A Novel Approach of Harvesting Viable Single Cells from Donor Corneal Endothelium for Cell-Injection Therapy
Abstract
:Graphical Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Materials
2.3. Research-Grade Human CorneoScleral Tissues
2.4. Corneal Endothelial Cell Culture for Regular CE-CI
2.5. Preparation of Single-Cell Human CECs for Characterization or Cell-Injection Surgery
2.6. Animal Surgeries
2.7. Lens Extraction Surgeries
2.8. Simple Non-Cultivated Endothelial Cell (SNEC) and Corneal Endothelial Cell Injection (CE-CI)
2.9. Postoperative Care
2.10. Corneal Imaging and Intraocular Pressure Measurement
2.11. Analysis of Corneas
2.12. Immunohistochemistry
2.13. Statistical Analysis
3. Results
3.1. Information on Donor Characteristics
3.2. Characterization of Harvested CECs
Isolation of Single Cells from Peeled Donor Descemet’s Membrane
3.3. Preoperative Assessment of Rabbits Following Cataract Extraction
3.4. Postoperative Clinical Outcomes in Rabbit Model of Bullous Keratopathy
3.4.1. Corneal Transparency
3.4.2. Central Corneal Thickness
3.5. Characterization of Excised Corneas: In Vivo Confocal Microscopy and Immunohistochemistry
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 2012, 96, 614–618. [Google Scholar] [CrossRef] [Green Version]
- Gain, P.; Jullienne, R.; He, Z.; Aldossary, M.; Acquart, S.; Cognasse, F.; Thuret, G. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016, 134, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coster, D.J.; Lowe, M.T.; Keane, M.C.; Williams, K.A.; Australian Corneal Graft Registry Contributors. A comparison of lamellar and penetrating keratoplasty outcomes: A registry study. Ophthalmology 2014, 121, 979–987. [Google Scholar] [CrossRef]
- Maurice, D.M. The location of the fluid pump in the cornea. J. Physiol. 1972, 221, 43–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourne, W.M. Clinical estimation of corneal endothelial pump function. Trans. Am. Ophthalmol. Soc. 1998, 96, 229–239; discussion 239–242. [Google Scholar] [PubMed]
- Bonanno, J.A. Molecular mechanisms underlying the corneal endothelial pump. Exp. Eye Res. 2012, 95, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, S.P. Dynamic regulation of barrier integrity of the corneal endothelium. Optom. Vis. Sci. 2010, 87, E239–E254. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, C.; Srinivas, S.P. Formation and disassembly of adherens and tight junctions in the corneal endothelium: Regulation by actomyosin contraction. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2139–2148. [Google Scholar] [CrossRef]
- Murphy, C.; Alvarado, J.; Juster, R.; Maglio, M. Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. Investig. Ophthalmol. Vis. Sci. 1984, 25, 312–322. [Google Scholar]
- Tuft, S.J.; Coster, D.J. The corneal endothelium. Eye 1990, 4 Pt 3, 389–424. [Google Scholar] [CrossRef]
- Mahdy, M.A.; Eid, M.Z.; Mohammed, M.A.; Hafez, A.; Bhatia, J. Relationship between endothelial cell loss and microcoaxial phacoemulsification parameters in noncomplicated cataract surgery. Clin. Ophthalmol. 2012, 6, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Price, F.W., Jr.; Feng, M.T.; Price, M.O. Evolution of Endothelial Keratoplasty: Where Are We Headed? Cornea 2015, 34 (Suppl. 10), S41–S47. [Google Scholar] [CrossRef]
- Tan, D.T.; Dart, J.K.; Holland, E.J.; Kinoshita, S. Corneal transplantation. Lancet 2012, 379, 1749–1761. [Google Scholar] [CrossRef]
- EBAA. Eye Banking Statistical Report. Available online: https://restoresight.org/what-we-do/publications/statistical-report/ (accessed on 4 December 2019).
- Koenig, S.B.; Covert, D.J.; Dupps, W.J., Jr.; Meisler, D.M. Visual acuity, refractive error, and endothelial cell density six months after Descemet stripping and automated endothelial keratoplasty (DSAEK). Cornea 2007, 26, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Fuest, M.; Ang, M.; Htoon, H.M.; Tan, D.; Mehta, J.S. Long-term Visual Outcomes Comparing Descemet Stripping Automated Endothelial Keratoplasty and Penetrating Keratoplasty. Am. J. Ophthalmol. 2017, 182, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Ang, M.; Mehta, J.S.; Tan, D.T.; Finkelstein, E. Cost-effectiveness of Descemet’s stripping endothelial keratoplasty versus penetrating keratoplasty. Ophthalmology 2013, 120, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.E.; Guerra, P.S.; Sousa, D.C.; Goncalves, A.I.; Quintas, A.M.; Rodrigues, W. DMEK versus DSAEK for Fuchs’ endothelial dystrophy: A meta-analysis. Eur. J. Ophthalmol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.H.; Ang, M.; Htoon, H.M.; Tan, D. Descemet Membrane Endothelial Keratoplasty Versus Descemet Stripping Automated Endothelial Keratoplasty and Penetrating Keratoplasty. Am. J. Ophthalmol. 2019, 207, 288–303. [Google Scholar] [CrossRef]
- Ang, M.; Mehta, J.S.; Lim, F.; Bose, S.; Htoon, H.M.; Tan, D. Endothelial cell loss and graft survival after Descemet’s stripping automated endothelial keratoplasty and penetrating keratoplasty. Ophthalmology 2012, 119, 2239–2244. [Google Scholar] [CrossRef]
- Peh, G.S.; Beuerman, R.W.; Colman, A.; Tan, D.T.; Mehta, J.S. Human corneal endothelial cell expansion for corneal endothelium transplantation: An overview. Transplantation 2011, 91, 811–819. [Google Scholar] [CrossRef]
- Cornea Donor Study Investigator Group. The effect of donor age on corneal transplantation outcome results of the cornea donor study. Ophthalmology 2008, 115, 620–626. [Google Scholar] [CrossRef] [PubMed]
- McGlumphy, E.J.; Margo, J.A.; Haidara, M.; Brown, C.H.; Hoover, C.K.; Munir, W.M. Predictive Value of Corneal Donor Demographics on Endothelial Cell Density. Cornea 2018, 37, 1159–1162. [Google Scholar] [CrossRef] [PubMed]
- Partridge, L.; Deelen, J.; Slagboom, P.E. Facing up to the global challenges of ageing. Nature 2018, 561, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Linke, S.J.; Eddy, M.T.; Bednarz, J.; Fricke, O.H.; Wulff, B.; Schroder, A.S.; Hassenstein, A.; Klemm, M.; Puschel, K.; Richard, G.; et al. Thirty years of cornea cultivation: Long-term experience in a single eye bank. Acta Ophthalmol. 2013, 91, 571–578. [Google Scholar] [CrossRef]
- Ting, D.S.; Potts, J.; Jones, M.; Lawther, T.; Armitage, W.J.; Figueiredo, F.C. Changing trend in the utilisation rate of donated corneas for keratoplasty in the UK: The North East England Study. Eye 2016, 30, 1475–1480. [Google Scholar] [CrossRef] [Green Version]
- Armitage, W.J.; Jones, M.N.; Zambrano, I.; Carley, F.; Tole, D.M.; NHSBT Ocular Tissue Advisory Group and Contributing Ophthalmologists OTAG Audit Study 12. The suitability of corneas stored by organ culture for penetrating keratoplasty and influence of donor and recipient factors on 5-year graft survival. Investig. Ophthalmol. Vis. Sci. 2014, 55, 784–791. [Google Scholar] [CrossRef]
- Peh, G.S.; Toh, K.P.; Wu, F.Y.; Tan, D.T.; Mehta, J.S. Cultivation of human corneal endothelial cells isolated from paired donor corneas. PLoS ONE 2011, 6, e28310. [Google Scholar] [CrossRef] [Green Version]
- Peh, G.S.; Toh, K.P.; Ang, H.P.; Seah, X.Y.; George, B.L.; Mehta, J.S. Optimization of human corneal endothelial cell culture: Density dependency of successful cultures in vitro. BMC Res. Notes 2013, 6, 176. [Google Scholar] [CrossRef] [Green Version]
- Peh, G.S.; Chng, Z.; Ang, H.P.; Cheng, T.Y.; Adnan, K.; Seah, X.Y.; George, B.L.; Toh, K.P.; Tan, D.T.; Yam, G.H.; et al. Propagation of human corneal endothelial cells: A novel dual media approach. Cell Transplant. 2015, 24, 287–304. [Google Scholar] [CrossRef]
- Mimura, T.; Yokoo, S.; Araie, M.; Amano, S.; Yamagami, S. Treatment of rabbit bullous keratopathy with precursors derived from cultured human corneal endothelium. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3637–3644. [Google Scholar] [CrossRef]
- Bostan, C.; Theriault, M.; Forget, K.J.; Doyon, C.; Cameron, J.D.; Proulx, S.; Brunette, I. In Vivo Functionality of a Corneal Endothelium Transplanted by Cell-Injection Therapy in a Feline Model. Investig. Ophthalmol. Vis. Sci. 2016, 57, 1620–1634. [Google Scholar] [CrossRef] [PubMed]
- Mimura, T.; Yamagami, S.; Usui, T.; Ishii, Y.; Ono, K.; Yokoo, S.; Funatsu, H.; Araie, M.; Amano, S. Long-term outcome of iron-endocytosing cultured corneal endothelial cell transplantation with magnetic attraction. Exp. Eye Res. 2005, 80, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Mimura, T.; Shimomura, N.; Usui, T.; Noda, Y.; Kaji, Y.; Yamgami, S.; Amano, S.; Miyata, K.; Araie, M. Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet’s membrane. Exp. Eye Res. 2003, 76, 745–751. [Google Scholar] [CrossRef]
- Mimura, T.; Yamagami, S.; Usui, T.; Seiichi; Honda, N.; Amano, S. Necessary prone position time for human corneal endothelial precursor transplantation in a rabbit endothelial deficiency model. Curr. Eye Res. 2007, 32, 617–623. [Google Scholar] [CrossRef]
- Fuest, M.; Yam, G.H.; Peh, G.S.; Mehta, J.S. Advances in corneal cell therapy. Regen. Med. 2016, 11, 601–615. [Google Scholar] [CrossRef] [Green Version]
- Peh, G.S.L.; Ong, H.S.; Adnan, K.; Ang, H.P.; Lwin, C.N.; Seah, X.Y.; Lin, S.J.; Mehta, J.S. Functional Evaluation of Two Corneal Endothelial Cell-Based Therapies: Tissue-Engineered Construct and Cell Injection. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, S.; Koizumi, N.; Ueno, M.; Okumura, N.; Imai, K.; Tanaka, H.; Yamamoto, Y.; Nakamura, T.; Inatomi, T.; Bush, J.; et al. Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy. N. Engl. J. Med. 2018, 378, 995–1003. [Google Scholar] [CrossRef]
- Okumura, N.; Sakamoto, Y.; Fujii, K.; Kitano, J.; Nakano, S.; Tsujimoto, Y.; Nakamura, S.; Ueno, M.; Hagiya, M.; Hamuro, J.; et al. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.V.; Bachman, L.A.; Hann, C.R.; Bahler, C.K.; Fautsch, M.P. Human corneal endothelial cell transplantation in a human ex vivo model. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2123–2131. [Google Scholar] [CrossRef] [Green Version]
- Bartakova, A.; Kunzevitzky, N.J.; Goldberg, J.L. Regenerative Cell Therapy for Corneal Endothelium. Curr. Ophthalmol. Rep. 2014, 2, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Peh, G.S.L.; Ang, H.P.; Lwin, C.N.; Adnan, K.; George, B.L.; Seah, X.Y.; Lin, S.J.; Bhogal, M.; Liu, Y.C.; Tan, D.T.; et al. Regulatory Compliant Tissue-Engineered Human Corneal Endothelial Grafts Restore Corneal Function of Rabbits with Bullous Keratopathy. Sci. Rep. 2017, 7, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wahlig, S.; Kocaba, V.; Mehta, J.S. Cultured Cells and ROCK Inhibitor for Bullous Keratopathy. N. Engl. J. Med. 2018, 379, 1184–1185. [Google Scholar] [CrossRef]
- Armitage, W.J.; Dick, A.D.; Bourne, W.M. Predicting endothelial cell loss and long-term corneal graft survival. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3326–3331. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.Y.; Brookes, N.H.; Moffatt, L.; Sherwin, T.; Ormonde, S.; Clover, G.M.; McGhee, C.N. The New Zealand National Eye Bank study 1991-2003: A review of the source and management of corneal tissue. Cornea 2005, 24, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Melles, G.R.; Ong, T.S.; Ververs, B.; van der Wees, J. Descemet membrane endothelial keratoplasty (DMEK). Cornea 2006, 25, 987–990. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.H.; Bourne, W.M.; Campbell, R.J. The ultrastructure of Descemet’s membrane. I. Changes with age in normal corneas. Arch. Ophthalmol. 1982, 100, 1942–1947. [Google Scholar] [CrossRef] [PubMed]
- Gorovoy, I.R.; Cui, Q.N.; Gorovoy, M.S. Donor tissue characteristics in preparation of DMEK grafts. Cornea 2014, 33, 683–685. [Google Scholar] [CrossRef]
- Heinzelmann, S.; Huther, S.; Bohringer, D.; Eberwein, P.; Reinhard, T.; Maier, P. Influence of donor characteristics on descemet membrane endothelial keratoplasty. Cornea 2014, 33, 644–648. [Google Scholar] [CrossRef]
- Greiner, M.A.; Rixen, J.J.; Wagoner, M.D.; Schmidt, G.A.; Stoeger, C.G.; Straiko, M.D.; Zimmerman, M.B.; Kitzmann, A.S.; Goins, K.M. Diabetes mellitus increases risk of unsuccessful graft preparation in Descemet membrane endothelial keratoplasty: A multicenter study. Cornea 2014, 33, 1129–1133. [Google Scholar] [CrossRef]
- Vianna, L.M.; Stoeger, C.G.; Galloway, J.D.; Terry, M.; Cope, L.; Belfort, R., Jr.; Jun, A.S. Risk factors for eye bank preparation failure of Descemet membrane endothelial keratoplasty tissue. Am. J. Ophthalmol. 2015, 159, 829–834 e822. [Google Scholar] [CrossRef] [Green Version]
- Schlotzer-Schrehardt, U.; Bachmann, B.O.; Tourtas, T.; Cursiefen, C.; Zenkel, M.; Rossler, K.; Kruse, F.E. Reproducibility of graft preparations in Descemet’s membrane endothelial keratoplasty. Ophthalmology 2013, 120, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.O.; Jeon, H.S.; Hyon, J.Y.; Oh, Y.J.; Wee, W.R.; Chung, T.Y.; Shin, Y.J.; Kim, J.W. Recovery of Corneal Endothelial Cells from Periphery after Injury. PLoS ONE 2015, 10, e0138076. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Joyce, N.C. Proliferative response of corneal endothelial cells from young and older donors. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1743–1751. [Google Scholar] [CrossRef]
- Theriault, M.; Gendron, S.P.; Brunette, I.; Rochette, P.J.; Proulx, S. Function-Related Protein Expression in Fuchs Endothelial Corneal Dystrophy Cells and Tissue Models. Am. J. Pathol. 2018, 188, 1703–1712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenrod, E.B.; Jones, M.N.; Kaye, S.; Larkin, D.F.; National Health Service Blood and Transplant Ocular Tissue Advisory Group and Contributing Ophthalmologists. Center and surgeon effect on outcomes of endothelial keratoplasty versus penetrating keratoplasty in the United Kingdom. Am. J. Ophthalmol. 2014, 158, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Shtein, R.M.; Raoof-Daneshvar, D.; Lin, H.C.; Sugar, A.; Mian, S.I.; Nan, B.; Stein, J.D. Keratoplasty for corneal endothelial disease, 2001-2009. Ophthalmology 2012, 119, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Spinozzi, D.; Miron, A.; Bruinsma, M.; Lie, J.T.; Dapena, I.; Oellerich, S.; Melles, G.R.J. Improving the success rate of human corneal endothelial cell cultures from single donor corneas with stabilization medium. Cell Tissue Bank. 2018, 19, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Weisstein, E.W. Spherical Cap. Available online: http://mathworld.wolfram.com/SphericalCap.html (accessed on 10 January 2020).
- Liu, Y.C.; Alvarez Paraz, C.M.; Cajucom-Uy, H.Y.; Agahari, D.; Sethuraman, S.; Tan, D.T.; Mehta, J.S. Risk factors for donor endothelial loss in eye bank-prepared posterior lamellar corneal tissue for descemet stripping automated endothelial keratoplasty. Cornea 2014, 33, 677–682. [Google Scholar] [CrossRef]
- Frausto, R.F.; Swamy, V.S.; Peh, G.S.L.; Boere, P.M.; Hanser, E.M.; Chung, D.D.; George, B.L.; Morselli, M.; Kao, L.; Azimov, R.; et al. Phenotypic and functional characterization of corneal endothelial cells during in vitro expansion. Sci. Rep. 2020, 10, 1–22. [Google Scholar] [CrossRef]
- Van Horn, D.L.; Sendele, D.D.; Seideman, S.; Buco, P.J. Regenerative capacity of the corneal endothelium in rabbit and cat. Investig. Ophthalmol. Vis. Sci. 1977, 16, 597–613. [Google Scholar]
- Mehta, J.S.; Kocaba, V.; Soh, Y.Q. The future of keratoplasty: Cell-based therapy, regenerative medicine, bioengineering keratoplasty, gene therapy. Curr. Opin. Ophthalmol. 2019, 30, 286–291. [Google Scholar] [CrossRef] [PubMed]
Serial Number | Age | Sex | Days to Process | Cell Count (OS/OD) | Cause of Death | Medical History | Donor Utilization |
---|---|---|---|---|---|---|---|
01 * | 59 | F | 12 | 2576/N.A. | Cardiopulmonary Arrest | HTN, Throat cancer, anxiety | Opt (C) |
02 * | 34 | F | 8 | 1454/N.A. | Anoxia from Drug Overdose | N.A. | Opt (C) |
03 * | 52 | F | 18 | 2809/N.A. | Sudden Cardiac Event Congestive Heart Failure | CHF, CKF, HTN, IDDM (w/neuropathy), ischemic cardiomyopathy, hypothyroidism, depression, tobacco use | Opt (A) |
04 * | 71 | M | 10 | N.A./2092 | Exsanguination | BCC, HTN, IDDM, chronic tracheostomy, chronic aspiration, hernia with bleeding, esophageal stenosis, hypothyroidism, hyperlipidemia, GI bleed | Opt (A) |
05 * | 69 | F | 10 | 2320/N.A. | Acute Cardiogenic Shock | AKI, CAD, CHF, ECMO, HTN, IDDM, MI (x4), PE, LVAD, replacement LVAD, arteriosclerosis, ischemic cardiomyopathy, aortic regurgitation, neuropathy, pulmonary HTN | Opt (A) |
06 * | 66 | F | 12 | 2160/N.A. | Cardiac Arrest: Congestive Heart Failure | CHF, COPD, HTN, IDDM, tobacco use | Opt (A) |
07 | 70 | M | 8 | 1215/2039 | Lung Cancer | N.A. | Opt (A) |
08 | 65 | M | 14 | 2723/3125 | Cardiopulmonary Arrest | CAD, CKD, DVT, HTN, chronic back pain, diabetes mellitus, cardiac stents, obesity, nephrectomy | Opt (A) |
09 | 28 | M | 7 | 2882/2740 | Subarachnoid Haemorrhage | Depression, ETOH/tobacco use | Opt (B) |
10 | 42 | F | 12 | 2447/3454 | Multisystemic Failure | Arrythmia, ETOH/tobacco use | Opt (C) |
11 | 58 | F | 17 | 2670/2568 | Acute Cardiac Event | Tobacco use | Opt (C) |
12 | 52 | F | 13 | 2182/2836 | Abdominal/Thoracic Aortic Aneurysm | HTN, Acute Type 1 Aortic dissection, Discoid Lupus, Systemic Lupus, Secondary Raynauds, Acute ischemic stroke | SNECi |
13 | 56 | F | 5 | 2538/2770 | Bronchitis | AKI, CHF, CKD, COPD, HTN, anemia, chronic lymph-edema, restrictive lung disease | SNECi |
14 | 54 | F | 10 | 2793/2849 | Anoxic Brain Injury | Asthma, COPD, ETOH/tobacco use | SNECi |
15 | 59 | M | 11 | 2342/2273 | Intracranial Bleeding/Intracerebral Haemorrhage | HTN, AFib, pericardiac tamponade, hyperlipidemia, RA, GERD, GI bleed, osteoarthritis, tremor disorder, bipolar, depression, ETOH/tobacco use | SNECi |
16 | 39 | F | 14 | 2833/2857 | Central Nervous System Tumour | Brain tumour, seizures, anxiety, ETOH/tobacco use | Opt (B) |
17 | 57 | F | 17 | 2551/2404 | End-stage Renal Disease | AFib, RVR, CAD, CHF, COPD, ESRD, HTN, MI, NIDDM, RLS, hyperlipidemia, polycystic kidney disease, brain aneurysm, GI bleed, skin cancer, anxiety, tobacco use | Opt (B) |
18 | 29 | F | 21 | 3046/2858 | Hanging | N.A. | Opt (B) |
19 | 9 | M | 11 | 3096/3247 | Anoxia | N.A. | CE-CI |
20 | 11 | F | 10 | 3040/2907 | Drowning | N.A. | CE-CI |
21 | 23 | F | 8 | 2601/2398 | Multi-Vehicle Accident | ETOH | CE-CI |
22 | 4 | F | 8 | 2717/3623 | Anoxic Encephalopathy | N.A. | CE-CI |
Donor 18 | Donor 17 | Donor 09 | ||||
---|---|---|---|---|---|---|
OS (M4) | OD (M5) | OS (M4) | OD (M5) | OS (M4) | OD (M5) | |
ECD (cells/mm2) | 3046 | 2858 | 2404 | 2551 | 2740 | 2882 |
TS Enzymatic Treatment (mins) | 35 | 40 | 40 | 50 | 40 | 70 |
Cell Size (μm2) ± S.D. | 2546.46 ± 1640.65 | 862.99 ± 462.77 | 1591.20 ± 773.17 | 1499.76 ± 681.42 | 877.58 ± 552.08 | 632.24 ± 270.23 |
Cell Circularity Index ± S.D. | 0.79 ± 0.09 | 0.86 ± 0.06 | 0.85 ± 0.08 | 0.86 ± 0.07 | 0.83 ± 0.08 | 0.86 ±0.06 |
Overall CEC Count (Week 4) | 34,382 | 91,156 | 56,662 | 58,584 | 95,115 | 126,985 |
Overall CEC Yield (Week 4) | 1.83 × M5 > M4 | 0.03 × M4 > M5 | 0.27 × M5 > M4 |
Donor 11 | Donor 01 | Donor 02 | ||
---|---|---|---|---|
OS | OD | OS | OS | |
ECD (cells/mm2) | 2670 | 2568 | 2576 | 1454 |
Average CEC Density (cells/mm2) | 2619 | N/A | N/A | |
Theoretical Maximum CECs * (A = 2 π r h) | 394,736 | 388,255 | 219,147 | |
TS Enzymatic Treatment (mins) | 40 | 35 | 50 | |
Final Cell Yield (per donor) | 65,500 | 49,168 | 32,500 | |
Arbitrary Yield (with 25% attrition) | 22.1% | 16.7% | 19.8% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, H.S.; Peh, G.; Neo, D.J.H.; Ang, H.-P.; Adnan, K.; Nyein, C.L.; Morales-Wong, F.; Bhogal, M.; Kocaba, V.; Mehta, J.S. A Novel Approach of Harvesting Viable Single Cells from Donor Corneal Endothelium for Cell-Injection Therapy. Cells 2020, 9, 1428. https://doi.org/10.3390/cells9061428
Ong HS, Peh G, Neo DJH, Ang H-P, Adnan K, Nyein CL, Morales-Wong F, Bhogal M, Kocaba V, Mehta JS. A Novel Approach of Harvesting Viable Single Cells from Donor Corneal Endothelium for Cell-Injection Therapy. Cells. 2020; 9(6):1428. https://doi.org/10.3390/cells9061428
Chicago/Turabian StyleOng, Hon Shing, Gary Peh, Dawn Jin Hui Neo, Heng-Pei Ang, Khadijah Adnan, Chan Lwin Nyein, Fernando Morales-Wong, Maninder Bhogal, Viridiana Kocaba, and Jodhbir S. Mehta. 2020. "A Novel Approach of Harvesting Viable Single Cells from Donor Corneal Endothelium for Cell-Injection Therapy" Cells 9, no. 6: 1428. https://doi.org/10.3390/cells9061428
APA StyleOng, H. S., Peh, G., Neo, D. J. H., Ang, H. -P., Adnan, K., Nyein, C. L., Morales-Wong, F., Bhogal, M., Kocaba, V., & Mehta, J. S. (2020). A Novel Approach of Harvesting Viable Single Cells from Donor Corneal Endothelium for Cell-Injection Therapy. Cells, 9(6), 1428. https://doi.org/10.3390/cells9061428