Nicotine in Senescence and Atherosclerosis
Abstract
:1. Introduction
2. Tobacco Use
2.1. Tobacco and Nicotine
2.2. Factors Influencing Nicotine Metabolism
2.3. Tobacco and Nicotine in Animal Models
3. The Cardiovascular System
3.1. VSMC Phenotypic Switch
3.2. Nicotine in VSMC Biology and Phenotypic Switch
4. Senescence Overview
Cigarette Smoke and Nicotine in Senescence
5. Atherosclerosis Overview
5.1. Cell Types Involved in Atherosclerosis
5.2. VSMC Phenotypic Switch. in Atherosclerosis: The Role of MMPs
5.3. Nicotine Interaction with Angiotensin II
5.4. Tobacco and Nicotine in Atherosclerosis: Cell and Animal Models
5.5. Cigarette Smoke
5.6. Nicotine Vapors
5.7. Additional Nicotine Studies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Erusalimsky, J.D.; Kurz, D.J. Cellular senescence in vivo: Its relevance in ageing and cardiovascular disease. Exp. Gerontol. 2005, 40, 634–642. [Google Scholar] [CrossRef]
- Childs, B.G.; Durik, M.; Baker, D.J.; van Deursen, J.M. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat. Med. 2015, 21, 1424–1435. [Google Scholar] [CrossRef] [Green Version]
- Walters, M.S.; De, B.P.; Salit, J.; Buro-Auriemma, L.J.; Wilson, T.; Rogalski, A.M.; Lief, L.; Hackett, N.R.; Staudt, M.R.; Tilley, A.E.; et al. Smoking accelerates aging of the small airway epithelium. Respir. Res. 2014, 15, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchkonia, T.; Zhu, Y.; van Deursen, J.; Campisi, J.; Kirkland, J.L. Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. J. Clin. Invest. 2013, 123, 966–972. [Google Scholar] [CrossRef] [Green Version]
- Ohtani, N.; Takahashi, A.; Mann, D.J.; Hara, E. Cellular senescence: A double-edged sword in the fight against cancer. Exp. Derm. 2012, 21 (Suppl. S1), 1–4. [Google Scholar] [CrossRef]
- Starke, R.; Ali, M.; Jabbour, P.; Tjoumakaris, S.; Gonzalez, F.; Hasan, D.; Rosenwasser, R.; Owens, G.; Koch, W.; Dumont, A. Cigarette Smoke Modulates Vascular Smooth Muscle Phenotype: Implications for Carotid and Cerebrovascular Disease. PLoS ONE 2013, 8, e71954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshiyama, S.; Chen, Z.; Okagaki, T.; Kohama, K.; Nasu-Kawaharada, R.; Izumi, T.; Ohshima, N.; Nagai, T.; Nakamura, A. Nicotine exposure alters human vascular smooth muscle cell phenotype from a contractile to a synthetic type. Atherosclerosis 2014, 237, 464–470. [Google Scholar] [CrossRef]
- Virmani, R.; Kolodgie, F.D.; Burke, A.P.; Farb, A.; Schwartz, S.M. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1262–1275. [Google Scholar] [CrossRef] [Green Version]
- Gardner, S.; Humphry, M.; Bennett, M.; Clarke, M. Senescent Vascular Smooth Muscle Cells Drive Inflammation Through an Interleukin-1a-Dependent Senescence Associated Secretory Phenotype. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1963–1974. [Google Scholar] [CrossRef] [Green Version]
- The Health Consequences of Smoking-50 Years of Progress: A Report of the Surgeon General. Available online: http://www.surgeongeneral.gov/library/reports/50-years-of-progress/ (accessed on 10 March 2020).
- Creamer, M.; Wang, T.; Babb, S.; Cullen, K.; Day, H.; Willis, G.; Jamal, A.; Neff, L. Tobacco Product Use and Cessation Indicators Among Adults—United States, 2018. Morb. Mortal. Wkly. Rep. 2019, 68, 1013–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smoking & Tobacco Use: Secondhand Smoke. Available online: https://www.cdc.gov/tobacco/basic_information/secondhand_smoke/index.htm (accessed on 10 March 2020).
- Tobacco 21. Available online: https://tobacco21.org/ (accessed on 19 February 2020).
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef] [PubMed]
- Parris, B.; O’Farrell, H.; Fong, K.; Yang, I. Chronic obstructive pulmonary disease (COPD) and lung cancer: Common pathways for pathogenesis. J. Thorac. Dis. 2019, 11, S2155–S2172. [Google Scholar] [CrossRef] [PubMed]
- Smoking & Tobacco Use: Economic Trends in Tobacco. Available online: https://www.cdc.gov/tobacco/data_statistics/fact_sheets/economics/econ_facts/index.htm (accessed on 10 March 2020).
- Chaiton, M.; Diemert, L.; Cohen, J.; Bondy, S.; Selby, P.; Philipneri, A.; Schwartz, R. Estimating the number of quit attempts it takes to quit smoking successfully in a longitudinal cohort of smokers. BMJ Open 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smoking & Tobacco Use: Quitting Smoking. Available online: https://www.cdc.gov/tobacco/data_statistics/fact_sheets/cessation/quitting/index.htm (accessed on 10 March 2020).
- Current Cigarette Smoking Among Adults in the United States; CDC: Atlanta, GA, USA, 2020. Available online: https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/index.htm (accessed on 10 March 2020).
- Benowitz, N.L. Pharmacology of nicotine: Addiction, smoking-induced disease, and therapeutics. Annu. Rev. Pharmacol. Toxicol. 2009, 49, 57–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagerström, K.; Hughes, J. Varenicline in the treatment of tobacco dependence. Neuropsychiatr. Dis. Treat. 2008, 4, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Tobacco, Nicotine, and E-Cigarettes: What are treatments for tobacco dependence? Available online: https://www.drugabuse.gov/publications/research-reports/tobacco-nicotine-e-cigarettes/what-are-treatments-tobacco-dependence (accessed on 10 March 2020).
- Benowitz, N.L.; Hukkanen, J.; Jacob, P. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb. Exp. Pharmacol. 2009, 29–60. [Google Scholar] [CrossRef] [Green Version]
- Govind, A.; Vezina, P.; Green, W. Nicotine-induced upregulation of nicotinic receptors: Underlying mechanisms and relevance to nicotine addiction. Biochem. Pharmacol. 2009, 78, 756–765. [Google Scholar] [CrossRef] [Green Version]
- Karlin, A. Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 2002, 3, 102–114. [Google Scholar] [CrossRef]
- Campello, H.; Del Villar, S.; Honraedt, A.; Minguez, T.; Oliveira, A.; Ranaghan, K.; Shoemark, D.; Bermudez, I.; Gotti, C.; Sessions, R.; et al. Unlocking Nicotinic Selectivity via Direct C-H Functionalization of (-)-Cytisine. Chem 2018, 4, 1710–1725. [Google Scholar] [CrossRef] [Green Version]
- Baumeister, R.F. Addiction, cigarette smoking, and voluntary control of action: Do cigarette smokers lose their free will? Addict Behav. Rep. 2017, 5, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Singer, S.; Rossi, S.; Verzosa, S.; Hashim, A.; Lonow, R.; Cooper, T.; Sershen, H.; Lajtha, A. Nicotine-induced changes in neurotransmitter levels in brain areas associated with cognitive function. Neurochem. Res. 2004, 29, 1779–1792. [Google Scholar] [CrossRef] [PubMed]
- McCorry, L. Physiology of the autonomic nervous system. Am. J. Pharmacol. Educ. 2007, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, E.D.; Conners, C.K.; Sparrow, E.; Hinton, S.C.; Erhardt, D.; Meck, W.H.; Rose, J.E.; March, J. Nicotine effects on adults with attention-deficit/hyperactivity disorder. Psychopharmacology 1996, 123, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Barreto, G.; Iarkov, A.; Moran, V. Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson’s disease. Front. Aging Neurosci. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Gandelman, J.; Newhouse, P.; Taylor, W. Nicotine and networks: Potential for enhancement of mood and cognition in late-life depression. Neurosci. Biobehav. Rev. 2018, 84, 289–298. [Google Scholar] [CrossRef]
- Gonzales, D.; Rennard, S.I.; Nides, M.; Oncken, C.; Azoulay, S.; Billing, C.B.; Watsky, E.J.; Gong, J.; Williams, K.E.; Reeves, K.R.; et al. Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: A randomized controlled trial. JAMA 2006, 296, 47–55. [Google Scholar] [CrossRef]
- Jorenby, D.E.; Hays, J.T.; Rigotti, N.A.; Azoulay, S.; Watsky, E.J.; Williams, K.E.; Billing, C.B.; Gong, J.; Reeves, K.R.; Group, V.P.S. Efficacy of varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs placebo or sustained-release bupropion for smoking cessation: A randomized controlled trial. JAMA 2006, 296, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Benowitz, N.; Porchet, H.; Sheiner, L.; Jacob, P. Nicotine absorption and cardiovascular effects with smokeless tobacco use—Comparison with cigarettes and nicotine gum. Clin. Pharmacol. Ther. 1988, 44, 23–28. [Google Scholar] [CrossRef]
- Matta, S.; Balfour, D.; Benowitz, N.; Boyd, R.; Buccafusco, J.; Caggiula, A.; Craig, C.; Collins, A.; Damaj, M.; Donny, E.; et al. Guidelines on nicotine dose selection for in vivo research. Psychopharmacology 2007, 190, 269–319. [Google Scholar] [CrossRef]
- Goniewicz, M.L.; Kuma, T.; Gawron, M.; Knysak, J.; Kosmider, L. Nicotine levels in electronic cigarettes. Nicotine Tob. Res. 2013, 15, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hukkanen, J.; Jacob, P.; Benowitz, N. Metabolism and disposition kinetics of nicotine. Pharmacol. Rev. 2005, 57, 79–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benowitz, N.; Jacob, P.; Jones, R.; Rosenberg, J. Interindividual variability in the metabolism and cardiovascular effects of nicotine in man. J. Pharmacol. Exp. Ther. 1982, 221, 368–372. [Google Scholar] [PubMed]
- Benedek, I.; Blouin, R.; Mcnamara, P. Influence of smoking on serum-protein composition and the protein-binding of drugs. J. Pharmacol. Pharmacol. 1984, 36, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Urakawa, N.; Nagata, T.; Kudo, K.; Kimura, K.; Imamura, T. Simultaneous determination of nicotine and cotinine in various human tissues using capillary gas-chromatography spectrometry. Int. J. Leg. Med. 1994, 106, 232–236. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Jacob, P. Nicotine renal excretion rate influences nicotine intake during cigarette smoking. J. Pharmacol. Exp. 1985, 234, 153–155. [Google Scholar]
- Byrd, G.; Chang, K.; Greene, J.; Debethizy, J. Evidence for urinary-excretion of glucuronide conjugates of nicotine, cotinine, and trans-3′-hydroxycotinine in smokers. Drug Metab. Dispos. 1992, 20, 192–197. [Google Scholar]
- Benowitz, N.L.; Jacob, P. Metabolism of nicotine to cotinine studied by a dual stable isotope method. Clin. Pharmacol. Ther. 1994, 56, 483–493. [Google Scholar] [CrossRef]
- Ahijevych, K.L.; Tyndale, R.F.; Dhatt, R.K.; Weed, H.G.; Browning, K.K. Factors influencing cotinine half-life during smoking abstinence in African American and Caucasian women. Nicotine Tob. Res. 2002, 4, 423–431. [Google Scholar] [CrossRef]
- Amiri, P.; Mohammadzadeh-Naziri, K.; Abbasi, B.; Cheraghi, L.; Jalali-Farahani, S.; Momenan, A.A.; Amouzegar, A.; Hadaegh, F.; Azizi, F. Smoking habits and incidence of cardiovascular diseases in men and women: Findings of a 12 year follow up among an urban Eastern-Mediterranean population. BMC Public Health 2019, 19, 1042. [Google Scholar] [CrossRef] [Green Version]
- Huxley, R.; Woodward, M. Cigarette smoking as a risk factor for coronary heart disease in women compared with men: A systematic review and meta-analysis of prospective cohort studies. Lancet 2011, 378, 1297–1305. [Google Scholar] [CrossRef]
- Nilsson, P.; Nilsson, J.; Berglund, G. Population-attributable risk of coronary heart disease risk factors during long-term follow-up: The Malmo Preventive Project. J. Intern. Med. 2006, 260, 134–141. [Google Scholar] [CrossRef]
- Schnohr, P.; Jensen, J.; Scharling, H.; Nordestgaard, B. Coronary heart disease risk factors ranked by importance for the individual and community—21 year follow-up of 12 000 men and women from The Copenhagen City Heart Study. Eur. Heart J. 2002, 23, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Ahijevych, K.; Garrett, B. The Role of Menthol in Cigarettes as a Reinforcer of Smoking Behavior. Nicotine Tob. Res. 2010, 12, S110–S116. [Google Scholar] [CrossRef] [Green Version]
- Hukkanen, J.; Jacob, P.; Benowitz, N.L. Effect of grapefruit juice on cytochrome P450 2A6 and nicotine renal clearance. Clin Pharmacol. Ther. 2006, 80, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Pomerleau, O.F.; Pomerleau, C.S. Dexamethasone attenuation of the cortisol response to nicotine in smokers. Psychopharmacology 1990, 101, 284–286. [Google Scholar] [CrossRef] [Green Version]
- Foth, H.; Walther, U.I.; Kahl, G.F. Increased hepatic nicotine elimination after phenobarbital induction in the conscious rat. Toxicol. Appl. Pharmacol. 1990, 105, 382–392. [Google Scholar] [CrossRef]
- Ferguson, C.S.; Miksys, S.; Palmour, R.M.; Tyndale, R.F. Differential effects of nicotine treatment and ethanol self-administration on CYP2A6, CYP2B6 and nicotine pharmacokinetics in African green monkeys. J. Pharmacol. Exp. Ther. 2012, 343, 628–637. [Google Scholar] [CrossRef]
- Benowitz, N.; Lessov-Schlaggar, C.; Swan, G.; Jacob, P. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin. Pharmacol. Ther. 2006, 79, 480–488. [Google Scholar] [CrossRef]
- Choi, S.Y.; Koh, K.H.; Jeong, H. Isoform-specific regulation of cytochromes P450 expression by estradiol and progesterone. Drug Metab. Dispos. 2013, 41, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Benowitz, N.; Swan, G.; Lessov, C.; Jacob, P. Oral contraceptives induce CYP2A6 activity and accelerate nicotine metabolism. Clin. Pharmacol. Ther. 2004, 75, P36. [Google Scholar] [CrossRef]
- Ginzel, K.; Maritz, G.; Marks, D.; Neuberger, M.; Pauly, J.; Polito, J.; Schulte-Hermann, R.; Slotkin, T. Nicotine for the fetus, the infant and the adolescent? J. Health Psychol. 2007, 12, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, J.S.; Gaillard, R.; West, J.; McEachan, R.R.C.; Wright, J.; Voerman, E.; Felix, J.F.; Tilling, K.; Lawlor, D.A. Associations of maternal quitting, reducing, and continuing smoking during pregnancy with longitudinal fetal growth: Findings from Mendelian randomization and parental negative control studies. PLoS Med. 2019, 16, e1002972. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Iwata, K.; Yamamoto, T.; Funae, Y.; Yoshida, T.; Kuroiwa, Y. Nicotine metabolism in liver microsomes from rats with acute hepatitis or cirrhosis. Drug Metab. Dispos. 1998, 26, 36–41. [Google Scholar] [PubMed]
- Langmann, P.; Bienert, A.; Zilly, M.; Väth, T.; Richter, E.; Klinker, H. Influence of smoking on cotinine and caffeine plasma levels in patients with alcoholic liver cirrhosis. Eur. J. Med. Res. 2000, 5, 217–221. [Google Scholar]
- Perry, J.; Alexander, M.; Staab, E.; Mccartney, W.; Bateman, W.; Mattern, W. Assessment of recoverable renal-function—A comparison of 2 radiopharmaceuticals. Investig. Radiol. 1984, 19, S35. [Google Scholar] [CrossRef]
- Molander, L.; Hansson, A.; Lunell, E.; Alainentalo, L.; Hoffmann, M.; Larsson, R. Pharmacokinetics of nicotine in kidney failure. Clin. Pharmacol. Ther. 2000, 68, 250–260. [Google Scholar] [CrossRef]
- Yoshida, R.; Nakajima, M.; Watanabe, Y.; Kwon, J.T.; Yokoi, T. Genetic polymorphisms in human CYP2A6 gene causing impaired nicotine metabolism. Br. J. Clin. Pharmacol. 2002, 54, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, R.; Nakajima, M.; Nishimura, K.; Tokudome, S.; Kwon, J.T.; Yokoi, T. Effects of polymorphism in promoter region of human CYP2A6 gene (CYP2A6*9) on expression level of messenger ribonucleic acid and enzymatic activity in vivo and in vitro. Clin. Pharmacol. Ther. 2003, 74, 69–76. [Google Scholar] [CrossRef]
- Fukami, T.; Nakajima, M.; Yamanaka, H.; Fukushima, Y.; McLeod, H.; Yokoi, T. A novel duplication type of CYP2A6 gene in African-American population. Drug Metab. Dispos. 2007, 35, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Schoedel, K.; Hoffmann, E.; Rao, Y.; Sellers, E.; Tyndale, R. Ethnic variation in CYP2A6 and association of genetically slow nicotine metabolism and smoking in adult Caucasians. Pharmacogenetics 2004, 14, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Shimada, T.; Yamazaki, H.; Guengerich, F. Ethnic-related differences in coumarin 7-hydroxylation activities catalyzed by cytochrome P4502A6 in liver microsomes of Japanese and Caucasian populations. Xenobiotica 1996, 26, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.M.; McCarthy, D.M.; Schatschneider, C.; Trupiano, M.X.; Jones, S.K.; Kalluri, A.; Bhide, P.G. Effects of Developmental Nicotine Exposure on Frontal Cortical GABA-to-Non-GABA Neuron Ratio and Novelty-Seeking Behavior. Cereb Cortex 2019. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, D.; Morgan, T.; Lowe, S.; Williamson, M.; Spencer, T.; Biederman, J.; Bhide, P. Nicotine exposure of male mice produces behavioral impairment in multiple generations of descendants. PLoS Biol. 2018, 16, e2006497. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Spencer, T.; Biederman, J.; Bhide, P. Attention and working memory deficits in a perinatal nicotine exposure mouse model. PLoS ONE 2018, 13, e0198064. [Google Scholar] [CrossRef] [Green Version]
- Szostak, J.; Wong, E.T.; Titz, B.; Lee, T.; Wong, S.K.; Low, T.; Lee, K.M.; Zhang, J.; Kumar, A.; Schlage, W.K.; et al. A 6-month systems toxicology inhalation study in ApoE−/− mice demonstrates reduced cardiovascular effects of E-vapor aerosols compared to cigarette smoke. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H604–H631. [Google Scholar] [CrossRef]
- Phillips, B.; Veljkovic, E.; Boue, S.; Schlage, W.; Vuillaume, G.; Martin, F.; Titz, B.; Leroy, P.; Buettner, A.; Elamin, A.; et al. An 8-Month Systems Toxicology Inhalation/Cessation Study in Apoe(-/-) Mice to Investigate Cardiovascular and Respiratory Exposure Effects of a Candidate Modified Risk Tobacco Product, THS 2.2, Compared With Conventional Cigarettes (vol 149, pg 411, 2016). Toxicol. Sci. 2016, 151, 462–464. [Google Scholar] [CrossRef]
- Le Foll, B.; Wertheim, C.; Goldberg, S. High Reinforcing Efficacy of Nicotine in Non-Human Primates. PLoS ONE 2007, 2, e230. [Google Scholar] [CrossRef]
- [Anonymous]. Genome sequence of the nematode C. elegans: A platform for investigating biology (vol 282, pg 2012, 1998). Science 1999, 285, 1493. [Google Scholar]
- Kamath, R.; Fraser, A.; Dong, Y.; Poulin, G.; Durbin, R.; Gotta, M.; Kanapin, A.; Le Bot, N.; Moreno, S.; Sohrmann, M.; et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003, 421, 231–237. [Google Scholar] [CrossRef]
- Havel, P.; Kievit, P.; Comuzzie, A.; Bremer, A. Use and Importance of Nonhuman Primates in Metabolic Disease Research: Current State of the Field. Ilar J. 2017, 58, 251–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, D.; Bjercke, R.; Langone, J.; Strobel, H. Metabolism of nicotine by rat-liver cytochromes-P-450—Assessment utilizing monoclonal-antibodies to nicotine and cotinine. Drug Metab. Dispos. 1991, 19, 804–808. [Google Scholar] [PubMed]
- Seaton, M.; Vesell, E. Variables affecting nicotine metabolism. Pharmacol. Ther. 1993, 60, 461–500. [Google Scholar] [CrossRef]
- Brynildsen, J.K.; Najar, J.; Hsu, L.M.; Vaupel, D.B.; Lu, H.; Ross, T.J.; Yang, Y.; Stein, E.A. A novel method to induce nicotine dependence by intermittent drug delivery using osmotic minipumps. Pharmacol. Biochem. Behav. 2016, 142, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Giotopoulou, G.A.; Stathopoulos, G.T. Effects of Inhaled Tobacco Smoke on the Pulmonary Tumor Microenvironment. Adv. Exp. Med. Biol. 2020, 1225, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Schupp, J.C.; Prasse, A.; Erythropel, H.C. E-Cigarettes—Operating Principle, Ingredients, and Associated Acute Lung Injury. Pneumologie 2020, 74, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef]
- Asthana, S.; Labani, S.; Kailash, U.; Sinha, D.N.; Mehrotra, R. Association of Smokeless Tobacco Use and Oral Cancer: A Systematic Global Review and Meta-Analysis. Nicotine Tob. Res. 2019, 21, 1162–1171. [Google Scholar] [CrossRef]
- Flach, S.; Maniam, P.; Manickavasagam, J. E-cigarettes and head and neck cancers: A systematic review of the current literature. Clin. Otolaryngol. 2019, 44, 749–756. [Google Scholar] [CrossRef]
- A Global Brief on Hypertension: Silent Killer, Global Public Health Crisis. Available online: http://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension.pdf (accessed on 10 March 2020).
- Johnson, W.; Nguyen, M.; Patel, R. Hypertension Crisis in the Emergency Department. Cardiol. Clin. 2012, 30, 533–543. [Google Scholar] [CrossRef]
- Hurtubise, J.; McLellan, K.; Durr, K.; Onasanya, O.; Nwabuko, D.; Ndisang, J. The Different Facets of Dyslipidemia and Hypertension in Atherosclerosis. Curr. Atheroscler. Rep. 2016, 18. [Google Scholar] [CrossRef] [PubMed]
- Isakson, B.E.; Ramos, S.I.; Duling, B.R. Ca2+ and inositol 1,4,5-trisphosphate-mediated signaling across the myoendothelial junction. Circ. Res. 2007, 100, 246–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodenough, D.A.; Paul, D.L. Gap junctions. Cold Spring Harb Perspect. Biol. 2009, 1, a002576. [Google Scholar] [CrossRef] [PubMed]
- Gabriels, J.E.; Paul, D.L. Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circ. Res. 1998, 83, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Little, T.L.; Beyer, E.C.; Duling, B.R. Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am. J. Physiol. 1995, 268, H729–H739. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, J.; Bird, I.; Magness, R. Effects of pulsatile shear stress on signaling mechanisms controlling nitric oxide production, endothelial nitric oxide synthase phosphorylation, and expression in ovine fetoplacental artery endothelial cells. Endothel. -J. Endothel. Cell Res. 2005, 12, 21–39. [Google Scholar] [CrossRef]
- Forster, C.; Clark, H.; Ross, M.; Iadecola, C. Inducible nitric oxide synthase expression in human cerebral infarcts. Acta Neuropathol. 1999, 97, 215–220. [Google Scholar] [CrossRef]
- Bradley, K.; Buxton, I.; Barber, J.; McGaw, T.; Bradley, M. Nitric oxide relaxes human myometrium by a cGMP-independent mechanism. Am. J. Physiol. Cell Physiol. 1998, 275, C1668–C1673. [Google Scholar] [CrossRef]
- Denninger, J.; Marletta, M. Guanylate cyclase and the (NO)-N-./cGMP signaling pathway. Biochim. Biophys. Acta Bioenerg. 1999, 1411, 334–350. [Google Scholar] [CrossRef] [Green Version]
- Severina, I. Role of soluble guanylate cyclase in the molecular mechanism underlying the physiological effects of nitric oxide. Biochemistry 1998, 63, 794–801. [Google Scholar]
- Adachi, T.; Weisbrod, R.M.; Pimentel, D.R.; Ying, J.; Sharov, V.S.; Schöneich, C.; Cohen, R.A. S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat. Med. 2004, 10, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Giuffre, A.; Sarti, P.; DItri, E.; Buse, G.; Soulimane, T.; Brunori, M. On the mechanism of inhibition of cytochrome c oxidase by nitric oxide. J. Biol. Chem. 1996, 271, 33404–33408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, J.; Rauhöft, C.; Dilley, R.J.; Agrotis, A.; Jennings, G.L.; Bobik, A. Angiotensin-converting enzyme inhibition abolishes medial smooth muscle PDGF-AB biosynthesis and attenuates cell proliferation in injured carotid arteries: Relationships to neointima formation. Circulation 1997, 96, 1631–1640. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Chen, N.; Li, X.; Lin, L.; Chen, X. MiR-19a modulates hypoxia-mediated cell proliferation and migration via repressing PTEN in human pulmonary arterial smooth muscle. Life Sci. 2019, 239, 116928. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Fang, J.; Liu, Q.; Wang, Y.; Zhang, Z. Role of ROS-TRPM7-ERK1/2 axis in high concentration glucose-mediated proliferation and phenotype switching of rat aortic vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 2017, 494, 526–533. [Google Scholar] [CrossRef]
- Wu, G.; Cai, J.; Han, Y.; Chen, J.; Huang, Z.P.; Chen, C.; Cai, Y.; Huang, H.; Yang, Y.; Liu, Y.; et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 2014, 130, 1452–1465. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, M.; Yamamoto, K.; Noumura, T. Type I collagen promotes modulation of cultured rabbit arterial smooth muscle cells from a contractile to a synthetic phenotype. Exp. Cell. Res. 1993, 204, 121–129. [Google Scholar] [CrossRef]
- Basatemur, G.; Jorgensen, H.; Clarke, M.; Bennett, M.; Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol. 2019, 16, 727–744. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Blumenthal, D.K.; Terry, C.M.; He, Y.; Carlson, M.L.; Cheung, A.K. PDGF-induced proliferation in human arterial and venous smooth muscle cells: Molecular basis for differential effects of PDGF isoforms. J. Cell. Biochem. 2011, 112, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Sinha, S.; McDonald, O.; Shang, Y.; Hoofnagle, M.; Owens, G. Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J. Biol. Chem. 2005, 280, 9719–9727. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xiang, Y.; Fan, L.; Zhang, X.; Li, J.; Yu, C.; Bao, L.; Cao, D.; Xing, W.; Liao, X.; et al. Myocardin inhibited the gap protein connexin 43 via promoted miR-206 to regulate vascular smooth muscle cell phenotypic switch. Gene 2017, 616, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Joshi, C.N.; Martin, D.N.; Shaver, P.; Madamanchi, C.; Muller-Borer, B.J.; Tulis, D.A. Control of vascular smooth muscle cell growth by connexin 43. Front Physiol. 2012, 3, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnstone, S.; Kroncke, B.; Straub, A.; Best, A.; Dunn, C.; Mitchell, L.; Peskova, Y.; Nakamoto, R.; Koval, M.; Lo, C.; et al. MAPK Phosphorylation of Connexin 43 Promotes Binding of Cyclin E and Smooth Muscle Cell Proliferation. Circ. Res. 2012, 111, 201–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deaton, R.A.; Gan, Q.; Owens, G.K. Sp1-dependent activation of KLF4 is required for PDGF-BB-induced phenotypic modulation of smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H1027–H1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; Wei, X.; Li, W.; Udan, R.; Yang, Q.; Kim, J.; Xie, J.; Ikenoue, T.; Yu, J.; Li, L.; et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007, 21, 2747–2761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; Ye, X.; Yu, J.; Li, L.; Li, W.; Li, S.; Lin, J.D.; Wang, C.Y.; Chinnaiyan, A.M.; Lai, Z.C.; et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008, 22, 1962–1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, C.; Guo, Y.; Zhu, T.; Zhang, J.; Ma, P.X.; Chen, Y.E. Yap1 protein regulates vascular smooth muscle cell phenotypic switch by interaction with myocardin. J. Biol. Chem. 2012, 287, 14598–14605. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Yamashita, M.; Horimai, C.; Hayashi, M. Smooth muscle-selective inhibition of nuclear factor-κB attenuates smooth muscle phenotypic switching and neointima formation following vascular injury. J. Am. Heart Assoc. 2013, 2, e000230. [Google Scholar] [CrossRef] [Green Version]
- Cordes, K.R.; Sheehy, N.T.; White, M.P.; Berry, E.C.; Morton, S.U.; Muth, A.N.; Lee, T.H.; Miano, J.M.; Ivey, K.N.; Srivastava, D. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009, 460, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Vengrenyuk, Y.; Nishi, H.; Long, X.; Ouimet, M.; Savji, N.; Martinez, F.O.; Cassella, C.P.; Moore, K.J.; Ramsey, S.A.; Miano, J.M.; et al. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xie, B.; Sun, L.; Chen, W.; Jiang, S.; Liu, W.; Bian, F.; Tian, H.; Li, R. Phenotypic switching of vascular smooth muscle cells in the ‘normal region’ of aorta from atherosclerosis patients is regulated by miR-145. J. Cell. Mol. Med. 2016, 20, 1049–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis-Dusenbery, B.; Chan, M.; Reno, K.; Weisman, A.; Layne, M.; Lagna, G.; Hata, A. Down-regulation of Kruppel-like Factor-4 (KLF4) by MicroRNA-143/145 Is Critical for Modulation of Vascular Smooth Muscle Cell Phenotype by Transforming Growth Factor-beta and Bone Morphogenetic Protein 4. J. Biol. Chem. 2011, 286, 28097–28110. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.; Mao, J.; Yu, M.; Dong, L.; Fan, Y.; Lv, Z.; Xiao, M.; Yuan, Z. Hyperlipidemia induces vascular smooth muscle cell proliferation involving Wnt/beta-catenin signaling. Cell Biol. Int. 2016, 40, 121–130. [Google Scholar] [CrossRef]
- Carthy, J.; Luo, Z.; McManus, B. WNT3A induces a contractile and secretory phenotype in cultured vascular smooth muscle cells that is associated with increased gap junction communication. Lab. Investig. 2012, 92, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Thyberg, J. Effects of nicotine on phenotypic modulation and initiation of DNA synthesis in cultured arterial smooth muscle cells. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1986, 52, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Brüggmann, D.; Lips, K.S.; Pfeil, U.; Haberberger, R.V.; Kummer, W. Rat arteries contain multiple nicotinic acetylcholine receptor alpha-subunits. Life Sci. 2003, 72, 2095–2099. [Google Scholar] [CrossRef]
- Li, J.; Cui, T.; Shiuchi, T.; Liu, H.; Min, L.; Okumura, M.; Jinno, T.; Wu, L.; Iwai, M.; Horiuchi, M. Nicotine enhances angiotensin II-induced mitogenic response in vascular smooth muscle cells and fibroblasts. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 80–84. [Google Scholar] [CrossRef]
- Di Luozzo, G.; Pradhan, S.; Dhadwal, A.K.; Chen, A.; Ueno, H.; Sumpio, B.E. Nicotine induces mitogen-activated protein kinase dependent vascular smooth muscle cell migration. Atherosclerosis 2005, 178, 271–277. [Google Scholar] [CrossRef]
- Kanda, Y.; Watanabe, Y. Nicotine-induced vascular endothelial growth factor release via the EGFR-ERK pathway in rat vascular smooth muscle cells. Life Sci. 2007, 80, 1409–1414. [Google Scholar] [CrossRef]
- Guo, P.; Hu, B.; Gu, W.; Xu, L.; Wang, D.; Huang, H.J.; Cavenee, W.K.; Cheng, S.Y. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am. J. Pathol. 2003, 162, 1083–1093. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.; Wang, Z.; Yan, Z.; Hou, S.; Xu, W.; Wang, L.; Shang, M.; Qiao, Z. Nicotine facilitates VSMC dysfunction through a miR-200b/RhoGDIA/cytoskeleton module. Sci. Rep. 2017, 7, 43798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Z.; Fonseca, V.; Hai, C.M. Nicotinic acetylcholine receptor mediates nicotine-induced actin cytoskeletal remodeling and extracellular matrix degradation by vascular smooth muscle cells. Vasc. Pharmacol. 2013, 58, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cucina, A.; Sapienza, P.; Corvino, V.; Borrelli, V.; Randone, B.; Santoro-D’Angelo, L.; Cavallaro, A. Nicotine induces platelet-derived growth factor release and cytoskeletal alteration in aortic smooth muscle cells. Surgery 2000, 127, 72–78. [Google Scholar] [CrossRef]
- Vazquez-Padron, R.I.; Mateu, D.; Rodriguez-Menocal, L.; Wei, Y.; Webster, K.A.; Pham, S.M. Novel role of Egr-1 in nicotine-related neointimal formation. Cardiovasc. Res. 2010, 88, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Rodella, L.F.; Rossini, C.; Favero, G.; Foglio, E.; Loreto, C.; Rezzani, R. Nicotine-induced morphological changes in rat aorta: The protective role of melatonin. Cells Tissues Organs 2012, 195, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Helkin, A.; Maier, K.G.; Gahtan, V. Thrombospondin-1, -2 and -5 have differential effects on vascular smooth muscle cell physiology. Biochem. Biophys. Res. Commun. 2015, 464, 1022–1027. [Google Scholar] [CrossRef] [Green Version]
- Kassem, M.M.; Helkin, A.; Maier, K.G.; Gahtan, V. Thrombospondins Differentially Regulate Proteins Involved in Arterial Remodeling. Physiol. Res. 2019, 68, 893–900. [Google Scholar] [CrossRef]
- Degryse, B.; Neels, J.G.; Czekay, R.P.; Aertgeerts, K.; Kamikubo, Y.; Loskutoff, D.J. The low density lipoprotein receptor-related protein is a motogenic receptor for plasminogen activator inhibitor-1. J. Biol. Chem. 2004, 279, 22595–22604. [Google Scholar] [CrossRef] [Green Version]
- Orosz, Z.; Csiszar, A.; Labinskyy, N.; Smith, K.; Kaminski, P.M.; Ferdinandy, P.; Wolin, M.S.; Rivera, A.; Ungvari, Z. Cigarette smoke-induced proinflammatory alterations in the endothelial phenotype: Role of NAD(P)H oxidase activation. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H130–H139. [Google Scholar] [CrossRef] [Green Version]
- Jaimes, E.A.; DeMaster, E.G.; Tian, R.X.; Raij, L. Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1031–1036. [Google Scholar] [CrossRef] [Green Version]
- Kayyali, U.; Budhiraja, R.; Pennella, C.; Cooray, S.; Lanzillo, J.; Chalkley, R.; Hassoun, P. Upregulation of xanthine oxidase by tobacco smoke condensate in pulmonary endothelial cells. Toxicol. Appl. Pharmacol. 2003, 188, 59–68. [Google Scholar] [CrossRef]
- Mo, Y.; Wan, R.; Feng, L.; Chien, S.; Tollerud, D.; Zhang, Q. Combination effects of cigarette smoke extract and ambient ultrafine particles on endothelial cells. Toxicol. Vitr. 2012, 26, 295–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barua, R.; Ambrose, J.; Eales-Reynolds, L.; DeVoe, M.; Zervas, J.; Saha, D. Dysfunctional endothelial nitric oxide biosynthesis in healthy smokers with impaired endothelium-dependent vasodilatation. Circulation 2001, 104, 1905–1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, K.H.; Park, J.M.; Lee, C.H.; Kim, B.; Choi, K.C.; Choi, S.J.; Lee, K.; Lee, M.Y. NADPH oxidase (NOX) 1 mediates cigarette smoke-induced superoxide generation in rat vascular smooth muscle cells. Toxicol. Vitr. 2017, 38, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Conklin, B.S.; Zhao, W.; Zhong, D.S.; Chen, C. Nicotine and cotinine up-regulate vascular endothelial growth factor expression in endothelial cells. Am. J. Pathol. 2002, 160, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Whittemore, K.; Vera, E.; Martínez-Nevado, E.; Sanpera, C.; Blasco, M.A. Telomere shortening rate predicts species life span. Proc. Natl. Acad. Sci. USA 2019, 116, 15122–15127. [Google Scholar] [CrossRef] [Green Version]
- Harley, C.B.; Futcher, A.B.; Greider, C.W. Telomeres shorten during ageing of human fibroblasts. Nature 1990, 345, 458–460. [Google Scholar] [CrossRef]
- Counter, C.M.; Avilion, A.A.; LeFeuvre, C.E.; Stewart, N.G.; Greider, C.W.; Harley, C.B.; Bacchetti, S. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992, 11, 1921–1929. [Google Scholar] [CrossRef]
- Tong, X.; Khandelwal, A.R.; Wu, X.; Xu, Z.; Yu, W.; Chen, C.; Zhao, W.; Yang, J.; Qin, Z.; Weisbrod, R.M.; et al. Pro-atherogenic role of smooth muscle Nox4-based NADPH oxidase. J. Mol. Cell Cardiol. 2016, 92, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Vaziri, H.; Schächter, F.; Uchida, I.; Wei, L.; Zhu, X.; Effros, R.; Cohen, D.; Harley, C.B. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am. J. Hum. Genet. 1993, 52, 661–667. [Google Scholar]
- Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]
- D’Adda di Fagagna, F.; Reaper, P.M.; Clay-Farrace, L.; Fiegler, H.; Carr, P.; Von Zglinicki, T.; Saretzki, G.; Carter, N.P.; Jackson, S.P. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003, 426, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Kurz, E.U.; Lees-Miller, S.P. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair 2004, 3, 889–900. [Google Scholar] [CrossRef]
- Fujita, K.; Mondal, A.M.; Horikawa, I.; Nguyen, G.H.; Kumamoto, K.; Sohn, J.J.; Bowman, E.D.; Mathe, E.A.; Schetter, A.J.; Pine, S.R.; et al. p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat. Cell Biol. 2009, 11, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Liu, L.N.; Hosoi, H.; Dilling, M.B.; Shikata, T.; Houghton, P.J. p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. Cancer Res. 2001, 61, 3373–3381. [Google Scholar] [PubMed]
- Dimri, G.P.; Lee, X.; Basile, G.; Acosta, M.; Scott, G.; Roskelley, C.; Medrano, E.E.; Linskens, M.; Rubelj, I.; Pereira-Smith, O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 1995, 92, 9363–9367. [Google Scholar] [CrossRef] [Green Version]
- Salazar, G. NADPH Oxidases and Mitochondria in Vascular Senescence. Int. J. Mol. Sci. 2018, 19, 1327. [Google Scholar] [CrossRef] [Green Version]
- Rodier, F.; Coppé, J.P.; Patil, C.K.; Hoeijmakers, W.A.; Muñoz, D.P.; Raza, S.R.; Freund, A.; Campeau, E.; Davalos, A.R.; Campisi, J. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell. Biol. 2009, 11, 973–979. [Google Scholar] [CrossRef]
- Tominaga, K.; Suzuki, H.I. TGF-β Signaling in Cellular Senescence and Aging-Related Pathology. Int. J. Mol. Sci. 2019, 20, 5002. [Google Scholar] [CrossRef] [Green Version]
- Canino, C.; Mori, F.; Cambria, A.; Diamantini, A.; Germoni, S.; Alessandrini, G.; Borsellino, G.; Galati, R.; Battistini, L.; Blandino, R.; et al. SASP mediates chemoresistance and tumor-initiating-activity of mesothelioma cells. Oncogene 2012, 31, 3148–3163. [Google Scholar] [CrossRef] [Green Version]
- Hubackova, S.; Krejcikova, K.; Bartek, J.; Hodny, Z. IL1- and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine ‘bystander senescence’. Aging 2012, 4, 932–951. [Google Scholar] [CrossRef]
- Takasugi, M. Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell 2018, 17. [Google Scholar] [CrossRef]
- Basisty, N.; Kale, A.; Jeon, O.; Kuehnemann, C.; Payne, T.; Rao, C.; Holtz, A.; Shah, S.; Sharma, V.; Ferrucci, L.; et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 2020, 18, e3000599. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.C.; Doherty, J.; Huschtscha, L.I.; Redvers, R.; Restall, C.; Reddel, R.R.; Anderson, R.L. STC1 expression is associated with tumor growth and metastasis in breast cancer. Clin. Exp. Metastasis 2015, 32, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.K.; Tung, C.W.; Lee, J.Y.; Hung, Y.C.; Lee, C.H.; Chou, S.H.; Lin, H.S.; Wu, M.T.; Wu, I.C. Plasma matrix metalloproteinase 1 improves the detection and survival prediction of esophageal squamous cell carcinoma. Sci. Rep. 2016, 6, 30057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopan, R.; Ilagan, M. The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism. Cell 2009, 137, 216–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoare, M.; Ito, Y.; Kang, T.W.; Weekes, M.P.; Matheson, N.J.; Patten, D.A.; Shetty, S.; Parry, A.J.; Menon, S.; Salama, R.; et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat. Cell Biol. 2016, 18, 979–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Wu, Q.; Jiang, D.; Matsuda, J.L.; Ternyak, K.; Zhang, B.; Chu, H.W. Cigarette Smoke Induces Human Airway Epithelial Senescence via Growth Differentiation Factor 15 Production. Am. J. Respir. Cell Mol. Biol. 2016, 55, 429–438. [Google Scholar] [CrossRef]
- Ahmad, T.; Sundar, I.K.; Lerner, C.A.; Gerloff, J.; Tormos, A.M.; Yao, H.; Rahman, I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: Implications for chronic obstructive pulmonary disease. FASEB J. 2015, 29, 2912–2929. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Sundar, I.K.; Gorbunova, V.; Rahman, I. P21-PARP-1 pathway is involved in cigarette smoke-induced lung DNA damage and cellular senescence. PLoS ONE 2013, 8, e80007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhat, N.; Thorin-Trescases, N.; Voghel, G.; Villeneuve, L.; Mamarbachi, M.; Perrault, L.P.; Carrier, M.; Thorin, E. Stress-induced senescence predominates in endothelial cells isolated from atherosclerotic chronic smokers. Can. J. Physiol. Pharmacol. 2008, 86, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Benigni, A.; Cassis, P.; Remuzzi, G. Angiotensin II revisited: New roles in inflammation, immunology and aging. EMBO Mol. Med. 2010, 2, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.; Kools, J.J.; Taylor, W.R. Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice. Circulation 2001, 103, 448–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ushio-Fukai, M.; Alexander, R.W.; Akers, M.; Griendling, K.K. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J. Biol. Chem. 1998, 273, 15022–15029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ushio-Fukai, M.; Alexander, R.W.; Akers, M.; Yin, Q.; Fujio, Y.; Walsh, K.; Griendling, K.K. Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J. Biol. Chem. 1999, 274, 22699–22704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morinelli, T.A.; Lee, M.H.; Kendall, R.T.; Luttrell, L.M.; Walker, L.P.; Ullian, M.E. Angiotensin II activates NF-κB through AT1A receptor recruitment of β-arrestin in cultured rat vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 2013, 304, C1176–C1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piqueras, L.; Sanz, M.J. Angiotensin II and leukocyte trafficking: New insights for an old vascular mediator. Role of redox-signaling pathways. Free Radic. Biol. Med. 2020. [Google Scholar] [CrossRef]
- Kunieda, T.; Minamino, T.; Nishi, J.; Tateno, K.; Oyama, T.; Katsuno, T.; Miyauchi, H.; Orimo, M.; Okada, S.; Takamura, M.; et al. Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation 2006, 114, 953–960. [Google Scholar] [CrossRef]
- Herbert, K.E.; Mistry, Y.; Hastings, R.; Poolman, T.; Niklason, L.; Williams, B. Angiotensin II-mediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathways. Circ. Res. 2008, 102, 201–208. [Google Scholar] [CrossRef]
- Patrushev, N.; Seidel-Rogol, B.; Salazar, G. Angiotensin II requires zinc and downregulation of the zinc transporters ZnT3 and ZnT10 to induce senescence of vascular smooth muscle cells. PLoS ONE 2012, 7, e33211. [Google Scholar] [CrossRef] [Green Version]
- Salazar, G.; Huang, J.; Feresin, R.G.; Zhao, Y.; Griendling, K.K. Zinc regulates Nox1 expression through a NF-κB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells. Free Radic. Biol. Med. 2017, 108, 225–235. [Google Scholar] [CrossRef]
- Feresin, R.G.; Huang, J.; Klarich, D.S.; Zhao, Y.; Pourafshar, S.; Arjmandi, B.H.; Salazar, G. Blackberry, raspberry and black raspberry polyphenol extracts attenuate angiotensin II-induced senescence in vascular smooth muscle cells. Food Funct. 2016, 7, 4175–4187. [Google Scholar] [CrossRef]
- Przybylska, D.; Janiszewska, D.; Goździk, A.; Bielak-Zmijewska, A.; Sunderland, P.; Sikora, E.; Mosieniak, G. NOX4 downregulation leads to senescence of human vascular smooth muscle cells. Oncotarget 2016, 7, 66429–66443. [Google Scholar] [CrossRef] [Green Version]
- Lener, B.; Kozieł, R.; Pircher, H.; Hütter, E.; Greussing, R.; Herndler-Brandstetter, D.; Hermann, M.; Unterluggauer, H.; Jansen-Dürr, P. The NADPH oxidase Nox4 restricts the replicative lifespan of human endothelial cells. Biochem. J. 2009, 423, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.M.; Cahill-Smith, S.; Geng, L.; Du, J.; Brooks, G.; Li, J.M. Aging-associated metabolic disorder induces Nox2 activation and oxidative damage of endothelial function. Free Radic. Biol. Med. 2017, 108, 940–951. [Google Scholar] [CrossRef]
- Xiong, S.; Salazar, G.; Patrushev, N.; Ma, M.; Forouzandeh, F.; Hilenski, L.; Alexander, R.W. Peroxisome proliferator-activated receptor γ coactivator-1α is a central negative regulator of vascular senescence. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 988–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, S.; Patrushev, N.; Forouzandeh, F.; Hilenski, L.; Alexander, R.W. PGC-1α Modulates Telomere Function and DNA Damage in Protecting against Aging-Related Chronic Diseases. Cell Rep. 2015, 12, 1391–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazar, G.; Cullen, A.; Huang, J.; Zhao, Y.; Serino, A.; Hilenski, L.; Patrushev, N.; Forouzandeh, F.; Hwang, H.S. SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. Autophagy 2019, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, M.; Adachi, Y.; Mitsushita, J.; Kuwabara, M.; Nagasawa, A.; Harada, S.; Furuta, S.; Zhang, Y.; Seheli, K.; Miyazaki, H.; et al. Reactive oxygen generated by NADPH oxidase 1 (Nox1) contributes to cell invasion by regulating matrix metalloprotease-9 production and cell migration. J. Biol. Chem. 2010, 285, 4481–4488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Ke, Z.F.; Wang, F.; Zhang, W.H.; Wang, Y.F.; Li, S.H.; Wang, L.T. GOLPH3 overexpression is closely correlated with poor prognosis in human non-small cell lung cancer and mediates its metastasis through upregulating MMP-2 and MMP-9. Cell Physiol. Biochem. 2015, 35, 969–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehner, C.; Hockla, A.; Miller, E.; Ran, S.; Radisky, D.C.; Radisky, E.S. Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget 2014, 5, 2736–2749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Chiao, Y.A.; Clark, R.; Flynn, E.R.; Yabluchanskiy, A.; Ghasemi, O.; Zouein, F.; Lindsey, M.L.; Jin, Y.F. Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory signalling in senescence. Cardiovasc. Res. 2015, 106, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Pearson, T.A.; Blair, S.N.; Daniels, S.R.; Eckel, R.H.; Fair, J.M.; Fortmann, S.P.; Franklin, B.A.; Goldstein, L.B.; Greenland, P.; Grundy, S.M.; et al. AHA Guidelines for Primary Prevention of Cardiovascular Disease and Stroke: 2002 Update: Consensus Panel Guide to Comprehensive Risk Reduction for Adult Patients Without Coronary or Other Atherosclerotic Vascular Diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation 2002, 106, 388–391. [Google Scholar] [CrossRef] [PubMed]
- Serino, A.; Salazar, G. Protective Role of Polyphenols against Vascular Inflammation, Aging and Cardiovascular Disease. Nutrients 2018, 11, 53. [Google Scholar] [CrossRef] [Green Version]
- Serino, A.; Zhao, Y.; Hwang, J.; Cullen, A.; Deeb, C.; Akhavan, N.; Arjmandi, B.; Salazar, G. Gender differences in the effect of blackberry supplementation in vascular senescence and atherosclerosis in ApoE. J. Nutr. Biochem. 2020, 80, 108375. [Google Scholar] [CrossRef]
- Johnson, J.L.; Dwivedi, A.; Somerville, M.; George, S.J.; Newby, A.C. Matrix metalloproteinase (MMP)-3 activates MMP-9 mediated vascular smooth muscle cell migration and neointima formation in mice. Arterioscler. Thromb. Vasc. Biol. 2011, 31, e35–e44. [Google Scholar] [CrossRef] [Green Version]
- Kuzuya, M.; Nakamura, K.; Sasaki, T.; Cheng, X.W.; Itohara, S.; Iguchi, A. Effect of MMP-2 deficiency on atherosclerotic lesion formation in apoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1120–1125. [Google Scholar] [CrossRef] [Green Version]
- Ushio-Fukai, M.; Alexander, R.W. Caveolin-dependent angiotensin II type 1 receptor signaling in vascular smooth muscle. Hypertension 2006, 48, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Feil, S.; Fehrenbacher, B.; Lukowski, R.; Essmann, F.; Schulze-Osthoff, K.; Schaller, M.; Feil, R. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ. Res. 2014, 115, 662–667. [Google Scholar] [CrossRef]
- Alves, R.D.; Eijken, M.; van de Peppel, J.; van Leeuwen, J.P. Calcifying vascular smooth muscle cells and osteoblasts: Independent cell types exhibiting extracellular matrix and biomineralization-related mimicries. BMC Genom. 2014, 15, 965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amento, E.P.; Ehsani, N.; Palmer, H.; Libby, P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler. Thromb. 1991, 11, 1223–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, C.M.; Li, S.; Pickering, J.G. Angiotensin II stimulates collagen synthesis in human vascular smooth muscle cells. Involvement of the AT(1) receptor, transforming growth factor-beta, and tyrosine phosphorylation. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 1843–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, G.; Terushkin, V.; Wolff, M.J.; Zhang, X.; Valacca, C.; Poggio, P.; Pintucci, G.; Mignatti, P. TGF-β1 induces endothelial cell apoptosis by shifting VEGF activation of p38(MAPK) from the prosurvival p38β to proapoptotic p38α. Mol. Cancer Res. 2012, 10, 605–614. [Google Scholar] [CrossRef] [Green Version]
- Childs, B.G.; Baker, D.J.; Wijshake, T.; Conover, C.A.; Campisi, J.; van Deursen, J.M. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 2016, 354, 472–477. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Karakiulakis, G.; Roth, M.; Block, L.H. Platelet-derived growth factor stimulates the secretion of hyaluronic acid by proliferating human vascular smooth muscle cells. Proc. Natl. Acad. Sci. USA 1995, 92, 9881–9885. [Google Scholar] [CrossRef] [Green Version]
- Franck, G.; Mawson, T.; Sausen, G.; Salinas, M.; Masson, G.S.; Cole, A.; Beltrami-Moreira, M.; Chatzizisis, Y.; Quillard, T.; Tesmenitsky, Y.; et al. Flow Perturbation Mediates Neutrophil Recruitment and Potentiates Endothelial Injury via TLR2 in Mice: Implications for Superficial Erosion. Circ. Res. 2017, 121, 31–42. [Google Scholar] [CrossRef]
- Li, J.; Guo, Y.; Luan, X.; Qi, T.; Li, D.; Chen, Y.; Ji, X.; Zhang, Y.; Chen, W. Independent roles of monocyte chemoattractant protein-1, regulated on activation, normal T-cell expressed and secreted and fractalkine in the vulnerability of coronary atherosclerotic plaques. Circ. J. 2012, 76, 2167–2173. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Fan, X.; Peng, L.; Pan, L.; Yu, C.; Tong, J.; Zhang, W.; Liu, P. Expression of NF-κB, CD68 and CD105 in carotid atherosclerotic plaque. J. Thorac. Dis. 2013, 5, 771–776. [Google Scholar] [CrossRef]
- Mallat, Z.; Besnard, S.; Duriez, M.; Deleuze, V.; Emmanuel, F.; Bureau, M.F.; Soubrier, F.; Esposito, B.; Duez, H.; Fievet, C.; et al. Protective role of interleukin-10 in atherosclerosis. Circ. Res. 1999, 85, e17–e24. [Google Scholar] [CrossRef]
- Moro, C.; Jouan, M.G.; Rakotovao, A.; Toufektsian, M.C.; Ormezzano, O.; Nagy, N.; Tosaki, A.; de Leiris, J.; Boucher, F. Delayed expression of cytokines after reperfused myocardial infarction: Possible trigger for cardiac dysfunction and ventricular remodeling. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H3014–H3019. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, M.; Rabkin, E.; Okada, Y.; Voglic, S.J.; Clinton, S.K.; Brinckerhoff, C.E.; Sukhova, G.K.; Libby, P. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: A potential mechanism of lesion stabilization. Circulation 1998, 97, 2433–2444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aikawa, M.; Rabkin, E.; Sugiyama, S.; Voglic, S.J.; Fukumoto, Y.; Furukawa, Y.; Shiomi, M.; Schoen, F.J.; Libby, P. An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation 2001, 103, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Löffek, S.; Schilling, O.; Franzke, C.W. Series “matrix metalloproteinases in lung health and disease”: Biological role of matrix metalloproteinases: A critical balance. Eur. Respir. J. 2011, 38, 191–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Nie, L.; Razavian, M.; Ahmed, M.; Dobrucki, L.W.; Asadi, A.; Edwards, D.S.; Azure, M.; Sinusas, A.J.; Sadeghi, M.M. Molecular imaging of activated matrix metalloproteinases in vascular remodeling. Circulation 2008, 118, 1953–1960. [Google Scholar] [CrossRef] [PubMed]
- Luan, Z.; Chase, A.; Newby, A. Statins inhibit secretion of metalloproteinases-1,-2,-3, and-9 from vascular smooth muscle cells and macrophages. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 769–775. [Google Scholar] [CrossRef]
- Sluijter, J.P.; Pulskens, W.P.; Schoneveld, A.H.; Velema, E.; Strijder, C.F.; Moll, F.; de Vries, J.P.; Verheijen, J.; Hanemaaijer, R.; de Kleijn, D.P.; et al. Matrix metalloproteinase 2 is associated with stable and matrix metalloproteinases 8 and 9 with vulnerable carotid atherosclerotic lesions: A study in human endarterectomy specimen pointing to a role for different extracellular matrix metalloproteinase inducer glycosylation forms. Stroke 2006, 37, 235–239. [Google Scholar] [CrossRef]
- Choudhary, S.; Higgins, C.; Chen, I.; Reardon, M.; Lawrie, G.; Vick, G.; Karmonik, C.; Via, D.; Morrisett, J. Quantitation and localization of matrix metalloproteinases and their inhibitors in human carotid endarterectomy tissues. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2351–2358. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Zhang, W.; Choi, M.; Zhao, J.; Gao, P.; Xue, M.; Singer, H.A.; Jourd’heuil, D.; Long, X. Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox. Biol. 2019, 22, 101137. [Google Scholar] [CrossRef]
- Forrester, S.J.; Booz, G.W.; Sigmund, C.D.; Coffman, T.M.; Kawai, T.; Rizzo, V.; Scalia, R.; Eguchi, S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev. 2018, 98, 1627–1738. [Google Scholar] [CrossRef]
- Goldblatt, H.L.J.; Hanzal, R.; Summerville, W. Studies on experimental hypertension: I. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J. Exp. Med. 1934, 59, 347–379. [Google Scholar] [CrossRef] [Green Version]
- Braun-Menendez, E.F.J.C.; Leloir, L.F.; Muñoz, J.M. The substance causing renal hypertension. J. Physiol. 1940, 98, 283–298. [Google Scholar] [CrossRef] [PubMed]
- Tigerstedt, R.; Bergman, P. Niere und kreislauf. Skandinavisches Archiv Physiol. 1898, 8, 223–271. [Google Scholar] [CrossRef]
- Nehme, A.; Zouein, F.A.; Zayeri, Z.D.; Zibara, K. An Update on the Tissue Renin Angiotensin Systemand Its Role in Physiology and Pathology. J. Cardiovasc. Dev. Dis. 2019, 6, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benigni, A.; Corna, D.; Zoja, C.; Sonzogni, A.; Latini, R.; Salio, M.; Conti, S.; Rottoli, D.; Longaretti, L.; Cassis, P.; et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J. Clin. Investig. 2009, 119, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Colombo, E.S.; Davis, J.; Makvandi, M.; Aragon, M.; Lucas, S.N.; Paffett, M.L.; Campen, M.J. Effects of nicotine on cardiovascular remodeling in a mouse model of systemic hypertension. Cardiovasc. Toxicol. 2013, 13, 364–369. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Xu, Z.; Huang, X.; Longo, L.D.; Yang, S.; Zhang, L. Prenatal gender-related nicotine exposure increases blood pressure response to angiotensin II in adult offspring. Hypertension 2008, 51, 1239–1247. [Google Scholar] [CrossRef]
- Xiao, D.; Dasgupta, C.; Li, Y.; Huang, X.; Zhang, L. Perinatal nicotine exposure increases angiotensin II receptor-mediated vascular contractility in adult offspring. PLoS ONE 2014, 9, e108161. [Google Scholar] [CrossRef]
- Ramalingam, A.; Budin, S.B.; Mohd Fauzi, N.; Ritchie, R.H.; Zainalabidin, S. Angiotensin II Type I Receptor Antagonism Attenuates Nicotine-Induced Cardiac Remodeling, Dysfunction, and Aggravation of Myocardial Ischemia-Reperfusion Injury in Rats. Front Pharmacol. 2019, 10, 1493. [Google Scholar] [CrossRef] [Green Version]
- Oakes, J.M.; Fuchs, R.M.; Gardner, J.D.; Lazartigues, E.; Yue, X. Nicotine and the renin-angiotensin system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R895–R906. [Google Scholar] [CrossRef] [Green Version]
- Knowles, J.W.; Maeda, N. Genetic modifiers of atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2336–2345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Véniant, M.M.; Withycombe, S.; Young, S.G. Lipoprotein size and atherosclerosis susceptibility in Apoe(-/-) and Ldlr(-/-) mice. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 1567–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avdesh, A.; Wong, P.; Martins, R.N.; Martin-Iverson, M.T. Memory function in a mouse genetic model of Alzheimer’s disease. J. Alzheimers Dis. 2011, 25, 433–444. [Google Scholar] [CrossRef]
- Goldklang, M.; Golovatch, P.; Zelonina, T.; Trischler, J.; Rabinowitz, D.; Lemaître, V.; D’Armiento, J. Activation of the TLR4 signaling pathway and abnormal cholesterol efflux lead to emphysema in ApoE-deficient mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2012, 302, L1200–L1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo Sasso, G.; Schlage, W.K.; Boué, S.; Veljkovic, E.; Peitsch, M.C.; Hoeng, J. The Apoe(-/-) mouse model: A suitable model to study cardiovascular and respiratory diseases in the context of cigarette smoke exposure and harm reduction. J. Transl. Med. 2016, 14, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tani, S.; Dimayuga, P.C.; Anazawa, T.; Chyu, K.Y.; Li, H.; Shah, P.K.; Cercek, B. Aberrant antibody responses to oxidized LDL and increased intimal thickening in apoE-/- mice exposed to cigarette smoke. Atherosclerosis 2004, 175, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Gairola, C.G.; Drawdy, M.L.; Block, A.E.; Daugherty, A. Sidestream cigarette smoke accelerates atherogenesis in apolipoprotein E-/- mice. Atherosclerosis 2001, 156, 49–55. [Google Scholar] [CrossRef]
- Knight-Lozano, C.A.; Young, C.G.; Burow, D.L.; Hu, Z.Y.; Uyeminami, D.; Pinkerton, K.E.; Ischiropoulos, H.; Ballinger, S.W. Cigarette smoke exposure and hypercholesterolemia increase mitochondrial damage in cardiovascular tissues. Circulation 2002, 105, 849–854. [Google Scholar] [CrossRef] [Green Version]
- Matetzky, S.; Tani, S.; Kangavari, S.; Dimayuga, P.; Yano, J.; Xu, H.; Chyu, K.Y.; Fishbein, M.C.; Shah, P.K.; Cercek, B. Smoking increases tissue factor expression in atherosclerotic plaques: Implications for plaque thrombogenicity. Circulation 2000, 102, 602–604. [Google Scholar] [CrossRef] [Green Version]
- Boué, S.; Tarasov, K.; Jänis, M.; Lebrun, S.; Hurme, R.; Schlage, W.; Lietz, M.; Vuillaume, G.; Ekroos, K.; Steffen, Y.; et al. Modulation of atherogenic lipidome by cigarette smoke in apolipoprotein E-deficient mice. Atherosclerosis 2012, 225, 328–334. [Google Scholar] [CrossRef]
- Kunitomo, M.; Yamaguchi, Y.; Kagota, S.; Yoshikawa, N.; Nakamura, K.; Shinozuka, K. Biochemical evidence of atherosclerosis progression mediated by increased oxidative stress in apolipoprotein E-deficient spontaneously hyperlipidemic mice exposed to chronic cigarette smoke. J. Pharmacol. Sci. 2009, 110, 354–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, B.; Szostak, J.; Titz, B.; Schlage, W.K.; Guedj, E.; Leroy, P.; Vuillaume, G.; Martin, F.; Buettner, A.; Elamin, A.; et al. A six-month systems toxicology inhalation/cessation study in ApoE. Food Chem. Toxicol. 2019, 126, 113–141. [Google Scholar] [CrossRef] [PubMed]
- Philip Morris International. Available online: https://www.pmi.com/ (accessed on 10 March 2020).
- Burns, K. JUUL Statement about Altria Minority Investment and Service Agreements. Available online: https://newsroom.juul.com/2018/12/20/juul-statement-about-altriaminority- (accessed on 8 March 2020).
- Altria. Available online: https://www.altria.com/en (accessed on 10 March 2020).
- Pisinger, C.; Godtfredsen, N.; Bender, A.M. A conflict of interest is strongly associated with tobacco industry-favourable results, indicating no harm of e-cigarettes. Prev. Med. 2019, 119, 124–131. [Google Scholar] [CrossRef] [PubMed]
- How are Non-Combusted Cigarettes, Sometimes Called Heat-Not-Burn Products, Different from E-Cigarettes and Cigarettes? Available online: https://www.fda.gov/tobacco-products/products-ingredients-components/how-are-non-combusted-cigarettes-sometimes-called-heat-not-burn-products-different-e-cigarettes-and (accessed on 10 March 2020).
- Harmful and Potentially Harmful Constituents in Tobacco Products; Established List; Proposed Additions; Request for Comments. Available online: https://www.federalregister.gov/documents/2019/08/05/2019-16658/harmful-and-potentially-harmful-constituents-in-tobacco-products-established-list-proposed-additions (accessed on 9 March 2020).
- Espinoza-Derout, J.; Hasan, K.M.; Shao, X.M.; Jordan, M.C.; Sims, C.; Lee, D.L.; Sinha, S.; Simmons, Z.; Mtume, N.; Liu, Y.; et al. Chronic intermittent electronic cigarette exposure induces cardiac dysfunction and atherosclerosis in apolipoprotein-E knockout mice. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H445–H459. [Google Scholar] [CrossRef] [PubMed]
- Ren, A.; Wu, H.; Liu, L.; Guo, Z.; Cao, Q.; Dai, Q. Nicotine promotes atherosclerosis development in apolipoprotein E-deficient mice through α1-nAChR. J. Cell Physiol. 2018. [Google Scholar] [CrossRef]
- Xu, S.; Ni, H.; Chen, H.; Dai, Q. The interaction between STAT3 and nAChRα1 interferes with nicotine-induced atherosclerosis via Akt/mTOR signaling cascade. Aging 2019, 11, 8120–8138. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, B.; Zhu, J.; Wang, D.; Wang, Y. Nicotine-mediated autophagy of vascular smooth muscle cell accelerates atherosclerosis via nAChRs/ROS/NF-κB signaling pathway. Atherosclerosis 2019, 284, 1–10. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, B.; Wang, Z.; Wang, D.; Ni, H.; Zhang, L.; Wang, Y. Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics 2019, 9, 6901–6919. [Google Scholar] [CrossRef]
- Koga, M.; Kanaoka, Y.; Okamoto, M.; Nakao, Y.; Inada, K.; Takayama, S.; Kataoka, Y.; Yamauchi, A. Varenicline aggravates atherosclerotic plaque formation in nicotine-pretreated ApoE knockout mice due to enhanced oxLDL uptake by macrophages through downregulation of ABCA1 and ABCG1 expression. J. Pharmacol. Sci. 2020, 142, 9–15. [Google Scholar] [CrossRef]
- Wang, C.; Chen, H.; Zhu, W.; Xu, Y.; Liu, M.; Zhu, L.; Yang, F.; Zhang, L.; Liu, X.; Zhong, Z.; et al. Nicotine Accelerates Atherosclerosis in Apolipoprotein E-Deficient Mice by Activating alpha 7 Nicotinic Acetylcholine Receptor on Mast Cells. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, S.; Cao, G.; Sun, Y.; Chen, W.; Dong, F.; Xu, J.; Zhang, C.; Zhang, W. Nicotine induces endothelial dysfunction and promotes atherosclerosis via GTPCH1. J. Cell Mol. Med. 2018, 22, 5406–5417. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, H.; Qi, W.; Zhang, Y.; Li, J.; Li, Z.; Lin, Y.; Bai, X.; Liu, X.; Chen, X.; et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis. 2018, 9, 171. [Google Scholar] [CrossRef] [PubMed]
- Stolle, K.; Berges, A.; Lietz, M.; Lebrun, S.; Wallerath, T. Cigarette smoke enhances abdominal aortic aneurysm formation in angiotensin II-treated apolipoprotein E-deficient mice. Toxicol. Lett. 2010, 199, 403–409. [Google Scholar] [CrossRef] [PubMed]
Ref | Cell/ Mouse Model | Experimental Design | Dose and Treatment Duration | Major Findings | Funding Source |
---|---|---|---|---|---|
[74] | ApoE−/− females 8–10 w old | CS (3R4F) THS 2.2 Cessation (2 m CS + 6 m C) Switch (2 m CS + 6 m THS 2.2) | 29.9 mg/m3 CS whole-body exposure 3 h/d, 5 d/w for 8 m | CS significantly altered lipid profiles, increased the plaque area, and induced lung inflammation and emphysema, compared to aerosol. Cessation or switching from CS to aerosol reversed the disease outcome. | PMI |
[240] | ApoE−/− females 8–10 w old | CS (3R4F) CHTP 1.2 THS 2.2 Cessation (3 m CS + 3 m C) Switch (3 m CS + CHTP 1.2) | 28 µg N/L whole-body exposure 3 h/d, 5 d/w for 6 m | CS increased the plaque, inflammation, and emphysema, compared with aerosol. Cessation and switch to aerosols reduced negative outcomes induced by CS to near sham. | PMI |
[73] | ApoE−/− females 12–14 w old | PG, VG PG, VG, N PG, VG, N, flavor CS (3R4F) | 35 µg N/L (4%) whole-body exposure 3 h/d, 5 d/w, 6 m | CS compared to aerosols and C had more plaque in the aorta, ventricle dysfunction, and increased plasma lipids. | PMI |
[247] | ApoE−/− males 8 w old | Western diet: Saline aerosol Tobacco w/o N aerosol Tobacco+N aerosol | 2.4% N whole-body exposure 12 w | E-cigarette with N, but not without N, impairs the ventricular systolic function in the heart, increases ROS and mtDNA damage, and increases the amount of plaque in the aortic root. | NIH DPIDARP CTRDRP NIMHHD |
[248] | MASM RAW264.7 ApoE−/− males 8 w old | N HFD and N AAV+N, α1-AAV+N | 0.5 ng/mL I.P. 2.0 mg/kg/day, 12 w | α1-AAV with N had less plaque and a different lesion content (reduced collagen and lipids). N via α1-nAChR altered the lipid profile and induced inflammation and MMPs. N’s atherosclerotic effect involved calpain-1/MMP2/MMP9 signaling. | NNSF of China |
[249] | MASM RAW264.7 ApoE−/− males 8 w old | N HFD and N N+AG490 (STAT3 inhibitor), AAV+N, α1-AAV+N | 100, 500 ng/mL N in drinking water (100 µg/mL), I.P. AG490 (100 µg), Virus once − 1 × 1011/mL (200 μL), 12 w | N activates STAT3 via nAchRα1. Knockdown of nAchRα1 or STAT3 inhibition reduces N’s effect on SMC proliferation and migration and macrophage inflammation by blunting Akt/mTOR/MMP2 signaling. In vivo, STAT3 inhibition decreases N-induced lesion development. | NNSF of China |
[250] | MASM ApoE−/− 8 w old | N C HFD HFD+N | 10 µM N, 36 h, 10 mM 3-MA, 100 nM rapamycin 2 mg/kg/d, 12 w | N exacerbates plaque formation. Targeting the N-induced nAChRs/ROS/NF-κB pathway can reduce autophagy and decrease VSMC phenotypic switching to reduce plaque formation. | NNSF of China CTCCR |
[251] | MASM RAW264.7 ApoE−/− males 8 w old | N HFD HFD+N | 10−5 M, 24 h PBS or S.C., 2 mg/kg/d 12 w | N accelerates plaque formation. Macrophages in the plaque secrete exosomes with miR-21-3p, which increases VSMC migration and proliferation in a PTEN-dependent manner. | NNSF of China |
[254] | HUVEC ApoE−/− males 8–12 w old | N HFD with or w/o N and BH4 HFD with or w/o N and LV.GFP or LV.GTPCH1 | 1 µmol/L, 48 h 100 mg/L N in drinking water 10 mg/kg BH4/d 12 w | In vitro, N inhibited GTPCH1, reduced NO, and increased ROS. In vivo, N caused endothelial dysfunction, and increased ROS and the plaque area, while GTPCH1 overexpression or BH4 supplementation attenuated N’s effects. | NNSF of China |
[255] | HAECs ApoE−/− 8 w old Gender ND | N | 1 µM N 24 h 100 µg/mL in drinking water 12 w | Nicotine increased the ROS-induced inflammasome NLRP3-ASC and pyroptosis in HAECs. With both diets, N increased the plaque lipid content and area. | NNSF of China CRG NCET |
ND | |||||
ND+N | |||||
HFD | |||||
HFD+N | |||||
[253] | ApoE−/− | HFD and N, MC−/− and α7nAChRs−/−+N | 100 µg/mL in drinking water, 12 w | Nicotine activates α7 nAChRs on MCs to enhance atherosclerosis. N and HFD developed lesions, which were diminished in MC−/− mice. | NNSF of China NBPR of China, etc. |
[239] | ApoE−/− 5 w old | HFD diet: Smoke Smoke+Vit. E | Gas phase smoke whole-body exposure, 15 mi/d, 6 d/w, 16 w | Smoke increased oxLDL and cholesterol in plaque and 3-nitrotyrosine in mouse aortas. Vit. E reduced smoke-induced effects. | SRF OPCPMWU |
[252] | RAW264.7 ApoE−/− 8 w old | HFD 5 w | Varenicline 0.5 mg/Kg/d S.C. 300 µg/mL N in drinking water | The smoking cessation aid varenicline upregulated N-induced oxLDL uptake in macrophages, decreasing cholesterol efflux and exacerbating atherosclerotic. | GASR CRIF, Japan |
[235] | ApoE−/− Females 8–9 w old | Western diet | Sidestream CS (25 ± 2 mg/m3) whole-body exposure, 6 h/d, 5 d/w 7, 10, 14 w | Sidestream CS exposure significantly increased the aortic plaque area and cholesterol in aortic tissues of atherosclerotic mice. | Gill Heart Institute, US |
[236] | ApoE−/− Males 7 w old | HFD | Sidestream CS (30 mg/m3) whole-body exposure, 21–41 d (6 h/d, 5 d/w) | Secondhand smoke in combination with hypercholesteremia increased lesions and mitochondrial damage. | NIH |
CTRDRP | |||||
CFR | |||||
JSF |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Centner, A.M.; Bhide, P.G.; Salazar, G. Nicotine in Senescence and Atherosclerosis. Cells 2020, 9, 1035. https://doi.org/10.3390/cells9041035
Centner AM, Bhide PG, Salazar G. Nicotine in Senescence and Atherosclerosis. Cells. 2020; 9(4):1035. https://doi.org/10.3390/cells9041035
Chicago/Turabian StyleCentner, Ann Marie, Pradeep G. Bhide, and Gloria Salazar. 2020. "Nicotine in Senescence and Atherosclerosis" Cells 9, no. 4: 1035. https://doi.org/10.3390/cells9041035
APA StyleCentner, A. M., Bhide, P. G., & Salazar, G. (2020). Nicotine in Senescence and Atherosclerosis. Cells, 9(4), 1035. https://doi.org/10.3390/cells9041035