9030624
Chicago/Turabian StyleConstâncio, Vera, Sandra P. Nunes, Rui Henrique, and Carmen Jerónimo. 2020. "DNA Methylation-Based Testing in Liquid Biopsies as Detection and Prognostic Biomarkers for the Four Major Cancer Types" Cells 9, no. 3: 624. https://doi.org/10.3390/cells9030624
APA StyleConstâncio, V., Nunes, S. P., Henrique, R., & Jerónimo, C. (2020). DNA Methylation-Based Testing in Liquid Biopsies as Detection and Prognostic Biomarkers for the Four Major Cancer Types. Cells, 9(3), 624. https://doi.org/10.3390/cells9030624