The Expression of microRNA in Adult Rat Heart with Isoproterenol-Induced Cardiac Hypertrophy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Treatment
2.3. Small RNA Sequencing
2.4. Analysis of Sequencing Data
2.5. Target Prediction and Functional Annotation of Target Genes
2.6. Real-Time Quantitative PCR
2.7. Cell Culture and Transfection
2.8. Dual Luciferase Reporting System
2.9. Statistical Analysis
3. Results
3.1. Isoproterenol-Induced Cardiac Hypertrophy in Rats
3.2. Overview of microRNAs Sequencing Data
3.3. Expression Character Analysis of miRNAs in Rat Myocardium
3.4. RT-qPCR Validation of the Differentially Expressed miRNAs
3.5. miRNA Target Prediction, GO, and KEGG Pathway Analyses
3.6. miR-144 Regulates Isoproterenol-Induced Cardiac Hypertrophy by Targeting ANP
3.7. miR-144 Regulates Cardiac Hypertrophy by Targeting ANP and is Regulated by LncMIAT
4. Discussion
4.1. The miRNA Characteristics of Isoprenaline-Induced Cardiac Hypertrophy
4.2. New Molecular Mechanism of Isoprenaline-Induced Cardiac Hypertrophy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Feygin, J.; Mhashilkar, A.; Deans, R.; Zhang, J. Cellular therapy for myocardial repair. Curr. Cardiol. Rev. 2007, 3, 121–135. [Google Scholar] [CrossRef]
- Sugden, P. Signaling in myocardial hypertrophy life after calcineurin? Circ. Res. 1999, 84, 633–646. [Google Scholar] [CrossRef] [Green Version]
- Metra, M.; Teerlink, J. Heart failure. Lancet 2017, 390, 1981–1995. [Google Scholar] [CrossRef]
- Turner, H.; Wass, J. Growth hormone in the treatment of dilated cardiomyopathy. N. Engl. J. Med. 1996, 335, 672, author reply 673-674. [Google Scholar]
- Yu, H.; Guo, Y.; Mi, L.; Wang, X.; Li, L.; Gao, W. Mitofusin 2 inhibits angiotensin ii-induced myocardial hypertrophy. J. Cardiovasc. Pharmacol. Ther. 2010, 16, 205–211. [Google Scholar] [CrossRef]
- Stanek, M.; Picard, L.-P.; Schmidt, M.; Kaindl, J.; Huebner, H.; Bouvier, M.; Weikert, D.; Gmeiner, P. Hybridization of β-adrenergic agonists and antagonists confers g protein bias. J. Med. Chem. 2019, 62, 5111–5131. [Google Scholar] [CrossRef] [PubMed]
- Dokukin, A. The construction of a recognition algorithm in the algebraic closure. Comput. Math. Math. Phys. 2001, 41, 1811–1815. [Google Scholar]
- Gan, M.; Zheng, T.; Shen, L.-Y.; Tan, Y.; Fan, Y.; Shuai, S.; Bai, L.; Li, X.; Wang, J.; Zhang, S.; et al. Genistein reverses isoproterenol-induced cardiac hypertrophy by regulating mir-451/timp2. Biomed. Pharmacother. 2019, 112, 108618. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lan, Y.; Wang, Y.; Nie, M.; Lu, Y.; Zhao, E. Telmisartan suppresses cardiac hypertrophy by inhibiting cardiomyocyte apoptosis via the nfat/anp/bnp signaling pathway. Mol. Med. Rep. 2017, 15, 2574–2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, C.; Kang, C.-W.; Kim, S.; Kim, S. Augmentation of moxonidine-induced increase in anp release by atrial hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H150–H156. [Google Scholar] [CrossRef] [Green Version]
- Nobata, S.; Ventura, A.; Kaiya, H.; Takei, Y. Diversified cardiovascular actions of six homologous natriuretic peptides (anp, bnp, vnp, cnp1, cnp3, and cnp4) in conscious eels. Am. J. Physiology. Regul. Integr. Comp. Physiol. 2010, 298, R1549–R1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anees Ahmed, S.; Lahiri, S.; Mohan, D.; Valicherla, G.; Gupta, A.; Kumar, S.; Maurya, R.; Bora, H.; Hanif, K.; Gayen, J. Cardioprotective effect of ulmus wallichiana planchon in β-adrenergic agonist induced cardiac hypertrophy. Front. Pharmacol. Ethnopharmacol. 2016, 7, 510. [Google Scholar]
- Griffiths-Jones, S. The microrna registry. Nucleic Acids Res. 2004, 32, D109–D111. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X. The function of mirna in cardiac hypertrophy. Cell. Mol. Life Sci. 2012, 69, 3561–3570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geisler, S.; Coller, J. RNA in unexpected places: Long non-coding RNA functions in diverse cellular contexts. Nat. Rev. Mol. Cell Biol. 2013, 14, 699–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azat, M.; Huojiahemaiti, X.; Gao, R.; Peng, P. Long noncoding RNA MIAT: A potential role in the diagnosis and mediation of acute myocardial infarction. Mol. Med. Rep. 2019, 20, 5216–5222. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, W.; Jin, M.; Chen, J.; Xu, W.; Kong, X. Lncrna miat functions as a competing endogenous RNA to upregulate dapk2 by sponging mir-22-3p in diabetic cardiomyopathy. Cell Death Dis. 2017, 8, e2929. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Zhang, Y. Myocardial infarction-related transcripts (miat) participate in diabetic optic nerve injury by regulating heart shock protein 5 (hspa5) via competitively binding to microrna-379. Med. Sci. Monit. 2019, 25, 2096–2103. [Google Scholar] [CrossRef]
- Shen, L.-Y.; Tan, Z.; Jiang, D.; Jiang, Y.; Li, M.; Wang, J.; Li, X.; Zhang, S.; Zhu, L. A novel class of tRNA-derived small non-coding RNAs respond to myocardial hypertrophy and contribute to intergenerational inheritance. Biomolecules 2018, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Zhong, T.; Hu, J.; Xiao, P.; Zhan, S.; Wang, L.; Guo, J.; Li, L.; Zhang, H.; Niu, L. Identification and characterization of micrornas in the goat (capra hircus) rumen during embryonic development. Front. Genet. 2017, 8, 163. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics (Oxf. Engl.) 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, V.; Bell, G.; Nam, J.-W.; Bartel, D. Predicting effective microrna target sites in mammalian mrnas. eLife 2015, 4, e05005. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, X. Prediction of functional microrna targets by integrative modeling of microrna binding and target expression data. Genome Biol. 2019, 20, 18. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Simpson, P.; Savion, S. Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Cross-striations, ultrastructure, and chronotropic response to isoproterenol. Circ. Res. 1982, 50, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Welder, A.; Dickson, L.; Melchert, R. Cocaethylene toxicity in rat primary myocardial cell cultures. Alcohol 1993, 10, 285–290. [Google Scholar] [CrossRef]
- Sen, S. Myocardial response to stress in cardiac hypertrophy and heart failure: Effect of antihypertensive drugsa. Ann. N. Y. Acad. Sci. 1999, 874, 125–133. [Google Scholar] [CrossRef]
- Frey, N.; Olson, E.N. Cardiac hypertrophy: The good, the bad, and the ugly. Annu. Rev. Physiol. 2003, 65, 45–79. [Google Scholar] [CrossRef]
- Lu, T.X.; Rothenberg, M.E. Microrna. J. Allergy Clin. Immunol. 2018, 141, 1202–1207. [Google Scholar] [CrossRef] [Green Version]
- McGahon, M.K.; Yarham, J.M.; Daly, A.; Guduric-Fuchs, J.; Ferguson, L.J.; Simpson, D.A.; Collins, A. Distinctive profile of isomir expression and novel micrornas in rat heart left ventricle. PLoS ONE 2013, 8, e65809. [Google Scholar] [CrossRef] [Green Version]
- Hirt, M.N.; Werner, T.; Indenbirken, D.; Alawi, M.; Demin, P.; Kunze, A.-C.; Stenzig, J.; Starbatty, J.; Hansen, A.; Fiedler, J. Deciphering the microrna signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology. J. Mol. Cell. Cardiol. 2015, 81, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.P.; Chen, J.; Seok, H.Y.; Zhang, Z.; Kataoka, M.; Hu, X.; Wang, D.-Z. Microrna-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ. Res. 2013, 112, 1234–1243. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Xie, Q.; Wang, L.; Lu, Y.; Liu, P.; Yang, P.; Chen, R.; Shao, C.; Qiao, C.; Wang, Z.; et al. The tir/bb-loop mimetic as-1 prevents ang ii-induced hypertensive cardiac hypertrophy via nf-κb dependent downregulation of mirna-143. Sci. Rep. 2019, 9, 6354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, L.; Lin, S.; Lv, C. Mir-26a-5p regulates cardiac fibroblasts collagen expression by targeting ulk1. Sci. Rep. 2018, 8, 2104. [Google Scholar] [CrossRef]
- Pan, Z.W.; Lu, Y.J.; Zhang, Y.; Wang, N.; Dong, D.L.; Yang, B.F. Enhanced expression of let-7f after ischemic preconditioning in rat heart is cardioprotective. J. Mol. Cell. Cardiol. 2008, 44, 736. [Google Scholar] [CrossRef]
- Ganesan, J.; Ramanujam, D.; Sassi, Y.; Ahles, A.; Jentzsch, C.; Werfel, S.; Leierseder, S.; Loyer, X.; Giacca, M.; Zentilin, L. Mir-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation 2013, 127, 2097–2106. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Xie, C.; Zhang, Z. Mir-27b expression and significance of pulmonary hypertension in congenital heart disease. Heart 2012, 98, E244–E245. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Ma, G.; Yue, Y.; Wei, Y.; Li, Q.; Tong, Z.; Zhang, L.; Miao, G.; Zhang, J. Downregulation of the mir-30 family micrornas contributes to endoplasmic reticulum stress in cardiac muscle and vascular smooth muscle cells. Int. J. Cardiol. 2014, 173, 65–73. [Google Scholar] [CrossRef]
- Marques, F.Z.; Vizi, D.; Khammy, O.; Mariani, J.A.; Kaye, D.M. The transcardiac gradient of cardio-micrornas in the failing heart. Eur. J. Heart Fail. 2016, 18, 1000–1008. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.-L.; Cheng, M.; Hu, S.; Wang, S.; Wang, L.; Tu, X.; Huang, C.-X.; Jiang, H.; Wu, G. Overexpression of mir-142-3p improves mitochondrial function in cardiac hypertrophy. Biomed. Pharmacother. 2018, 108, 1347–1356. [Google Scholar] [CrossRef]
- Qi, J.; Luo, X.; Ma, Z.; Zhang, B.; Li, S.; Zhang, J. Downregulation of mir-26b-5p, mir-204-5p, and mir-497-3p expression facilitates exercise-induced physiological cardiac hypertrophy by augmenting autophagy in rats. Front. Genet. 2020, 11, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, S.; Aibin, H.; Sek Won, K.; Lu, J.; Bejar, R.; Bodyak, N.; Kyu-Ho, L.; Qing, M.; Kang, P.M.; Golub, T.R.; et al. Microrna-1 negatively regulates expression of the hypertrophy-associated calmodulin and mef2a genes. Mol. Cell. Biol. 2009, 29, 2193–2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwabara, Y.; Horie, T.; Baba, O.; Watanabe, S.; Nishiga, M.; Usami, S.; Izuhara, M.; Nakao, T.; Nishino, T.; Otsu, K.; et al. Microrna-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the lkb1/ampk pathway. Circ. Res. 2015, 116, 279–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickson, B. Molecular mechanisms of axon guidance. Science 2003, 298, 1959–1964. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.-B.; Chen, N.; Xuueming, Z.; Su, Z.-Z.; Wang, J.-Y.; Lu, J.-P.; Liu, X.-H.; Lin, F.-C. The casein kinase moyck1 regulates development, autophagy, and virulence in the rice blast fungus. Virulence 2019, 10, 719–733. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-M.; Peng, H.; Cui, M.; Whitney, N.; Huang, Y.; Zheng, J. Cxcl12 increases human neural progenitor cell proliferation through akt-1/foxo3a signaling pathway. J. Neurochem. 2009, 109, 1157–1167. [Google Scholar] [CrossRef] [Green Version]
- Moon, R.; Boutros, M.; Perrimon, N. The promise and perils of wnt signaling through beta -catenin. Science 2002, 296, 1644–1646. [Google Scholar] [CrossRef]
- Sun, J.; Yang, J.; Chi, J.; Ding, X.; Lv, N. Identification of drug repurposing candidates based on a mirna-mediated drug and pathway network for cardiac hypertrophy and acute myocardial infarction. Hum. Genom. 2018, 12, 52. [Google Scholar] [CrossRef]
- Ramos, A.; Camargo, F. The hippo signaling pathway and stem cell biology. Trends Cell Biol. 2012, 22, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.-M.; Wan, F.-S. Hippo signaling pathway in mammals: A new therapeutic target for tumors. Yi Chuan Hered. 2012, 34, 269–280. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, Y.; Wu, J.; Wen, J.; Li, S.; Zhang, L.; Zhang, J.; Li, Y.; Li, J. Epigallocatechin-3-gallate inhibits angiotensin ii-induced cardiomyocyte hypertrophy via regulating hippo signaling pathway in h9c2 rat cardiomyocytes. Acta Biochim. Biophys. Sin. 2019, 51, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Windmueller, R.; Morrisey, E. Hippo and cardiac hypertrophy: A complex interaction. Circ. Res. 2015, 117, 832–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruk, Z.; Pycock, C. Dopamine. In Neurotransmitters and Drugs; Springer: Dordrecht, The Netherlands, 1991; pp. 87–115. [Google Scholar]
- Tao, L.; Huang, X.; Xu, M.; Yang, L.; Hua, F. Mir-144 protects the heart from hyperglycemia-induced injury by regulating mitochondrial biogenesis and cardiomyocyte apoptosis. FASEB J. 2020, 34, 2173–2197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Wang, S.; Yu, W.; Cao, J.; Deng, F. Malat1/mir-144/brg1: A potential regulated axis of inflammation in myocardial ischemia-reperfusion injury. Int. J. Cardiol. 2019, 283, 151. [Google Scholar] [CrossRef]
- Li, J.; Cai, S.; He, Q.; Zhang, H.; Friedberg, D.; Wang, F.; Redington, A. Intravenous mir-144 reduces left ventricular remodeling after myocardial infarction. Basic Res. Cardiol. 2018, 113, 36. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Zhang, J.-F.; Xu, J.; Xu, L.-L.; Wu, T.-Y.; Wang, B.; Pan, X.; Li, G. Microrna-144-3p inhibits bone formation in distraction osteogenesis through targeting connexin 43. Oncotarget 2017, 8, 89913–89922. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D. Microrna target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Chipman, L.B.; Pasquinelli, A.E. Mirna targeting: Growing beyond the seed. Trends Genet. 2019, 35, 215–222. [Google Scholar] [CrossRef]
- Cheng, W.; Li, X.-W.; Xiao, Y.-Q.; Duan, S.-B. Non-coding rna-associated cerna networks in a new contrast-induced acute kidney injury rat model. Mol. Ther. Nucleic Acids 2019, 17, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, J.; Sun, L.; Zhu, S. Lncrna myocardial infarction-associated transcript (miat) contributed to cardiac hypertrophy by regulating tlr4 via mir-93. Eur. J. Pharmacol. 2018, 818, 508–517. [Google Scholar] [CrossRef]
- Lai, Y.; He, S.; Ma, L.; Lin, H.; Ren, B.; Ma, J.; Zhu, X.; Zhuang, S. Hotair functions as a competing endogenous rna to regulate pten expression by inhibiting mir-19 in cardiac hypertrophy. Mol. Cell. Biochem. 2017, 432, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Zhou, X.; Huang, J. Long non-coding rna-ror mediates the reprogramming in cardiac hypertrophy. PLoS ONE 2016, 11, e0152767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lantao, L.; Xiangbo, A.; Zhenhua, L.; Yao, S.; Linling, L.; Song, Z.; Nian, L.; Guan, Y.; Haijing, W.; Xuan, C.; et al. The h19 long noncoding rna is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc. Res. 2016, 111, 56–65. [Google Scholar]
- Sun, J.; Wang, C. Long non-coding RNAs in cardiac hypertrophy. Heart Fail. Rev. 2019. [Google Scholar] [CrossRef] [PubMed]
- Li, T.-F.; Liu, J.; Fu, S.-J. The interaction of long non-coding rna miat and mir-133 play a role in the proliferation and metastasis of pancreatic carcinoma. Biomed. Pharmacother. 2018, 104, 145–150. [Google Scholar] [CrossRef]
Sample | Control Group | ISO Group | ||||
---|---|---|---|---|---|---|
NC-1 | NC-2 | NC-3 | ISO-1 | ISO-2 | ISO-3 | |
Total Raw Reads | 26418839 | 32847346 | 28446923 | 31732589 | 22959111 | 22024011 |
Low Quality Reads | 436 | 600 | 605 | 477 | 726 | 738 |
Poly A/T Rate (%) | 5.09 | 4.54 | 3.75 | 5.29 | 4.53 | 4.69 |
Ex-length Rate (%) | 1.38 | 1.44 | 0.78 | 3.8 | 1.45 | 1.44 |
Clean Reads Rate (%) | 90.71 | 90.31 | 91.23 | 87.85 | 87.4 | 86.59 |
Clean Reads Q30 (%) | 98.48 | 98.42 | 98.09 | 98.58 | 95.58 | 95.25 |
Mapping Rate (%) | 93.95 | 93.49 | 97 | 93.75 | 86.23 | 86.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, M.; Zhang, S.; Fan, Y.; Tan, Y.; Guo, Z.; Chen, L.; Bai, L.; Jiang, D.; Hao, X.; Li, X.; et al. The Expression of microRNA in Adult Rat Heart with Isoproterenol-Induced Cardiac Hypertrophy. Cells 2020, 9, 1173. https://doi.org/10.3390/cells9051173
Gan M, Zhang S, Fan Y, Tan Y, Guo Z, Chen L, Bai L, Jiang D, Hao X, Li X, et al. The Expression of microRNA in Adult Rat Heart with Isoproterenol-Induced Cardiac Hypertrophy. Cells. 2020; 9(5):1173. https://doi.org/10.3390/cells9051173
Chicago/Turabian StyleGan, Mailin, Shunhua Zhang, Yuan Fan, Ya Tan, Zhixian Guo, Lei Chen, Lin Bai, Dongmei Jiang, Xiaoxia Hao, Xuewei Li, and et al. 2020. "The Expression of microRNA in Adult Rat Heart with Isoproterenol-Induced Cardiac Hypertrophy" Cells 9, no. 5: 1173. https://doi.org/10.3390/cells9051173
APA StyleGan, M., Zhang, S., Fan, Y., Tan, Y., Guo, Z., Chen, L., Bai, L., Jiang, D., Hao, X., Li, X., Shen, L., & Zhu, L. (2020). The Expression of microRNA in Adult Rat Heart with Isoproterenol-Induced Cardiac Hypertrophy. Cells, 9(5), 1173. https://doi.org/10.3390/cells9051173