Aldosterone Decreases Vasopressin-Stimulated Water Reabsorption in Rat Inner Medullary Collecting Ducts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Tubule Perfusion
2.3. Tissue Incubation
2.4. Western Blot Analysis
2.5. Statistics
3. Results
3.1. Aldosterone Decreases Osmotic Water Permeability
3.2. Aldosterone Phosphorylates AQP2
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Terker, A.S.; Ellison, D.H. Renal mineralocorticoid receptor and electrolyte homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R1068–R1070. [Google Scholar]
- Fuller, P.J.; Young, M.J. Mechanisms of mineralocorticoid action. Hypertension 2005, 46, 1227–1235. [Google Scholar]
- Scott, J.H.; Dunn, R.J. Physiology, Aldosterone; StatPearls: Treasure Island, FL, USA, 2019. [Google Scholar]
- Cheng, L.; Poulsen, S.B.; Wu, Q.; Esteva-Font, C.; Olesen, E.T.B.; Peng, L.; Olde, B.; Leeb-Lundberg, L.M.F.; Pisitkun, T.; Rieg, T.; et al. Rapid Aldosterone-Mediated Signaling in the DCT Increases Activity of the Thiazide-Sensitive NaCl Cotransporter. J. Am. Soc. Nephrol. 2019, 30, 1454–1470. [Google Scholar] [PubMed]
- Pergher, P.S.; Leite-Dellova, D.; de Mello-Aires, M. Direct action of aldosterone on bicarbonate reabsorption in in vivo cortical proximal tubule. Am. J. Physiol. Renal Physiol. 2009, 296, F1185–F1193. [Google Scholar]
- Aboudehen, K.; Noureddine, L.; Cobo-Stark, P.; Avdulov, S.; Farahani, S.; Gearhart, M.D.; Bichet, D.G.; Pontoglio, M.; Patel, V.; Igarashi, P. Hepatocyte Nuclear Factor-1beta Regulates Urinary Concentration and Response to Hypertonicity. J. Am. Soc. Nephrol. 2017, 28, 2887–2900. [Google Scholar] [PubMed] [Green Version]
- Boldyreff, B.; Wehling, M. Non-genomic actions of aldosterone: Mechanisms and consequences in kidney cells. Nephrol. Dial. Transplant. 2003, 18, 1693–1695. [Google Scholar]
- Boldyreff, B.; Wehling, M. Rapid aldosterone actions: From the membrane to signaling cascades to gene transcription and physiological effects. J. Steroid Biochem. Mol. Biol. 2003, 85, 375–381. [Google Scholar]
- Good, D.W. Nongenomic actions of aldosterone on the renal tubule. Hypertension 2007, 49, 728–739. [Google Scholar] [PubMed] [Green Version]
- Sheader, E.A.; Wargent, E.T.; Ashton, N.; Balment, R.J. Rapid stimulation of cyclic AMP production by aldosterone in rat inner medullary collecting ducts. J. Endocrinol. 2002, 175, 343–347. [Google Scholar]
- Tumlin, J.A.; Lea, J.P.; Swanson, C.E.; Smith, C.L.; Edge, S.S.; Someren, J.S. Aldosterone and dexamethasone stimulate calcineurin activity through a transcription-independent mechanism involving steroid receptor-associated heat shock proteins. J. Clin. Invest. 1997, 99, 1217–1223. [Google Scholar]
- Ilori, T.O.; Wang, Y.; Blount, M.A.; Martin, C.F.; Sands, J.M.; Klein, J.D. Acute calcineurin inhibition with tacrolimus increases phosphorylated UT-A1. Am. J. Physiol. Renal Physiol. 2012, 302, F998–F1004. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Yang, B.; Ruiz, J.A.; Efe, O.; Ilori, T.O.; Sands, J.M.; Klein, J.D. Phosphatase inhibition increases AQP2 accumulation in the rat IMCD apical plasma membrane. Am. J. Physiol. Renal Physiol. 2016, 311, F1189–F1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sands, J.M.; Nonoguchi, H.; Knepper, M.A. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am. J. Physiol. 1987, 253, F823–F832. [Google Scholar] [CrossRef]
- Brown, D.; Fenton, R.A. The cell biology of vasopressin action. In Brenner and Rector’s The Kidney; Taal, M.W., Chertow, G.M., Marsden, P.A., Skorecki, K., Yu, A.S.L., Brenner, B.M., Eds.; Elsevier: Philadelphia, PA, USA, 2011; pp. 353–383. [Google Scholar]
- Chou, C.L.; Yip, K.P.; Michea, L.; Kador, K.; Ferraris, J.D.; Wade, J.B.; Knepper, M.A. Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct. Roles of ryanodine-sensitive Ca2+ stores and calmodulin. J. Biol. Chem. 2000, 275, 36839–36846. [Google Scholar] [CrossRef] [Green Version]
- Knepper, M.A.; Inoue, T. Regulation of aquaporin-2 water channel trafficking by vasopressin. Curr. Opin. Cell Biol. 1997, 9, 560–564. [Google Scholar] [CrossRef]
- Hoffert, J.D.; Pisitkun, T.; Wang, G.; Shen, R.F.; Knepper, M.A. Quantitative phosphoproteomics of vasopressin-sensitive renal cells: Regulation of aquaporin-2 phosphorylation at two sites. Proc. Natl. Acad. Sci. USA 2006, 103, 7159–7164. [Google Scholar] [CrossRef] [Green Version]
- Wall, S.M.; Suk Han, J.; Chou, C.-L.; Knepper, M.A. Kinetics of urea and water permeability activation by vasopressin in rat terminal IMCD. Am. J. Physiol. 1992, 262, F989–F998. [Google Scholar] [CrossRef]
- Zhang, C.; Sands, J.M.; Klein, J.D. Vasopressin rapidly increases phosphorylation of UT-A1 urea transporter in rat IMCDs through PKA. Am. J. Physiol. Renal Physiol. 2002, 282, F85–F90. [Google Scholar] [CrossRef] [Green Version]
- Gertner, R.A.; Klein, J.D.; Bailey, J.L.; Kim, D.-U.; Luo, X.H.; Bagnasco, S.M.; Sands, J.M. Aldosterone decreases UT-A1 urea transporter expression via the mineralocorticoid receptor. J. Am. Soc. Nephrol. 2004, 15, 558–565. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, J.; Kwon, T.H.; Praetorius, J.; Frokiaer, J.; Knepper, M.A.; Nielsen, S. Aldosterone increases urine production and decreases apical AQP2 expression in rats with diabetes insipidus. Am. J. Physiol. Renal Physiol. 2006, 290, F438–F449. [Google Scholar] [CrossRef] [Green Version]
- Nadler, S.P. Effects of hypertonicity on ADH-stimulated water permeability in rat inner medullary collecting duct. Am. J. Physiol. 1990, 258, F266–F272. [Google Scholar] [CrossRef]
- Knepper, M.A.; Good, D.W.; Burg, M.B. Ammonia and bicarbonate transport by rat cortical collecting ducts perfused in vitro. Am. J. Physiol. 1985, 249, F870–F877. [Google Scholar] [CrossRef] [PubMed]
- Sands, J.M.; Knepper, M.A. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J. Clin. Invest. 1987, 79, 138–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lankford, S.P.; Chou, C.-L.; Terada, Y.; Wall, S.M.; Wade, J.B.; Knepper, M.A. Regulation of collecting duct water permeability independent of cAMP-mediated AVP response. Am. J. Physiol. 1991, 261, F554–F566. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods; Iowa State University Press: Iowa City, IA, USA, 1980. [Google Scholar]
- Jonassen, T.E.N.; Promeneur, D.; Christensen, S.; Petersen, J.S.; Nielsen, S. Decreased vasopressin-mediated renal water reabsorption in rats with chronic aldosterone-receptor blockade. Am. J. Physiol. Renal Physiol. 2000, 278, F246–F256. [Google Scholar] [CrossRef]
- Wenner, M.M.; Stachenfeld, N.S. Blood pressure and water regulation: Understanding sex hormone effects within and between men and women. J. Physiol. 2012, 590, 5949–5961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D.; Hasler, U.; Nunes, P.; Bouley, R.; Lu, H. Phosphorylation events and the modulation of aquaporin 2 cell surface expression. Curr. Opin. Nephrol. Hypertens. 2010, 17, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Hoffert, J.D.; Nielsen, J.; Yu, M.J.; Pisitkun, T.; Schleicher, S.M.; Nielsen, S.; Knepper, M.A. Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. Am. J. Physiol. Renal Physiol. 2007, 292, F691–F700. [Google Scholar] [CrossRef]
- Lee, B.H.; Kwon, T.H. Regulation of AQP2 in Collecting Duct: An emphasis on the Effects of Angiotensin II or Aldosterone. Electrolyte Blood Press. 2007, 5, 15–22. [Google Scholar] [CrossRef]
- Schild, L. The epithelial sodium channel and the control of sodium balance. Biochim. Biophys. Acta 2010, 1802, 1159–1165. [Google Scholar] [CrossRef] [Green Version]
- Hasler, U.; Mordasini, D.; Bianchi, M.; Vandewalle, A.; Féraille, E.; Pierre-Yves, M. Dual influence of aldosterone on AQP2 expression in cultured renal collecting duct principal cells. J. Biol. Chem. 2003, 278, 21639–21648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sands, J.M. Molecular mechanisms of urea transport. J. Membr. Biol. 2003, 191, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Blount, M.A.; Klein, J.D.; Martin, C.F.; Tchapyjnikov, D.; Sands, J.M. Forskolin stimulates phosphorylation and membrane accumulation of UT-A3. Am. J. Physiol. Renal Physiol. 2007, 293, F1308–F1313. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ma, F.; Rodriguez, E.L.; Klein, J.D.; Sands, J.M. Aldosterone Decreases Vasopressin-Stimulated Water Reabsorption in Rat Inner Medullary Collecting Ducts. Cells 2020, 9, 967. https://doi.org/10.3390/cells9040967
Wang Y, Ma F, Rodriguez EL, Klein JD, Sands JM. Aldosterone Decreases Vasopressin-Stimulated Water Reabsorption in Rat Inner Medullary Collecting Ducts. Cells. 2020; 9(4):967. https://doi.org/10.3390/cells9040967
Chicago/Turabian StyleWang, Yanhua, Fuying Ma, Eva L. Rodriguez, Janet D. Klein, and Jeff M. Sands. 2020. "Aldosterone Decreases Vasopressin-Stimulated Water Reabsorption in Rat Inner Medullary Collecting Ducts" Cells 9, no. 4: 967. https://doi.org/10.3390/cells9040967
APA StyleWang, Y., Ma, F., Rodriguez, E. L., Klein, J. D., & Sands, J. M. (2020). Aldosterone Decreases Vasopressin-Stimulated Water Reabsorption in Rat Inner Medullary Collecting Ducts. Cells, 9(4), 967. https://doi.org/10.3390/cells9040967