Umbilical Cord MSCs and Their Secretome in the Therapy of Arthritic Diseases: A Research and Industrial Perspective
Abstract
:1. Introduction
2. Features of MSCs from the Umbilical Cord
3. Cord Blood and Wharton’s Jelly MSCs for OA and RA Therapy
4. Secretome of Cord Blood and Wharton’s Jelly MSC for OA and RA Therapy
5. Discussion
5.1. Open Clinical Challenges
5.2. Open Industrial Challenges
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smolen, J.S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid arthritis. Nat. Rev. Dis. Prim. 2018, 4, 18001. [Google Scholar] [CrossRef] [PubMed]
- van der Kraan, P.M.; van den Berg, W.B. Osteoarthritis in the context of ageing and evolution. Loss of chondrocyte differentiation block during ageing. Ageing Res. Rev. 2008, 7, 106–113. [Google Scholar] [CrossRef]
- Xia, B.; Di, C.; Zhang, J.; Hu, S.; Jin, H.; Tong, P. Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcif. Tissue Int. 2014, 95, 495–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenham, C.Y.; Conaghan, P.G. New horizons in osteoarthritis. Age Ageing 2013, 42, 272–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafarzadeh, S.R.; Felson, D.T. Updated estimates suggest a much higher prevalence of arthritis in united states adults than previous ones. Arthritis Rheumatol. 2018, 70, 185–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Schoor, N.M.; Zambon, S.; Castell, M.V.; Cooper, C.; Denkinger, M.; Dennison, E.M.; Edwards, M.H.; Herbolsheimer, F.; Maggi, S.; Sanchez-Martinez, M.; et al. Impact of clinical osteoarthritis of the hip, knee and hand on self-rated health in six European countries: The European Project on OSteoArthritis. Qual. Life Res. 2016, 25, 1423–1432. [Google Scholar] [CrossRef] [Green Version]
- Bijlsma, J.W.; Berenbaum, F.; Lafeber, F.P. Osteoarthritis: An update with relevance for clinical practice. Lancet 2011, 377, 2115–2126. [Google Scholar] [CrossRef]
- Liu-Bryan, R.; Terkeltaub, R. Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol. 2015, 11, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Rutjes, A.W.; Juni, P.; da Costa, B.R.; Trelle, S.; Nuesch, E.; Reichenbach, S. Viscosupplementation for osteoarthritis of the knee: A systematic review and meta-analysis. Ann. Intern. Med. 2012, 157, 180–191. [Google Scholar] [CrossRef]
- Chen, P.; Huang, L.; Ma, Y.; Zhang, D.; Zhang, X.; Zhou, J.; Ruan, A.; Wang, Q. Intra-articular platelet-rich plasma injection for knee osteoarthritis: A summary of meta-analyses. J. Orthop. Surg. Res. 2019, 14, 385. [Google Scholar] [CrossRef]
- Filardo, G.; Kon, E. Prp: Product rich in placebo? Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2016, 24, 3702–3703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Ma, J.; Han, J.; Zhang, W.; Ma, J. Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis. Am. J. Transl. Res. 2019, 11, 6275–6289. [Google Scholar] [PubMed]
- Ullah, I.; Subbarao, R.B.; Rho, G.J. Human mesenchymal stem cells-current trends and future prospective. Biosci. Rep. 2015, 35, e00191. [Google Scholar] [CrossRef] [PubMed]
- Mamidi, M.K.; Das, A.K.; Zakaria, Z.; Bhonde, R. Mesenchymal stromal cells for cartilage repair in osteoarthritis. Osteoarthr. Cartil. 2016, 24, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Caplan, A.I. Mesenchymal stem cells: Time to change the name! Stem Cells Transl. Med. 2017, 6, 1445–1451. [Google Scholar] [CrossRef] [Green Version]
- D’Arrigo, D.; Roffi, A.; Cucchiarini, M.; Moretti, M.; Candrian, C.; Filardo, G. Secretome and extracellular vesicles as new biological therapies for knee osteoarthritis: A systematic review. J. Clin. Med. 2019, 8, 1867. [Google Scholar] [CrossRef] [Green Version]
- Barile, L.; Vassalli, G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol. Ther. 2017, 174, 63–78. [Google Scholar] [CrossRef] [Green Version]
- Lopa, S.; Colombini, A.; Moretti, M.; de Girolamo, L. Injective mesenchymal stem cell-based treatments for knee osteoarthritis: From mechanisms of action to current clinical evidences. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2019, 27, 2003–2020. [Google Scholar] [CrossRef] [Green Version]
- Liau, L.L.; Ruszymah, B.H.I.; Ng, M.H.; Law, J.X. Characteristics and clinical applications of wharton’s jelly-derived mesenchymal stromal cells. Curr. Res. Transl. Med. 2019, 68, 5–16. [Google Scholar] [CrossRef]
- Nagamura-Inoue, T.; He, H. Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J. Stem Cells 2014, 6, 195–202. [Google Scholar] [CrossRef]
- Lee, O.K.; Kuo, T.K.; Chen, W.M.; Lee, K.D.; Hsieh, S.L.; Chen, T.H. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004, 103, 1669–1675. [Google Scholar] [CrossRef] [Green Version]
- Romanov, Y.A.; Svintsitskaya, V.A.; Smirnov, V.N. Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate msc-like cells from umbilical cord. Stem Cells 2003, 21, 105–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borys-Wojcik, S.; Brazert, M.; Jankowski, M.; Ozegowska, K.; Chermula, B.; Piotrowska-Kempisty, H.; Bukowska, D.; Antosik, P.; Pawelczyk, L.; Nowicki, M.; et al. Human wharton’s jelly mesenchymal stem cells: Properties, isolation and clinical applications. J. Boil. Regul. Homeost. Agents 2019, 33, 119–123. [Google Scholar]
- Bharti, D.; Shivakumar, S.B.; Park, J.K.; Ullah, I.; Subbarao, R.B.; Park, J.S.; Lee, S.L.; Park, B.W.; Rho, G.J. Comparative analysis of human wharton’s jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell Tissue Res. 2018, 372, 51–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kern, S.; Eichler, H.; Stoeve, J.; Kluter, H.; Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006, 24, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Secco, M.; Zucconi, E.; Vieira, N.M.; Fogaca, L.L.; Cerqueira, A.; Carvalho, M.D.; Jazedje, T.; Okamoto, O.K.; Muotri, A.R.; Zatz, M. Multipotent stem cells from umbilical cord: Cord is richer than blood! Stem Cells 2008, 26, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Wexler, S.A.; Donaldson, C.; Denning-Kendall, P.; Rice, C.; Bradley, B.; Hows, J.M. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br. J. Haematol. 2003, 121, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Bosch, J.; Houben, A.P.; Radke, T.F.; Stapelkamp, D.; Bunemann, E.; Balan, P.; Buchheiser, A.; Liedtke, S.; Kogler, G. Distinct differentiation potential of “msc” derived from cord blood and umbilical cord: Are cord-derived cells true mesenchymal stromal cells? Stem Cells Dev. 2012, 21, 1977–1988. [Google Scholar] [CrossRef]
- Desance, M.; Contentin, R.; Bertoni, L.; Gomez-Leduc, T.; Branly, T.; Jacquet, S.; Betsch, J.M.; Batho, A.; Legendre, F.; Audigie, F.; et al. Chondrogenic differentiation of defined equine mesenchymal stem cells derived from umbilical cord blood for use in cartilage repair therapy. Int. J. Mol. Sci. 2018, 19, 537. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.M.; Elgharabawi, N.M.; Makhlouf, M.M.; Ibrahim, O.Y. Chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in vitro. Microsc. Res. Tech. 2015, 78, 667–675. [Google Scholar] [CrossRef]
- Berg, L.; Koch, T.; Heerkens, T.; Bessonov, K.; Thomsen, P.; Betts, D. Chondrogenic potential of mesenchymal stromal cells derived from equine bone marrow and umbilical cord blood. Vet. Comp. Orthop. Traumatol. 2009, 22, 363–370. [Google Scholar] [PubMed]
- Zhang, X.; Hirai, M.; Cantero, S.; Ciubotariu, R.; Dobrila, L.; Hirsh, A.; Igura, K.; Satoh, H.; Yokomi, I.; Nishimura, T.; et al. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: Reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J. Cell. Biochem. 2011, 112, 1206–1218. [Google Scholar] [PubMed]
- Kunisaki, S.M.; Fuchs, J.R.; Steigman, S.A.; Fauza, D.O. A comparative analysis of cartilage engineered from different perinatal mesenchymal progenitor cells. Tissue Eng. 2007, 13, 2633–2644. [Google Scholar] [CrossRef] [PubMed]
- Rakic, R.; Bourdon, B.; Demoor, M.; Maddens, S.; Saulnier, N.; Galera, P. Differences in the intrinsic chondrogenic potential of equine umbilical cord matrix and cord blood mesenchymal stromal/stem cells for cartilage regeneration. Sci. Rep. 2018, 8, 13799. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tran, I.; Seshareddy, K.; Weiss, M.L.; Detamore, M.S. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng. Part A 2009, 15, 2259–2266. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.M.; Wang, L.; Bode, C.J.; Mitchell, K.E.; Detamore, M.S. A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage. Tissue Eng. 2007, 13, 2003–2010. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.L.; Anderson, C.; Medicetty, S.; Seshareddy, K.B.; Weiss, R.J.; VanderWerff, I.; Troyer, D.; McIntosh, K.R. Immune properties of human umbilical cord wharton’s jelly-derived cells. Stem Cells 2008, 26, 2865–2874. [Google Scholar] [CrossRef]
- La Rocca, G.; Lo Iacono, M.; Corsello, T.; Corrao, S.; Farina, F.; Anzalone, R. Human wharton’s jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: New perspectives for cellular therapy. Curr. Stem Cell Res. Ther. 2013, 8, 100–113. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yuan, M.; Hou, K.; Zhang, L.; Zheng, X.; Zhao, B.; Sui, X.; Xu, W.; Lu, S.; Guo, Q. Immune characterization of mesenchymal stem cells in human umbilical cord wharton’s jelly and derived cartilage cells. Cell. Immunol. 2012, 278, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Widowati, W.; Afifah, E.; Mozef, T.; Sandra, F.; Rizal, R.; Amalia, A.; Arinta, Y.; Bachtiar, I.; Murti, H. Effects of insulin-like growth factor-induced wharton jelly mesenchymal stem cells toward chondrogenesis in an osteoarthritis model. Iran. J. Basic. Med. Sci. 2018, 21, 745–752. [Google Scholar] [PubMed]
- Wang, H.; Yan, X.; Jiang, Y.; Wang, Z.; Li, Y.; Shao, Q. The human umbilical cord stem cells improve the viability of oa degenerated chondrocytes. Mol. Med. Rep. 2018, 17, 4474–4482. [Google Scholar] [CrossRef] [Green Version]
- Endrinaldi, E.; Darwin, E.; Zubir, N.; Revilla, G. The effect of mesenchymal stem cell wharton’s jelly on adamts-4 and inos levels in osteoarthritis rat model. Open Access Maced. J. Med Sci. 2019, 7, 1270–1275. [Google Scholar] [CrossRef] [Green Version]
- Greish, S.; Abogresha, N.; Abdel-Hady, Z.; Zakaria, E.; Ghaly, M.; Hefny, M. Human umbilical cord mesenchymal stem cells as treatment of adjuvant rheumatoid arthritis in a rat model. World J. Stem Cells 2012, 4, 101–109. [Google Scholar] [CrossRef]
- Chang, Y.H.; Wu, K.C.; Liu, H.W.; Chu, T.Y.; Ding, D.C. Human umbilical cord-derived mesenchymal stem cells reduce monosodium iodoacetate-induced apoptosis in cartilage. Ci Ji Yi Xue Za Zhi Tzu-Chi Med. J. 2018, 30, 71–80. [Google Scholar]
- Sofia, V.; Bachri, M.S.; Endrinaldi, E. The influence of mesenchymal stem cell wharton jelly toward prostaglandin e2 gene expression on synoviocyte cell osteoarthritis. Open Access Maced. J. Med. Sci. 2019, 7, 1252–1258. [Google Scholar] [CrossRef]
- Sofia, V.; Nasrul, E.; Manjas, M.; Revilla, G. The influence of wharton jelly mesenchymal stem cell toward matrix metalloproteinase-13 and rela synoviocyte gene expression on osteoarthritis. Open Access Maced. J. Med. Sci. 2019, 7, 701–706. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Wang, F.; Mao, M. Coculture of fi broblastlike synoviocytes with umbilical cordmesenchymal stem cells inhibits expression of proin fl ammatory proteins, induces apoptosis and promotes chondrogenesis. Mol. Med. Rep. 2016, 14, 3887–3893. [Google Scholar] [CrossRef]
- Williams, L.B.; Koenig, J.B.; Black, B.; Gibson, T.W.; Sharif, S.; Koch, T.G. Equine allogeneic umbilical cord blood derived mesenchymal stromal cells reduce synovial fluid nucleated cell count and induce mild self-limiting inflammation when evaluated in an lipopolysaccharide induced synovitis model. Equine Veter. J. 2016, 48, 619–625. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Wang, B.Y.; Li, S.C.; Luo, D.Z.; Zhan, X.; Chen, S.F.; Chen, Z.S.; Liu, C.Y.; Ji, H.Q.; Bai, Y.S.; et al. Evaluation of the curative effect of umbilical cord mesenchymal stem cell therapy for knee arthritis in dogs using imaging technology. Stem Cells Int. 2018, 2018, 1983025. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.C.; Chang, Y.H.; Liu, H.W.; Ding, D.C. Transplanting human umbilical cord mesenchymal stem cells and hyaluronate hydrogel repairs cartilage of osteoarthritis in the minipig model. Ci Ji Yi Xue Za Zhi Tzu-Chi Med. J. 2019, 31, 11–19. [Google Scholar]
- Saulnier, N.; Viguier, E.; Perrier-Groult, E.; Chenu, C.; Pillet, E.; Roger, T.; Maddens, S.; Boulocher, C. Intra-articular administration of xenogeneic neonatal mesenchymal stromal cells early after meniscal injury down-regulates metalloproteinase gene expression in synovium and prevents cartilage degradation in a rabbit model of osteoarthritis. Osteoarthr. Cartil. 2015, 23, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Lo, W.C.; Chen, W.H.; Lin, T.C.; Hwang, S.M.; Zeng, R.; Hsu, W.C.; Chiang, Y.M.; Liu, M.C.; Williams, D.F.; Deng, W.P. Preferential therapy for osteoarthritis by cord blood mscs through regulation of chondrogenic cytokines. Biomaterials 2013, 34, 4739–4748. [Google Scholar] [CrossRef]
- Bertoni, L.; Branly, T.; Jacquet, S.; Desance, M.; Desquilbet, L.; Rivory, P.; Hartmann, D.J.; Denoix, J.M.; Audigie, F.; Galera, P.; et al. Intra-articular injection of 2 different dosages of autologous and allogeneic bone marrow- and umbilical cord-derived mesenchymal stem cells triggers a variable inflammatory response of the fetlock joint on 12 sound experimental horses. Stem Cells Int. 2019, 2019, 9431894. [Google Scholar]
- Park, Y.B.; Ha, C.W.; Lee, C.H.; Park, Y.G. Restoration of a large osteochondral defect of the knee using a composite of umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel: A case report with a 5-year follow-up. BMC Musculoskelet. Disord. 2017, 18, 59. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.B.; Ha, C.W.; Lee, C.H.; Yoon, Y.C.; Park, Y.G. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: Results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl. Med. 2017, 6, 613–621. [Google Scholar] [CrossRef]
- Song, J.S.; Hong, K.T.; Kim, N.M.; Jung, J.Y.; Park, H.S.; Lee, S.H.; Cho, Y.J.; Kim, S.J. Implantation of allogenic umbilical cord blood-derived mesenchymal stem cells improves knee osteoarthritis outcomes: Two-year follow-up. Regen. Ther. 2020, 14, 32–39. [Google Scholar] [CrossRef]
- Matas, J.; Orrego, M.; Amenabar, D.; Infante, C.; Tapia-Limonchi, R.; Cadiz, M.I.; Alcayaga-Miranda, F.; Gonzalez, P.L.; Muse, E.; Khoury, M.; et al. Umbilical cord-derived mesenchymal stromal cells (mscs) for knee osteoarthritis: Repeated msc dosing is superior to a single msc dose and to hyaluronic acid in a controlled randomized phase i/ii trial. Stem Cells Transl. Med. 2019, 8, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Dilogo, I.H.; Canintika, A.F.; Hanitya, A.L.; Pawitan, J.A.; Liem, I.K.; Pandelaki, J. Umbilical cord-derived mesenchymal stem cells for treating osteoarthritis of the knee: A single-arm, open-label study. Eur. J. Orthop. Surg. Traumatol. 2020. Online ahead of print. [Google Scholar] [CrossRef]
- Hassan Famian, M.; Montazer Saheb, S.; Montaseri, A. Conditioned medium of wharton’s jelly derived stem cells can enhance the cartilage specific genes expression by chondrocytes in monolayer and mass culture systems. Adv. Pharm. Bull. 2017, 7, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.Y.; Kim, D.H.; Ha, J.; Jin, H.J.; Kwon, S.J.; Chang, J.W.; Choi, S.J.; Oh, W.; Yang, Y.S.; Kim, G.; et al. Thrombospondin-2 secreted by human umbilical cord blood-derived mesenchymal stem cells promotes chondrogenic differentiation. Stem Cells 2013, 31, 2136–2148. [Google Scholar] [CrossRef]
- Miranda, J.P.; Camoes, S.P.; Gaspar, M.M.; Rodrigues, J.S.; Carvalheiro, M.; Barcia, R.N.; Cruz, P.; Cruz, H.; Simoes, S.; Santos, J.M. The secretome derived from 3d-cultured umbilical cord tissue mscs counteracts manifestations typifying rheumatoid arthritis. Front. Immunol. 2019, 10, 18. [Google Scholar] [CrossRef]
- Yan, L.; Wu, X. Exosomes produced from 3d cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity. Cell Boil. Toxicol. 2019, 36, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Mara, C.S.; Duarte, A.S.; Sartori, A.; Luzo, A.C.; Saad, S.T.; Coimbra, I.B. Regulation of chondrogenesis by transforming growth factor-beta 3 and insulin-like growth factor-1 from human mesenchymal umbilical cord blood cells. J. Rheumatol. 2010, 37, 1519–1526. [Google Scholar] [CrossRef]
- Ding, M.; Shen, Y.; Wang, P.; Xie, Z.; Xu, S.; Zhu, Z.; Wang, Y.; Lyu, Y.; Wang, D.; Xu, L.; et al. Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in alzheimer’s disease. Neurochem. Res. 2018, 43, 2165–2177. [Google Scholar] [CrossRef]
- Sane, M.S.; Tang, H.; Misra, N.; Pu, X.; Malara, S.; Jones, C.D.; Mustafi, S.B. Characterization of an umbilical cord blood sourced product suitable for allogeneic applications. Regen. Med. 2019, 14, 769–789. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Zhang, X.; Li, X. Exosomes derived from mesenchymal stem cells. Int. J. Mol. Sci. 2014, 15, 4142–4157. [Google Scholar] [CrossRef] [Green Version]
- Dabrowski, F.A.; Burdzinska, A.; Kulesza, A.; Sladowska, A.; Zolocinska, A.; Gala, K.; Paczek, L.; Wielgos, M. Comparison of the paracrine activity of mesenchymal stem cells derived from human umbilical cord, amniotic membrane and adipose tissue. J. Obstet. Gynaecol. Res. 2017, 43, 1758–1768. [Google Scholar] [CrossRef]
- Wegmeyer, H.; Broske, A.M.; Leddin, M.; Kuentzer, K.; Nisslbeck, A.K.; Hupfeld, J.; Wiechmann, K.; Kuhlen, J.; von Schwerin, C.; Stein, C.; et al. Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells Dev. 2013, 22, 2606–2618. [Google Scholar] [CrossRef] [Green Version]
- Amable, P.R.; Teixeira, M.V.; Carias, R.B.; Granjeiro, J.M.; Borojevic, R. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and wharton’s jelly. Stem Cell Res. Ther. 2014, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Urbarova, I.; Bruun, J.A.; Martinez-Zubiaurre, I. Large-scale secretome analyses unveil the superior immunosuppressive phenotype of umbilical cord stromal cells as compared to other adult mesenchymal stromal cells. Eur. Cells Mater. 2019, 37, 153–174. [Google Scholar] [CrossRef]
- Li, T.; Yan, Y.; Wang, B.; Qian, H.; Zhang, X.; Shen, L.; Wang, M.; Zhou, Y.; Zhu, W.; Li, W.; et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 2013, 22, 845–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, S.; Xu, C.; Zhang, Y.; Xue, C.; Yang, C.; Bi, H.; Qian, X.; Wu, M.; Ji, K.; Zhao, Y.; et al. Umbilical cord-derived mesenchymal stem cell-derived exosomal micrornas suppress myofibroblast differentiation by inhibiting the transforming growth factor-beta/smad2 pathway during wound healing. Stem Cells Transl. Med. 2016, 5, 1425–1439. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, T.; Vigano, M.; Ragni, E.; Barilani, M.; Parazzi, V.; Boldrin, V.; Lavazza, C.; Montelatici, E.; Banfi, F.; Lauri, E.; et al. Angiogenic and anti-inflammatory properties of mesenchymal stem cells from cord blood: Soluble factors and extracellular vesicles for cell regeneration. Eur. J. Cell Boil. 2016, 95, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Monguio-Tortajada, M.; Roura, S.; Galvez-Monton, C.; Pujal, J.M.; Aran, G.; Sanjurjo, L.; Franquesa, M.; Sarrias, M.R.; Bayes-Genis, A.; Borras, F.E. Nanosized ucmsc-derived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated t cells: Implications for nanomedicine. Theranostics 2017, 7, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Mao, F.; Wu, Y.; Tang, X.; Kang, J.; Zhang, B.; Yan, Y.; Qian, H.; Zhang, X.; Xu, W. Exosomes derived from human umbilical cord mesenchymal stem cells relieve inflammatory bowel disease in mice. BioMed Res. Int. 2017, 2017, 5356760. [Google Scholar] [CrossRef]
- Yaghoubi, Y.; Movassaghpour, A.; Zamani, M.; Talebi, M.; Mehdizadeh, A.; Yousefi, M. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment. Life Sci. 2019, 233, 116733. [Google Scholar] [CrossRef]
- Abbaszadeh, H.; Ghorbani, F.; Derakhshani, M.; Movassaghpour, A.; Yousefi, M. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: A novel therapeutic paradigm. J. Cell. Physiol. 2020, 235, 706–717. [Google Scholar] [CrossRef]
- Li, X.; Duan, L.; Liang, Y.; Zhu, W.; Xiong, J.; Wang, D. Human umbilical cord blood-derived mesenchymal stem cells contribute to chondrogenesis in coculture with chondrocytes. BioMed Res. Int. 2016, 2016, 3827057. [Google Scholar] [CrossRef]
- de Mara, C.S.; Duarte, A.S.; Sartori-Cintra, A.R.; Luzo, A.C.; Saad, S.T.; Coimbra, I.B. Chondrogenesis from umbilical cord blood cells stimulated with bmp-2 and bmp-6. Rheumatol. Int. 2013, 33, 121–128. [Google Scholar] [CrossRef]
- Nirmal, R.S.; Nair, P.D. Significance of soluble growth factors in the chondrogenic response of human umbilical cord matrix stem cells in a porous three dimensional scaffold. Eur. Cells Mater. 2013, 26, 234–251. [Google Scholar] [CrossRef]
- Chen, E.; Tang, M.K.; Yao, Y.; Yau, W.W.; Lo, L.M.; Yang, X.; Chui, Y.L.; Chan, J.; Lee, K.K. Silencing bre expression in human umbilical cord perivascular (hucpv) progenitor cells accelerates osteogenic and chondrogenic differentiation. PLoS ONE 2013, 8, e67896. [Google Scholar] [CrossRef] [Green Version]
- Tanthaisong, P.; Imsoonthornruksa, S.; Ngernsoungnern, A.; Ngernsoungnern, P.; Ketudat-Cairns, M.; Parnpai, R. Enhanced chondrogenic differentiation of human umbilical cord wharton’s jelly derived mesenchymal stem cells by gsk-3 inhibitors. PLoS ONE 2017, 12, e0168059. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, X.L.; He, X.J.; Wu, B.J.; Xu, M.; Chang, H.M.; Zhang, X.H.; Xing, Z.; Jing, X.H.; Kong, D.M.; et al. Delivery of the sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model. Braz. J. Med Boil. Res. 2014, 47, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Esposito, M.; Lucariello, A.; Costanzo, C.; Fiumarella, A.; Giannini, A.; Riccardi, G.; Riccio, I. Differentiation of human umbilical cord-derived mesenchymal stem cells, wj-mscs, into chondrogenic cells in the presence of pulsed electromagnetic fields. In Vivo 2013, 27, 495–500. [Google Scholar]
- Remya, N.S.; Nair, P.D. Mechanoresponsiveness of human umbilical cord mesenchymal stem cells in in vitro chondrogenesis-a comparative study with growth factor induction. J. Biomed. Mater. Res. Part A 2016, 104, 2554–2566. [Google Scholar] [CrossRef]
- Zheng, P.; Ju, L.; Jiang, B.; Chen, L.; Dong, Z.; Jiang, L.; Wang, R.; Lou, Y. Chondrogenic differentiation of human umbilical cord bloodderived mesenchymal stem cells by coculture with rabbit chondrocytes. Mol. Med. Rep. 2013, 8, 1169–1182. [Google Scholar] [CrossRef] [Green Version]
- Zavatti, M.; Beretti, F.; Casciaro, F.; Bertucci, E.; Maraldi, T. Comparison of the therapeutic effect of amniotic fluid stem cells and their exosomes on monoiodoacetate-induced animal model of osteoarthritis. BioFactors 2020, 46, 106–117. [Google Scholar] [CrossRef]
- Prasanna, S.J.; Gopalakrishnan, D.; Shankar, S.R.; Vasandan, A.B. Pro-inflammatory cytokines, ifngamma and tnfalpha, influence immune properties of human bone marrow and wharton jelly mesenchymal stem cells differentially. PLoS ONE 2010, 5, e9016. [Google Scholar] [CrossRef]
- Wu, C.C.; Wu, T.C.; Liu, F.L.; Sytwu, H.K.; Chang, D.M. Tnf-alpha inhibitor reverse the effects of human umbilical cord-derived stem cells on experimental arthritis by increasing immunosuppression. Cell. Immunol. 2012, 273, 30–40. [Google Scholar] [CrossRef]
- Yu, Y.; Yoon, K.A.; Kang, T.W.; Jeon, H.J.; Sim, Y.B.; Choe, S.H.; Baek, S.Y.; Lee, S.; Seo, K.W.; Kang, K.S. Therapeutic effect of long-interval repeated intravenous administration of human umbilical cord blood-derived mesenchymal stem cells in dba/1 mice with collagen-induced arthritis. J. Tissue Eng. Regen. Med. 2019, 13, 1134–1142. [Google Scholar] [CrossRef]
- Collo, G.D.; Adamo, A.; Gatti, A.; Tamellini, E.; Bazzoni, R.; Takam Kamga, P.; Tecchio, C.; Quaglia, F.M.; Krampera, M. Functional dosing of mesenchymal stromal cell-derived extracellular vesicles for the prevention of acute graft-versus-host-disease. Stem Cells 2020, 38, 698–711. [Google Scholar]
- Park, K.S.; Bandeira, E.; Shelke, G.V.; Lasser, C.; Lotvall, J. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res. Ther. 2019, 10, 288. [Google Scholar] [CrossRef]
- Lener, T.; Gimona, M.; Aigner, L.; Borger, V.; Buzas, E.; Camussi, G.; Chaput, N.; Chatterjee, D.; Court, F.A.; Del Portillo, H.A.; et al. Applying extracellular vesicles based therapeutics in clinical trials-an isev position paper. J. Extracell. Vesicles 2015, 4, 30087. [Google Scholar] [CrossRef]
- Rohde, E.; Pachler, K.; Gimona, M. Manufacturing and characterization of extracellular vesicles from umbilical cord-derived mesenchymal stromal cells for clinical testing. Cytotherapy 2019, 21, 581–592. [Google Scholar] [CrossRef]
- Andriolo, G.; Provasi, E.; Lo Cicero, V.; Brambilla, A.; Soncin, S.; Torre, T.; Milano, G.; Biemmi, V.; Vassalli, G.; Turchetto, L.; et al. Exosomes from human cardiac progenitor cells for therapeutic applications: Development of a gmp-grade manufacturing method. Front. Physiol. 2018, 9, 1169. [Google Scholar] [CrossRef] [Green Version]
- Kong, C.M.; Lin, H.D.; Biswas, A.; Bongso, A.; Fong, C.Y. Manufacturing of human wharton’s jelly stem cells for clinical use: Selection of serum is important. Cytotherapy 2019, 21, 483–495. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, Y.; Dunstan, C.; Roohani-Esfahani, S.; Zreiqat, H. Priming adipose stem cells with tumor necrosis factor-alpha preconditioning potentiates their exosome efficacy for bone regeneration. Tissue Eng. Part A 2017, 23, 1212–1220. [Google Scholar] [CrossRef]
- Baraniak, P.R.; McDevitt, T.C. Stem cell paracrine actions and tissue regeneration. Regen. Med. 2010, 5, 121–143. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.B.; Gray, K.M.; Santharam, Y.; Lamichhane, T.N.; Stroka, K.M.; Jay, S.M. Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioeng. Transl. Med. 2017, 2, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.S.; Arslan, F.; Yin, Y.; Tan, S.S.; Lai, R.C.; Choo, A.B.; Padmanabhan, J.; Lee, C.N.; de Kleijn, D.P.; Lim, S.K. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human esc-derived mscs. J. Transl. Med. 2011, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- Colao, I.L.; Corteling, R.; Bracewell, D.; Wall, I. Manufacturing exosomes: A promising therapeutic platform. Trends Mol. Med. 2018, 24, 242–256. [Google Scholar] [CrossRef] [Green Version]
- Mendt, M.; Kamerkar, S.; Sugimoto, H.; McAndrews, K.M.; Wu, C.C.; Gagea, M.; Yang, S.; Blanko, E.V.R.; Peng, Q.; Ma, X.; et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 2018, 3, e99263. [Google Scholar] [CrossRef]
- Hunt, C.J. Technical considerations in the freezing, low-temperature storage and thawing of stem cells for cellular therapies. Transfus. Med. Hemother. 2019, 46, 134–150. [Google Scholar] [CrossRef]
- Best, B.P. Cryoprotectant toxicity: Facts, issues, and questions. Rejuvenation Res. 2015, 18, 422–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchanan, S.S.; Gross, S.A.; Acker, J.P.; Toner, M.; Carpenter, J.F.; Pyatt, D.W. Cryopreservation of stem cells using trehalose: Evaluation of the method using a human hematopoietic cell line. Stem Cells Dev. 2004, 13, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Bosch, S.; de Beaurepaire, L.; Allard, M.; Mosser, M.; Heichette, C.; Chretien, D.; Jegou, D.; Bach, J.M. Trehalose prevents aggregation of exosomes and cryodamage. Sci. Rep. 2016, 6, 36162. [Google Scholar] [CrossRef] [Green Version]
- Le Saux, S.; Aarrass, H.; Lai-Kee-Him, J.; Bron, P.; Armengaud, J.; Miotello, G.; Bertrand-Michel, J.; Dubois, E.; George, S.; Faklaris, O.; et al. Post-production modifications of murine mesenchymal stem cell (mmsc) derived extracellular vesicles (evs) and impact on their cellular interaction. Biomaterials 2020, 231, 119675. [Google Scholar] [CrossRef]
- Kreke, M.; Smith, R.; Hanscome, P.; Peck, K.; Ahmed, I. Processes for producing stable exosome formulations. U.S. Patent Application 4/958,804, 9 June 2016. [Google Scholar]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef]
- Cheng, Y.; Zeng, Q.; Han, Q.; Xia, W. Effect of ph, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell 2019, 10, 295–299. [Google Scholar] [CrossRef] [Green Version]
- Bahr, M.M.; Amer, M.S.; Abo-El-Sooud, K.; Abdallah, A.N.; El-Tookhy, O.S. Preservation techniques of stem cells extracellular vesicles: A gate for manufacturing of clinical grade therapeutic extracellular vesicles and long-term clinical trials. Int. J. Vet. Sci. Med. 2020, 8, 1–8. [Google Scholar] [CrossRef]
References | Cell Types /Source | Secretome/Vesicle Type | Pathology | Target Cells | Culture System | Results |
---|---|---|---|---|---|---|
Widowati et al., 2018 [41] | Human wjMSCs | n.a. | OA | Human Chondrocyte cel lline + IL1β | Direct Co-culture | IGF1-1 ↑ wjMSCs chondrogenesis. Co-culture ↓ ADAMTS1, MMP1, MMP3 |
Wang et al., 2018 [42] | Human wjMSCs | Secretome (only for proliferation assay) | OA | Human Chondrocytes | Transwell Co-culture | wjMSCs secretome ↑ proliferation Co-culture ↑ aggrecan, Sox-9, collagen II, ↓ cox2, collagen X, MMP13, inflammatory factors |
Chang et al., 2018 [45] | Human wjMSCs | Secretome | OA | Human Chondrocytes ± MIA | Indirect co-culture | wjMSCs secretome ↑ cell viability and ↓ apoptosis in damaged chondrocytes |
Sofia et al., 2019 [46,47] | Human wjMSCs | n.a. | OA | Human synoviocytes | Direct Co-colture | Co-culture ↑ PGE2 and ↓ MMP13 and RELA |
Zeng et al., 2016 [48] | Human ucMSCs | n.a. | RA | Human fibroblast-like synoviocytes | Co-culture | Co-culture ↑ synoviocyte apoptosis, aggrecan and collagen II, ↓ IL-1β, IL-6 and CCL-2 |
Saulnier et al., 2015 [52] | Equine wjMSCs | Secretome | OA | Rabbit IL1β-treated synoviocytes | Indirect co-culture | wjMSCs secretome ↓ MMP-1, -3, -13, IL1β, TIMP |
Lo et al., 2013 [53] | Human cbMSCs | n.a. | OA | Human chondrocytes, treated with IL1β and TNFα | Direct Co-culture | Co-culture ↑ proliferation, integrins, ICAM-1, BMP-4, TGF-b1, SOX9, collagen 2, IL-6, IL-10 and aggrecan, ↓ cell death |
Li et al., 2016 [59] | Human cbMSCs | Secretome | n.a. | Human articular chondrocytes | Direct and indirect co-cultures | Direct and indirect co-cultures ↑ SOX9, collagen II, TGFβ1, cell proliferation direct co-culture ↑collagen 2 and 1 |
Hassan Famian et al., 2017 [60] | Human wjMSCs | Secretome | Femoral neck fractures | Human chondrocytes | Monolayer or micromass culture | Secretome ↑ SOX9, collagen II, aggrecan and COMP, micromass > monolayer |
Jeong et al., 2013 [61] | Human cbMSCs | Secretome | n.a. | Mouse chondroprogenitor cells from limb buds | Micromass culture | Secretome ↑ size of micromasses, lacunae number, collagen 2 and GAG |
Miranda et al., 2019 [62] | Human ucMSCs | Secretome | n.a. | Mouse chondrocytes | ucMSCs 2D or 3D, monolayer chondrocytes | Secretome from 3D vs 2D ↑ anti-inflammatory and regenerative factors, chondrocyte migration, ↓ GAG synthesis |
Yan et al., 2019 [63] | Human ucMSCs | Exosomes (average size: 120 nm) | OA | Human chondrocytes | ucMSCs cultured in 2D or 3D (hollow-fiber bioreactor), chondrocytes in 2D | 3D-Exo ↑ cell proliferation, migration, collagen II, Sox9 and aggrecan, ↓ apoptosis, ADAMTS5, MMP13 |
References | Cell Types/ Source | Secretome/Vesicle Type | Pathology | Study Design | Host | Results |
---|---|---|---|---|---|---|
Endrinaldi et al., 2019 [43] | wjMSCs | Secretome | OA (Chemically-induced) | Injection of wjMSCs (1 × 106) vs secretome | Rats | Injection of wjMSCs ↑ serum level of iNOS while ADAMTS4 was = to secretome |
Greish et al., 2012 [44] | Human cbMSCs | n.a. | RA (Chemically-induced) | Injection of cbMSCs or HSC (1 × 106) twice a week for 5 weeks vs methotrexate | Rat | Injection of cbMSCs and HSC ↓ mean arthritis score, paw diameter, leucocyte infiltration, synovial hypertrophy than methotrexat; serum levels of TNF-α, IL-1 and IFN-γ did not significantly decrease |
Chang et al., 2018 [45] | Human wjMSCs | n.a. | OA (Chemically-induced) | Injection of wjMSCs (1 × 105) | Mouse | Injection of wjMSCs ↓ movement impairment and apoptosis; ↑ GAGs, collagen II, aggrecan and ICRS score |
Zhang et al., 2018 [50] | Canine wjMSCs | n.a. | OA (Surgically-induced) | Injection of wjMSCs (1 × 106 twice) | Dog (allogeneic) | Injection of wjMSCs ↑ recovery and cartilage thickness by imaging techniques; ↓ level of IL-6, IL-7 and TNF-α |
Wu et al., 2019 [51] | Human wjMSCs | n.a. | Osteochondral defect (Surgically-induced) | Injection of wjMSCs (5 × 106) in HA (4%) | Minipig | Injection of wjMSCs ↑ cartilaginous matrix, ICRS score and expression of chondrogenic markers; ↓ hypertrophic and catabolic markers |
Saulnier et al., 2015 [52] | Equine wjMSCs | n.a. | OA (Surgically-induced) | Injection of wjMSCs (3,5 × 106) after 3 or 15 days | Rabbit | Early injection ↓ visual score, cartilage fibrillation and levels of MMP-1, -3 and -13; Early injection did not modify number of osteophytes, synoviopathy and inflammatory infiltrate |
Miranda et al., 2019 [62] | Human ucMSCs | n.a. | RA (Biologically-induced) | Injection of ucMSCs (17 × 106 cultured in 2D or 3D) | Rat | 3D supernatant ↓ weight loss, paw swelling, arthritic index, osteolysis than 2D ucMSCs secretome |
Yan et al., 2019 [63] | Human ucMSCs | Exosomes | Cartilage defects (Surgically-induced) | Injection of Exo (1 × 1010/mL) from 2D or 3D cultured ucMSCs | Rabbit | Injection of Exo from 3D cultured ucMSCs ↑ gross aspect and thickness of the cartilage, ICRS and Wakitani score |
References | Cell Types/ Source | Pathology | Delivery Mode | Study Design | Patient number | Results |
---|---|---|---|---|---|---|
Park et al., 2017 [55] | Human cbMSCs | Osteochondral defect | Injection of cbMSCs (5 × 106/mL) in HA (4%) | Case report | 1 | Injection of cbMSCs ↑ IKDC, WOMAC, cartilage-like aspect, GAGs, Collagen type II; ↓ VAS and Collagen type I, no bone formation |
Park et al., 2017 [56] | Human cbMSCs | OA | Injection of cbMSCs (1.15/1.25 × 107 or 1.65/2 × 107) in HA | Open-label, single-arm, phase I/II | 7 | Adverse effects: mild to moderate. antithyroglobulin antibody level: elevated. Injection of cbMSCs: ↑ IKDC and aspect of hyaline-like cartilage; ↓ VAS |
Song et al., 2020 [57] | Human cbMSCs | OA | Injection of cbMSCs (7.5 × 106) in HA (4%) – Commercial | Retrospective case series | 128 | Injection of cbMSCs ↑ IKDC and MOCART; ↓ VAS and WOMAC |
Matas et al., 2019 [58] | Human wjMSCs (pooled from 3 donors) | OA | Injection of wjMSCs (20 × 106) once or twice vs HA injection | Randomized double-blind, controlled phase I/II | 29 | Adverse effects: acute synovitis and mild to moderate symptomatic effusion. Injection of wjMSCs: ↓ WOMAC, VAS, pain and disability than HA, the injections led to better but not significantly outcomes |
Dilogo et al., 2020 [64] | Human wjMSCs | OA | Injection of wjMSCs (10 × 106) in 2 mL secretome + 2 mL HA | open-label, single arm, phase I/II | 29 | Injection of wjMSCs ↓ VAS in more sever patients and ↓ WOMAC in all patients; ↑ IKDC in more sever patients |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrigoni, C.; D’Arrigo, D.; Rossella, V.; Candrian, C.; Albertini, V.; Moretti, M. Umbilical Cord MSCs and Their Secretome in the Therapy of Arthritic Diseases: A Research and Industrial Perspective. Cells 2020, 9, 1343. https://doi.org/10.3390/cells9061343
Arrigoni C, D’Arrigo D, Rossella V, Candrian C, Albertini V, Moretti M. Umbilical Cord MSCs and Their Secretome in the Therapy of Arthritic Diseases: A Research and Industrial Perspective. Cells. 2020; 9(6):1343. https://doi.org/10.3390/cells9061343
Chicago/Turabian StyleArrigoni, Chiara, Daniele D’Arrigo, Valeria Rossella, Christian Candrian, Veronica Albertini, and Matteo Moretti. 2020. "Umbilical Cord MSCs and Their Secretome in the Therapy of Arthritic Diseases: A Research and Industrial Perspective" Cells 9, no. 6: 1343. https://doi.org/10.3390/cells9061343
APA StyleArrigoni, C., D’Arrigo, D., Rossella, V., Candrian, C., Albertini, V., & Moretti, M. (2020). Umbilical Cord MSCs and Their Secretome in the Therapy of Arthritic Diseases: A Research and Industrial Perspective. Cells, 9(6), 1343. https://doi.org/10.3390/cells9061343