Chlorpromazine Induces Basolateral Aquaporin-2 Accumulation via F-Actin Depolymerization and Blockade of Endocytosis in Renal Epithelial Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Western Blotting
2.3. Cell Immunofluorescence
2.4. Transferrin Endocytosis Assay
2.5. In Situ Kidney Tissue Slices
2.6. F-Actin Quantification
2.7. Statistical Analyses
3. Results
3.1. AQP2 Accumulates in the Basolateral Plasma Membrane After CPZ Treatment
3.2. CPZ Does Not Modify AQP2 Phosphorylation
3.3. CPZ Inhibits Clathrin-Mediated Endocytosis of Transferrin in MDCK Cells
3.4. CPZ Causes Basolateral Accumulation of AQP2 and Clathrin in Kidney Slices
3.5. CPZ Decreases Basolateral F-Actin Staining in MDCK Cells
3.6. CPZ Decreases Basolateral and Increases Apical F-Actin in Kidney Slices
3.7. Cold Shock Increases Basolateral AQP2 Without Depolymerizing F-Actin
3.8. CPZ Inhibits Forskolin-Induced Apical Membrane Accumulation of AQP2
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Cheung, P.W.; Bouley, R.; Brown, D. Targeting the Trafficking of Kidney Water Channels for Therapeutic Benefit. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 175–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fushimi, K.; Uchida, S.; Harat, Y.; Hirata, Y.; Marumo, F.; Sasaki, S. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nat. 1993, 361, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.; Chou, C.L.; Marples, D.; Christensen, E.I.; Kishore, B.; Knepper, M.A. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc. Natl. Acad. Sci. USA 1995, 92, 1013–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vukićević, T.; Schulz, M.; Faust, D.; Klussmann, E. The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells—a Potential Target for Pharmacological Intervention in Cardiovascular Diseases. Front. Pharmacol. 2016, 7, 95. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.; Hasler, U.; Nunes, P.; Bouley, R.; Lu, H.A. Phosphorylation events and the modulation of aquaporin 2 cell surface expression. Curr. Opin. Nephrol. Hypertens. 2008, 17, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Hoffert, J.D.; Pisitkun, T.; Wang, G.; Shen, R.-F.; Knepper, M.A. Quantitative phosphoproteomics of vasopressin-sensitive renal cells: Regulation of aquaporin-2 phosphorylation at two sites. Proc. Natl. Acad. Sci. 2006, 103, 7159–7164. [Google Scholar] [CrossRef] [Green Version]
- Hoffert, J.D.; Fenton, R.A.; Moeller, H.B.; Simons, B.; Tchapyjnikov, D.; McDill, B.W.; Yu, M.-J.; Pisitkun, T.; Chen, F.; Knepper, M.A. Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2. J. Boil. Chem. 2008, 283, 24617–24627. [Google Scholar] [CrossRef] [Green Version]
- Moeller, H.B.; Knepper, M.A.; Fenton, R.A. Serine 269 phosphorylated aquaporin-2 is targeted to the apical membrane of collecting duct principal cells. Kidney Int. 2008, 75, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Hoffert, J.D.; Nielsen, J.; Yu, M.-J.; Pisitkun, T.; Schleicher, S.M.; Nielsen, S.; Knepper, M.A. Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. Am. J. Physiol. Physiol. 2007, 292, F691–F700. [Google Scholar] [CrossRef]
- Arthur, J.; Huang, J.; Nomura, N.; Jin, W.W.; Li, W.; Cheng, X.; Brown, D.; Lu, H.A.J. Characterization of the putative phosphorylation sites of the AQP2 C terminus and their role in AQP2 trafficking in LLC-PK1 cells. Am. J. Physiol. Physiol. 2015, 309, F673–F679. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Sun, T.-X.; Bouley, R.; Blackburn, K.; McLaughlin, M.; Brown, D. Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. Am. J. Physiol. Physiol. 2004, 286, F233–F243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, L.M.; McKee, M.; Brown, D. Methyl-β-cyclodextrin induces vasopressin-independent apical accumulation of aquaporin-2 in the isolated, perfused rat kidney. Am. J. Physiol. Physiol. 2006, 291, F246–F253. [Google Scholar] [CrossRef] [Green Version]
- Bouley, R.; Hawthorn, G.; Russo, L.M.; Lin, H.Y.; Ausiello, D.A.; Brown, D. Aquaporin 2 (AQP2) and vasopressin type 2 receptor (V2R) endocytosis in kidney epithelial cells: AQP2 is located in ‘endocytosis-resistant’ membrane domains after vasopressin treatment. Boil. Cell 2006, 98, 215–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Zhang, Y.; Bouley, R.; Chen, Y.; Matsuzaki, T.; Nunes, P.; Hasler, U.; Brown, D.; Lu, H.A.J. Simvastatin enhances aquaporin-2 surface expression and urinary concentration in vasopressin-deficient Brattleboro rats through modulation of Rho GTPase. Am. J. Physiol. Physiol. 2011, 301, F309–F318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes-Hasler, P.; Hasler, U.; McKee, M.; Lu, H.A.J.; Bouley, R.; Brown, D. A fluorimetry-based ssYFP secretion assay to monitor vasopressin-induced exocytosis in LLC-PK1 cells expressing aquaporin-2. Am. J. Physiol. Physiol. 2008, 295, C1476–C1487. [Google Scholar] [CrossRef] [Green Version]
- Knepper, M.A.; Nielsen, S. Kinetic model of water and urea permeability regulation by vasopressin in collecting duct. Am. J. Physiol. Physiol. 1993, 265, F214–F224. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.A.J.; Matsuzaki, T.; Eswara, J.; McKee, M.; Brown, D.; Sun, T.-X.; Yi, X.-H.; Bouley, R. Heat Shock Protein 70 Interacts with Aquaporin-2 and Regulates Its Trafficking*. J. Boil. Chem. 2007, 282, 28721–28732. [Google Scholar] [CrossRef] [Green Version]
- Moeller, H.B.; Fenton, R.A. Cell biology of vasopressin-regulated aquaporin-2 trafficking. Pflügers Archiv - Eur. J. Physiol. 2012, 464, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Moeller, H.B.; Praetorius, J.; Rutzler, M.; Fenton, R.A. Phosphorylation of aquaporin-2 regulates its endocytosis and protein–protein interactions. Proc. Natl. Acad. Sci. USA 2009, 107, 424–429. [Google Scholar] [CrossRef] [Green Version]
- Noda, Y.; Horikawa, S.; Kanda, E.; Yamashita, M.; Meng, H.; Eto, K.; Li, Y.; Kuwahara, M.; Hirai, K.; Pack, C.; et al. Reciprocal interaction with G-actin and tropomyosin is essential for aquaporin-2 trafficking. J. Cell Boil. 2008, 182, 587–601. [Google Scholar] [CrossRef] [Green Version]
- Yui, N.; Lu, H.J.; Bouley, R.; Brown, D. AQP2 is necessary for vasopressin- and forskolin-mediated filamentous actin depolymerization in renal epithelial cells. Boil. Open 2011, 1, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D. The ins and outs of aquaporin-2 trafficking. Am. J. Physiol. Physiol. 2003, 284, F893–F901. [Google Scholar] [CrossRef]
- Coleman, R.A.; Wu, D.C.; Liu, J.; Wade, J.B. Expression of aquaporins in the renal connecting tubule. Am. J. Physiol. Physiol. 2000, 279, F874–F883. [Google Scholar] [CrossRef] [PubMed]
- De Seigneux, S.; Nielsen, J.; Olesen, E.; Dimke, H.; Kwon, T.-H.; Frøkiær, J.; Nielsen, S. Long-term aldosterone treatment induces decreased apical but increased basolateral expression of AQP2 in CCD of rat kidney. Am. J. Physiol. Physiol. 2007, 293, F87–F99. [Google Scholar] [CrossRef] [PubMed]
- Jeon, U.S.; Joo, K.W.; Na, K.Y.; Kim, Y.S.; Lee, J.S.; Kim, J.; Kim, G.-H.; Nielsen, S.; Knepper, M.A.; Han, J.S. Oxytocin induces apical and basolateral redistribution of aquaporin-2 in rat kidney. Nephron 2003, 93, e36–e45. [Google Scholar] [CrossRef] [PubMed]
- Van Balkom, B.W.M.; Van Raak, M.; Breton, S.; Pastor-Soler, N.; Van Der Sluijs, P.; Brown, D.; Bouley, R.; Deen, P.M.T. Hypertonicity Is Involved in Redirecting the Aquaporin-2 Water Channel into the Basolateral, Instead of the Apical, Plasma Membrane of Renal Epithelial Cells. J. Boil. Chem. 2002, 278, 1101–1107. [Google Scholar] [CrossRef] [Green Version]
- Grindstaff, K.K.; Yeaman, C.; Anandasabapathy, N.; Hsu, S.C.; Rodriguez-Boulan, E.; Scheller, R.H.; Nelson, W.J. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 1998, 93, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Barile, M.; Pisitkun, T.; Yu, M.-J.; Chou, C.-L.; Verbalis, M.J.; Shen, R.-F.; Knepper, M.A. Large-Scale Protein Identification in Intracellular Aquaporin-2 Vesicles from Renal Inner Medullary Collecting Duct. Mol. Cell. Proteom. 2005, 4, 1095–1106. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Rice, W.; Gu, Z.; Li, J.; Huang, J.; Brenner, M.B.; Van Hoek, A.; Xiong, J.; Gundersen, G.G.; Norman, J.C.; et al. Aquaporin 2 Promotes Cell Migration and Epithelial Morphogenesis. J. Am. Soc. Nephrol. 2012, 23, 1506–1517. [Google Scholar] [CrossRef] [Green Version]
- Yui, N.; Lu, H.A.J.; Chen, Y.; Nomura, N.; Bouley, R.; Brown, D. Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel. Am. J. Physiol. Physiol. 2012, 304, C38–C48. [Google Scholar] [CrossRef] [Green Version]
- Loo, C.S.; Chen, C.-W.; Wang, P.-J.; Chen, P.-Y.; Lin, S.-Y.; Khoo, K.-H.; Fenton, R.A.; Knepper, M.A.; Yu, M.-J. Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells. Proc. Natl. Acad. Sci. USA 2013, 110, 17119–17124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, C.T. Caring about the other 47% of the water channels. Focus on "Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel". Am. J. Physiol. Physiol. 2012, 304, C33–C35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mykoniatis, A.; Shen, L.; Fedor-Chaiken, M.; Tang, J.; Tang, X.; Worrell, R.T.; Delpire, E.; Turner, J.R.; Matlin, K.S.; Bouyer, P.G.; et al. Phorbol 12-myristate 13-acetate-induced endocytosis of the Na-K-2Cl cotransporter in MDCK cells is associated with a clathrin-dependent pathway. Am. J. Physiol. Physiol. 2009, 298, C85–C97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yui, N.; Okutsu, R.; Sohara, E.; Rai, T.; Ohta, A.; Noda, Y.; Sasaki, S.; Uchida, S. FAPP2 is required for aquaporin-2 apical sorting at trans-Golgi network in polarized MDCK cells. Am. J. Physiol. Physiol. 2009, 297, C1389–C1396. [Google Scholar] [CrossRef]
- Deen, P.M.; Rijss, J.P.; Mulders, S.M.; Errington, R.J.; Van Baal, J.; Van Os, C.H. Aquaporin-2 transfection of Madin-Darby canine kidney cells reconstitutes vasopressin-regulated transcellular osmotic water transport. J. Am. Soc. Nephrol. 1997, 8, 1493–1501. [Google Scholar]
- Cheung, P.W.; Nomura, N.; Nair, A.V.; Pathomthongtaweechai, N.; Ueberdiek, L.; Lu, H.A.J.; Brown, D.; Bouley, R. EGF Receptor Inhibition by Erlotinib Increases Aquaporin 2–Mediated Renal Water Reabsorption. J. Am. Soc. Nephrol. 2016, 27, 3105–3116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouley, R.; Breton, S.; Sun, T.-X.; McLaughlin, M.; Nsumu, N.N.; Lin, H.Y.; Ausiello, D.A.; Brown, D. Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J. Clin. Investig. 2000, 106, 1115–1126. [Google Scholar] [CrossRef] [Green Version]
- Bouley, R.; Lu, H.A.J.; Nunes-Hasler, P.; Da Silva, N.; McLaughlin, M.; Chen, Y.; Brown, D. Calcitonin has a vasopressin-like effect on aquaporin-2 trafficking and urinary concentration. J. Am. Soc. Nephrol. 2010, 22, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, S.; Yui, N.; Noda, Y. Actin directly interacts with different membrane channel proteins and influences channel activities: AQP2 as a model. Biochim. Biophys. Acta (BBA) - Biomembr. 2014, 1838, 514–520. [Google Scholar] [CrossRef] [Green Version]
- Tajika, Y.; Matsuzaki, T.; Suzuki, T.; Aoki, T.; Hagiwara, H.; Kuwahara, M.; Sasaki, S.; Takata, K. Aquaporin-2 Is Retrieved to the Apical Storage Compartment via Early Endosomes and Phosphatidylinositol 3-Kinase-Dependent Pathway. Endocrinology 2004, 145, 4375–4383. [Google Scholar] [CrossRef]
- Simon, H.; Gao, Y.; Franki, N.; Hays, R.M. Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am. J. Physiol. Physiol. 1993, 265, C757–C762. [Google Scholar] [CrossRef] [PubMed]
- Harrold, M.W.; A Chang, Y.; A Wallace, R.; Farooqui, T.; Wallace, L.J.; Uretsky, N.; Miller, D.D. Charged analogues of chlorpromazine as dopamine antagonists. J. Med. Chem. 1987, 30, 1631–1635. [Google Scholar] [CrossRef]
- Prozialeck, W.C.; Wallace, T.L.; Weiss, B. Differential inhibition of calmodulin-sensitive phosphodiesterase and Ca++-adenosine triphosphatase by chlorpromazine-linked calmodulin. J. Pharmacol. Exp. Ther. 1987, 243, 171–179. [Google Scholar] [PubMed]
- Hernáez, B.; Alonso, C. Dynamin- and Clathrin-Dependent Endocytosis in African Swine Fever Virus Entry. J. Virol. 2009, 84, 2100–2109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieczkarski, S.B.; Whittaker, G.R. Dissecting virus entry via endocytosis. J. Gen. Virol. 2002, 83, 1535–1545. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.H.; Rothberg, K.G.; Anderson, R.G. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell Boil. 1993, 123, 1107–1117. [Google Scholar] [CrossRef]
- Milzani, A.D.G.; Dalle-Donne, I. Effects of Chlorpromazine on Actin Polymerization: Slackening of Filament Elongation and Filament Annealing. Arch. Biochem. Biophys. 1999, 369, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Hays, R.M.; Condeelis, J.; Gao, Y.; Simon, H.; Ding, G.; Franki, N. The effect of vasopressin on the cytoskeleton of the epithelial cell. Pediatr. Nephrol. 1993, 7, 672–679. [Google Scholar] [CrossRef]
- Tamma, G.; Carmosino, M.; Svelto, M.; Valenti, G. Bradykinin Signaling Counteracts cAMP-Elicited Aquaporin 2 Translocation in Renal Cells. J. Am. Soc. Nephrol. 2005, 16, 2881–2889. [Google Scholar] [CrossRef] [Green Version]
- Tamma, G.; Klussmann, E.; Maric, K.; Aktories, K.; Svelto, M.; Rosenthal, W.; Valenti, G. Rho inhibits cAMP-induced translocation of aquaporin-2 into the apical membrane of renal cells. Am. J. Physiol. Physiol. 2001, 281, F1092–F1101. [Google Scholar] [CrossRef] [Green Version]
- Tamma, G. cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI. J. Cell Sci. 2003, 116, 1519–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamma, G.; Wiesner, B.; Furkert, J.; Hahm, D.; Oksche, A.; Schaefer, M.; Valenti, G.; Rosenthal, W.; Klussmann, E. The prostaglandin E2 analogue sulprostone antagonizes vasopressin-induced antidiuresis through activation of Rho. J. Cell Sci. 2003, 116, 3285–3294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenti, G.; Procino, G.; Carmosino, M.; Frigeri, A.; Mannucci, R.; Nicoletti, I.; Svelto, M. The phosphatase inhibitor okadaic acid induces AQP2 translocation independently from AQP2 phosphorylation in renal collecting duct cells. J. Cell Sci. 2000, 113, 113. [Google Scholar]
- Ghosh, D.; Nieves-Cintron, M.; Tajada, S.; Brust-Mascher, I.; Horne, M.C.; Hell, J.W.; Dixon, R.E.; Santana, L.F.; Navedo, M.F. Dynamic L-type CaV1.2 channel trafficking facilitates CaV1.2 clustering and cooperative gating. Biochim. Biophys. Acta (BBA) - Bioenerg. 2018, 1865, 1341–1355. [Google Scholar] [CrossRef]
- Huang, J.; Imamura, T.; Babendure, J.L.; Lu, J.-C.; Olefsky, J. Disruption of Microtubules Ablates the Specificity of Insulin Signaling to GLUT4 Translocation in 3T3-L1 Adipocytes. J. Boil. Chem. 2005, 280, 42300–42306. [Google Scholar] [CrossRef] [Green Version]
- Karpushev, A.V.; Ilatovskaya, D.V.; Pavlov, T.S.; Negulyaev, Y.A.; Staruschenko, A. Intact Cytoskeleton Is Required for Small G Protein Dependent Activation of the Epithelial Na+ Channel. PLoS ONE 2010, 5, e8827. [Google Scholar] [CrossRef] [Green Version]
- Schappi, J.M.; Krbanjevic, A.; Rasenick, M.M. Tubulin, actin and heterotrimeric G proteins: Coordination of signaling and structure. Biochim. Biophys. Acta (BBA) - Bioenerg. 2013, 1838, 674–681. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.B.; Hogue, L.A.; Lipuma, J.J.; Walter, M.J.; Brody, S.L.; Cannon, C.L. Entry of Burkholderia organisms into respiratory epithelium: CFTR, microfilament and microtubule dependence. J. Cyst. Fibros. 2009, 9, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Klingner, C.; Cherian, A.V.; Fels, J.; Diesinger, P.M.; Aufschnaiter, R.; Maghelli, N.; Keil, T.; Beck, G.; Tolić, I.M.; Bathe, M.; et al. Isotropic actomyosin dynamics promote organization of the apical cell cortex in epithelial cells. J. Cell Boil. 2014, 207, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Tajika, Y.; Matsuzaki, T.; Suzuki, T.; Ablimit, A.; Aoki, T.; Hagiwara, H.; Kuwahara, M.; Sasaki, S.; Takata, K. Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochem. Cell Boil. 2005, 124, 1–12. [Google Scholar] [CrossRef]
- Devergne, O.; Tsung, K.; Barcelo, G.; Schüpbach, T. Polarized deposition of basement membrane proteins depends on Phosphatidylinositol synthase and the levels of Phosphatidylinositol 4,5-bisphosphate. Proc. Natl. Acad. Sci. USA 2014, 111, 7689–7694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiévet, B.; Louvard, D.; Arpin, M. ERM proteins in epithelial cell organization and functions. Biochim. Biophys. Acta (BBA) - Bioenerg. 2007, 1773, 653–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gassama-Diagne, A.; Yu, W.; Ter Beest, M.; Martin-Belmonte, F.; Kierbel, A.; Engel, J.; Mostov, K.E. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nature 2006, 8, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Martin-Belmonte, F.; Gassama, A.; Datta, A.; Yu, W.; Rescher, U.; Gerke, V.; Mostov, K. PTEN-Mediated Apical Segregation of Phosphoinositides Controls Epithelial Morphogenesis through Cdc42. Cell 2007, 128, 383–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, W.L.; Li, W.; Mamuya, F.; McKee, M.; Paunescu, T.; Lu, H.A.J. Polarized Trafficking of AQP2 Revealed in Three Dimensional Epithelial Culture. PLoS ONE 2015, 10, e0131719. [Google Scholar] [CrossRef] [Green Version]
- Yui, N.; Ando, F.; Sasaki, S.; Uchida, S. Ser-261 phospho-regulation is involved in pS256 and pS269-mediated aquaporin-2 apical translocation. Biochem. Biophys. Res. Commun. 2017, 490, 1039–1044. [Google Scholar] [CrossRef]
- Sun, T.-X.; Van Hoek, A.; Huang, Y.; Bouley, R.; McLaughlin, M.; Brown, D. Aquaporin-2 localization in clathrin-coated pits: Inhibition of endocytosis by dominant-negative dynamin. Am. J. Physiol. Physiol. 2002, 282, F998–F1011. [Google Scholar] [CrossRef] [Green Version]
- Procino, G.; Barbieri, C.; Carmosino, M.; Tamma, G.; Milano, S.; De Benedictis, L.; Mola, M.G.; Fernandez, Y.L.; Valenti, G.; Svelto, M. Fluvastatin modulates renal water reabsorption in vivo through increased AQP2 availability at the apical plasma membrane of collecting duct cells. Pflügers Archiv - Eur. J. Physiol. 2011, 462, 753–766. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouley, R.; Yui, N.; Terlouw, A.; Cheung, P.W.; Brown, D. Chlorpromazine Induces Basolateral Aquaporin-2 Accumulation via F-Actin Depolymerization and Blockade of Endocytosis in Renal Epithelial Cells. Cells 2020, 9, 1057. https://doi.org/10.3390/cells9041057
Bouley R, Yui N, Terlouw A, Cheung PW, Brown D. Chlorpromazine Induces Basolateral Aquaporin-2 Accumulation via F-Actin Depolymerization and Blockade of Endocytosis in Renal Epithelial Cells. Cells. 2020; 9(4):1057. https://doi.org/10.3390/cells9041057
Chicago/Turabian StyleBouley, Richard, Naofumi Yui, Abby Terlouw, Pui W. Cheung, and Dennis Brown. 2020. "Chlorpromazine Induces Basolateral Aquaporin-2 Accumulation via F-Actin Depolymerization and Blockade of Endocytosis in Renal Epithelial Cells" Cells 9, no. 4: 1057. https://doi.org/10.3390/cells9041057
APA StyleBouley, R., Yui, N., Terlouw, A., Cheung, P. W., & Brown, D. (2020). Chlorpromazine Induces Basolateral Aquaporin-2 Accumulation via F-Actin Depolymerization and Blockade of Endocytosis in Renal Epithelial Cells. Cells, 9(4), 1057. https://doi.org/10.3390/cells9041057