A “Numerical Evo-Devo” Synthesis for the Identification of Pattern-Forming Factors
Abstract
:1. Introduction
2. Diversity vs. Stability of Natural Patterns: A Paradox Guiding Methods and Model Choices
3. Two Long-Opposed Theories Explain Pattern Formation In Vivo
4. Novel Integrative Frameworks Bridge Molecular and Cellular Patterning Strategies
5. A New Synthesis: Integrating Natural Variation to Numerical-Empirical Crosstalk
6. Designing Numerical Evo-Devo Approaches to Study Tissue Mechanics
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Stevens, P. Patterns in Nature; Little Brown: New York, NY, USA, 1974. [Google Scholar]
- Pettingill, O.S. Ornithology in Laboratory and Field; Elsevier: Amsterdam, The Netherlands, 1985; ISBN 978-0-12-552455-1. [Google Scholar]
- Allen, W.L.; Cuthill, I.C.; Scott-Samuel, N.E.; Baddeley, R. Why the leopard got its spots: Relating pattern development to ecology in felids. Proc. R. Soc. B Biol. Sci. 2011, 278, 1373–1380. [Google Scholar] [CrossRef] [Green Version]
- Ortolani, A. Spots, stripes, tail tips and dark eyes: Predicting the function of carnivore colour patterns using the comparative method. Biol. J. Linn. Soc. 1999, 67, 433–476. [Google Scholar] [CrossRef]
- Stevens, M.; Cuthill, I.C.; Alejandro Párraga, C.; Troscianko, T. The effectiveness of disruptive coloration as a concealment strategy. Prog. Brain Res. 2006, 155, 49–64. [Google Scholar] [PubMed]
- Barbosa, A.; Mäthger, L.M.; Buresch, K.C.; Kelly, J.; Chubb, C.; Chiao, C.-C.; Hanlon, R.T. Cuttlefish camouflage: The effects of substrate contrast and size in evoking uniform, mottle or disruptive body patterns. Vis. Res. 2008, 48, 1242–1253. [Google Scholar] [CrossRef] [PubMed]
- Stre, G.; Moum, T.; Bures, S.; Kràl, M.; Adamjan, M.; Moreno, J. A sexually selected character displacement in flycatchers reinforces premating isolation. Nature 1997, 387, 589–592. [Google Scholar] [CrossRef]
- Caro, T. The Adaptive Significance of Coloration in Mammals. BioScience 2005, 55, 125. [Google Scholar] [CrossRef] [Green Version]
- Caro, T.; Izzo, A.; Reiner, R.C.; Walker, H.; Stankowich, T. The function of zebra stripes. Nat. Commun. 2014, 5, 3535. [Google Scholar] [CrossRef]
- Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 1969, 25, 1–47. [Google Scholar] [CrossRef]
- Cagan, R. Chapter 5 Principles of Drosophila Eye Differentiation. In Current Topics in Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2009; Volume 89, pp. 115–135. ISBN 978-0-12-374902-4. [Google Scholar]
- Crozatier, M.; Glise, B.; Vincent, A. Patterns in evolution: Veins of the Drosophila wing. Trends Genet. 2004, 20, 498–505. [Google Scholar] [CrossRef]
- Smith, J.M.; Sondhi, K.C. The arrangement of bristles in Drosophila. J. Embryol. Exp. Morphol. 1961, 9, 661–672. [Google Scholar]
- Dubrulle, J. Coupling segmentation to axis formation. Development 2004, 131, 5783–5793. [Google Scholar] [CrossRef] [Green Version]
- Neguer, J.; Manceau, M. Embryonic Patterning of the Vertebrate Skin. Rev. Cell Biol. Mol. Med. 2017, 3. [Google Scholar] [CrossRef]
- Nüsslein-Volhard, C.; Singh, A.P. How fish color their skin: A paradigm for development and evolution of adult patterns: Multipotency, plasticity, and cell competition regulate proliferation and spreading of pigment cells in Zebrafish coloration. BioEssays 2017, 39, 1600231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, A.S.; Sharpe, P.T. Molecular Genetics of Tooth Morphogenesis and Patterning: The Right Shape in the Right Place. J. Dent. Res. 1999, 78, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Wartlick, O.; Kicheva, A.; Gonzalez-Gaitan, M. Morphogen Gradient Formation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautier, M.; Yamaguchi, J.; Foucaud, J.; Loiseau, A.; Ausset, A.; Facon, B.; Gschloessl, B.; Lagnel, J.; Loire, E.; Parrinello, H.; et al. The Genomic Basis of Color Pattern Polymorphism in the Harlequin Ladybird. Curr. Biol. 2018, 28, 3296.e7–3302.e7. [Google Scholar] [CrossRef] [Green Version]
- Gaertner, B.E.; Phillips, P.C. Caenorhabditis elegans as a platform for molecular quantitative genetics and the systems biology of natural variation. Genet. Res. 2010, 92, 331–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulsen, S.M. Quantitative genetics of butterfly wing color patterns. Dev. Genet. 1994, 15, 79–91. [Google Scholar] [CrossRef]
- Kratochwil, C.F.; Liang, Y.; Gerwin, J.; Woltering, J.M.; Urban, S.; Henning, F.; Machado-Schiaffino, G.; Hulsey, C.D.; Meyer, A. Agouti-Related peptide 2 facilitates convergent evolution of stripe patterns across cichlid fish radiations. Science 2018, 362, 457–460. [Google Scholar] [CrossRef] [Green Version]
- Mallarino, R.; Henegar, C.; Mirasierra, M.; Manceau, M.; Schradin, C.; Vallejo, M.; Beronja, S.; Barsh, G.S.; Hoekstra, H.E. Developmental mechanisms of stripe patterns in rodents. Nature 2016, 539, 518–523. [Google Scholar] [CrossRef]
- Peichel, C.L.; Marques, D.A. The genetic and molecular architecture of phenotypic diversity in sticklebacks. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20150486. [Google Scholar] [CrossRef] [PubMed]
- McGaugh, S.E.; Gross, J.B.; Aken, B.; Blin, M.; Borowsky, R.; Chalopin, D.; Hinaux, H.; Jeffery, W.R.; Keene, A.; Ma, L.; et al. The cavefish genome reveals candidate genes for eye loss. Nat. Commun. 2014, 5, 5307. [Google Scholar] [CrossRef] [Green Version]
- Barsh, G.S. The genetics of pigmentation: From fancy genes to complex traits. Trends Genet. 1996, 12, 299–305. [Google Scholar] [CrossRef]
- Sengel, P. Morphogenesis of Skin; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]
- Thompson, D.W. On Growth and Form, 1st ed.; Cambridge University Press: Cambridge, UK, 1917. [Google Scholar]
- Murray, J.D. (Ed.) Mathematical Biology: II: Spatial Models and Biomedical Applications; Interdisciplinary Applied Mathematics; Springer: New York, NY, USA, 2003; Volume 18, ISBN 978-0-387-95228-4. [Google Scholar]
- Murray, J.D. (Ed.) Mathematical Biology: I. An Introduction; Interdisciplinary Applied Mathematics; Springer: New York, NY, USA, 2002; Volume 17, ISBN 978-0-387-95223-9. [Google Scholar]
- Nüsslein-Volhard, C.; Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 1980, 287, 795–801. [Google Scholar] [CrossRef]
- Driever, W.; Nüsslein-Volhard, C. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 1988, 54, 95–104. [Google Scholar] [CrossRef]
- He, S.; del Viso, F.; Chen, C.-Y.; Ikmi, A.; Kroesen, A.E.; Gibson, M.C. An axial Hox code controls tissue segmentation and body patterning in Nematostella vectensis. Science 2018, 361, 1377–1380. [Google Scholar] [CrossRef] [Green Version]
- Muller, P.; Rogers, K.W.; Jordan, B.M.; Lee, J.S.; Robson, D.; Ramanathan, S.; Schier, A.F. Differential Diffusivity of Nodal and Lefty Underlies a Reaction-Diffusion Patterning System. Science 2012, 336, 721–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, S.; Miura, T. Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation. Science 2010, 329, 1616–1620. [Google Scholar] [CrossRef] [Green Version]
- Green, J.B.A.; Sharpe, J. Positional information and reaction-diffusion: Two big ideas in developmental biology combine. Development 2015, 142, 1203–1211. [Google Scholar] [CrossRef] [Green Version]
- Bailleul, R.; Curantz, C.; Dinh, C.D.-T.; Hidalgo, M.; Touboul, J.; Manceau, M. Symmetry breaking in the embryonic skin triggers directional and sequential plumage patterning. PLoS Biol. 2019, 17, e3000448. [Google Scholar] [CrossRef] [PubMed]
- Hiscock, T.W.; Megason, S.G. Orientation of Turing-like Patterns by Morphogen Gradients and Tissue Anisotropies. Cell Syst. 2015, 1, 408–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perthame, B.; Quiñinao, C.; Touboul, J. Competition and boundary formation in heterogeneous media: Application to neuronal differentiation. Math. Models Methods Appl. Sci. 2015, 25, 2477–2502. [Google Scholar] [CrossRef]
- Quininao, C.; Prochiantz, A.; Touboul, J. Local homeoprotein diffusion can stabilize boundaries generated by graded positional cues. Development 2015, 142, 1860–1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadier, A.; Twarogowska, M.; Steklikova, K.; Hayden, L.; Lambert, A.; Schneider, P.; Laudet, V.; Hovorakova, M.; Calvez, V.; Pantalacci, S. Modeling Edar expression reveals the hidden dynamics of tooth signaling center patterning. PLoS Biol. 2019, 17, e3000064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsiairis, C.D.; Aulehla, A. Self-Organization of Embryonic Genetic Oscillators into Spatiotemporal Wave Patterns. Cell 2016, 164, 656–667. [Google Scholar] [CrossRef] [Green Version]
- Haupaix, N.; Curantz, C.; Bailleul, R.; Beck, S.; Robic, A.; Manceau, M. The periodic coloration in birds forms through a prepattern of somite origin. Science 2018, 361, eaar4777. [Google Scholar] [CrossRef] [Green Version]
- Sheth, R.; Marcon, L.; Bastida, M.F.; Junco, M.; Quintana, L.; Dahn, R.; Kmita, M.; Sharpe, J.; Ros, M.A. Hox Genes Regulate Digit Patterning by Controlling the Wavelength of a Turing-Type Mechanism. Science 2012, 338, 1476–1480. [Google Scholar] [CrossRef] [Green Version]
- Boehm, B.; Westerberg, H.; Lesnicar-Pucko, G.; Raja, S.; Rautschka, M.; Cotterell, J.; Swoger, J.; Sharpe, J. The Role of Spatially Controlled Cell Proliferation in Limb Bud Morphogenesis. PLoS Biol. 2010, 8, e1000420. [Google Scholar] [CrossRef] [Green Version]
- Miura, T. Turing and Wolpert Work Together During Limb Development. Sci. Signal. 2013, 6, pe14. [Google Scholar] [CrossRef]
- Hillen, T.; Painter, K.J. A user’s guide to PDE models for chemotaxis. J. Math. Biol. 2008, 58, 183. [Google Scholar] [CrossRef]
- Painter, K.J. Mathematical models for chemotaxis and their applications in self-organisation phenomena. J. Theor. Biol. 2019, 481, 162–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raspopovic, J.; Marcon, L.; Russo, L.; Sharpe, J. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 2014, 345, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Painter, K.J.; Ho, W.; Headon, D.J. A chemotaxis model of feather primordia pattern formation during avian development. J. Theor. Biol. 2018, 437, 225–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, W.K.W.; Freem, L.; Zhao, D.; Painter, K.J.; Woolley, T.E.; Gaffney, E.A.; McGrew, M.J.; Tzika, A.; Milinkovitch, M.C.; Schneider, P.; et al. Feather arrays are patterned by interacting signalling and cell density waves. PLoS Biol. 2019, 17, e3000132. [Google Scholar] [CrossRef] [Green Version]
- Verhulst, P.F. Notice sur la loi que la population poursuit dans son accroissement. Corresp. Mathématique Phys. 1838, 10, 113–121. [Google Scholar]
- Bologna, M.; Aquino, G. Deforestation and world population sustainability: A quantitative analysis. Sci. Rep. 2020, 10, 7631. [Google Scholar] [CrossRef] [PubMed]
- Rios, A.C.; Serralbo, O.; Salgado, D.; Marcelle, C. Neural crest regulates myogenesis through the transient activation of NOTCH. Nature 2011, 473, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Wang, H.; Wang, Y.; Bai, X.; Liu, B.; He, J.; Wu, J.; Qi, W.; Zhang, W. Skin transcriptome reveals the dynamic changes in the Wnt pathway during integument morphogenesis of chick embryos. PloS ONE 2018, 13, e0190933. [Google Scholar] [CrossRef] [Green Version]
- Marin-Riera, M.; Moustakas-Verho, J.; Savriama, Y.; Jernvall, J.; Salazar-Ciudad, I. Differential tissue growth and cell adhesion alone drive early tooth morphogenesis: An ex vivo and in silico study. PLoS Comput. Biol. 2018, 14, e1005981. [Google Scholar] [CrossRef]
- Häkkinen, T.J.; Sova, S.S.; Corfe, I.J.; Tjäderhane, L.; Hannukainen, A.; Jernvall, J. Modeling enamel matrix secretion in mammalian teeth. PLoS Comput. Biol. 2019, 15, e1007058. [Google Scholar] [CrossRef] [Green Version]
- Volkening, A.; Abbott, M.R.; Chandra, N.; Dubois, B.; Lim, F.; Sexton, D.; Sandstede, B. Modeling Stripe Formation on Growing Zebrafish Tailfins. Bull. Math. Biol. 2020, 82, 56. [Google Scholar] [CrossRef]
- Volkening, A. Linking genotype, cell behavior, and phenotype: Multidisciplinary perspectives with a basis in zebrafish patterns. Curr. Opin. Genet. Dev. 2020, 63, 78–85. [Google Scholar] [CrossRef]
- Shyer, A.E.; Rodrigues, A.R.; Schroeder, G.G.; Kassianidou, E.; Kumar, S.; Harland, R.M. Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin. Science 2017, 357, 811–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Chi, G.; Li, P.; Lv, S.; Xu, J.; Xu, Z.; Xia, Y.; Tan, Y.; Xu, J.; Li, L.; et al. Effects of Matrix Stiffness on the Morphology, Adhesion, Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells. Int. J. Med. Sci. 2018, 15, 257–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razinia, Z.; Castagnino, P.; Xu, T.; Vázquez-Salgado, A.; Puré, E.; Assoian, R.K. Stiffness-dependent motility and proliferation uncoupled by deletion of CD44. Sci. Rep. 2017, 7, 16499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sitarska, E.; Diz-Muñoz, A. Pay attention to membrane tension: Mechanobiology of the cell surface. Curr. Opin. Cell Biol. 2020, 66, 11–18. [Google Scholar] [CrossRef] [PubMed]
- De Pascalis, C.; Etienne-Manneville, S. Single and collective cell migration: The mechanics of adhesions. Mol. Biol. Cell 2017, 28, 1833–1846. [Google Scholar] [CrossRef] [PubMed]
- Lange, J.R.; Fabry, B. Cell and tissue mechanics in cell migration. Exp. Cell Res. 2013, 319, 2418–2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandya, P.; Orgaz, J.L.; Sanz-Moreno, V. Actomyosin contractility and collective migration: May the force be with you. Curr. Opin. Cell Biol. 2017, 48, 87–96. [Google Scholar] [CrossRef]
- Diz-Muñoz, A.; Weiner, O.D.; Fletcher, D.A. In pursuit of the mechanics that shape cell surfaces. Nat. Phys. 2018, 14, 648–652. [Google Scholar] [CrossRef]
- Germann, P.; Marin-Riera, M.; Sharpe, J. ya||a: GPU-Powered Spheroid Models for Mesenchyme and Epithelium. Cell Syst. 2019, 8, 261–266.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinkmann, F.; Mercker, M.; Richter, T.; Marciniak-Czochra, A. Post-Turing tissue pattern formation: Advent of mechanochemistry. PLoS Comput. Biol. 2018, 14, e1006259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuda, S.; Inoue, Y.; Watanabe, T.; Adachi, T. Coupling intercellular molecular signalling with multicellular deformation for simulating three-dimensional tissue morphogenesis. Interface Focus 2015, 5, 20140095. [Google Scholar] [CrossRef] [Green Version]
- Okuda, S.; Miura, T.; Inoue, Y.; Adachi, T.; Eiraku, M. Combining Turing and 3D vertex models reproduces autonomous multicellular morphogenesis with undulation, tubulation, and branching. Sci. Rep. 2018, 8, 1–15. [Google Scholar]
- Hormuth, D.A.; Weis, J.A.; Barnes, S.L.; Miga, M.I.; Rericha, E.C.; Quaranta, V.; Yankeelov, T.E. A mechanically coupled reaction–Diffusion model that incorporates intra-Tumoural heterogeneity to predict in vivo glioma growth. J. R. Soc. Interface 2017, 14, 128. [Google Scholar] [CrossRef] [Green Version]
- Oster, G.F.; Murray, J.D.; Harris, A.K. Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morphol. 1983, 78, 83–125. [Google Scholar]
- Vaughan, B.L.; Baker, R.E.; Kay, D.; Maini, P.K. A Modified Oster--Murray--Harris Mechanical Model of Morphogenesis. SIAM J. Appl. Math. 2013, 73, 2124–2142. [Google Scholar] [CrossRef] [Green Version]
- Mercker, M.; Brinkmann, F.; Marciniak-Czochra, A.; Richter, T. Beyond Turing: Mechanochemical pattern formation in biological tissues. Biol. Direct 2016, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Bode, H.R. The head organizer in Hydra. Int. J. Dev. Biol. 2012, 56, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Salis, P.; Lorin, T.; Lewis, V.; Rey, C.; Marcionetti, A.; Escande, M.; Roux, N.; Besseau, L.; Salamin, N.; Sémon, M.; et al. Developmental and comparative transcriptomic identification of iridophore contribution to white barring in clownfish. Pigment Cell Melanoma Res. 2019, 32, 391–402. [Google Scholar] [CrossRef]
- Ikmi, A.; McKinney, S.A.; Delventhal, K.M.; Gibson, M.C. TALEN and CRISPR/Cas9-Mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat. Commun. 2014, 5, 5486. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bailleul, R.; Manceau, M.; Touboul, J. A “Numerical Evo-Devo” Synthesis for the Identification of Pattern-Forming Factors. Cells 2020, 9, 1840. https://doi.org/10.3390/cells9081840
Bailleul R, Manceau M, Touboul J. A “Numerical Evo-Devo” Synthesis for the Identification of Pattern-Forming Factors. Cells. 2020; 9(8):1840. https://doi.org/10.3390/cells9081840
Chicago/Turabian StyleBailleul, Richard, Marie Manceau, and Jonathan Touboul. 2020. "A “Numerical Evo-Devo” Synthesis for the Identification of Pattern-Forming Factors" Cells 9, no. 8: 1840. https://doi.org/10.3390/cells9081840
APA StyleBailleul, R., Manceau, M., & Touboul, J. (2020). A “Numerical Evo-Devo” Synthesis for the Identification of Pattern-Forming Factors. Cells, 9(8), 1840. https://doi.org/10.3390/cells9081840