Robustness during Aging—Molecular Biological and Physiological Aspects
Abstract
:1. Introduction
2. The Different Theories of Aging
2.1. Evolutionary Genetic Theory
2.2. Telomere Theory
2.3. Antagonistic Pleiotropy Theory
2.4. Epigenetic Clock Theory
2.5. Discussion of Programmed Aging Theories
2.6. DNA Damage Theory
2.7. Mitochondrial Theory
2.8. Proteostasis Theory
2.9. Environmental Theory
2.10. Stress Theory of Aging
3. Physiological Properties
3.1. Immune System
3.2. Muscular System
3.3. Vascular System and Body Temperature
3.4. Brain Functionality
3.5. Cell Redundancy
4. Regulatory and Molecular Aspects
4.1. Feedback Control
4.2. The Robustness of Networks
4.3. Alternative Splicing—Functional Relevance vs. Noise
4.4. Energy Metabolism
5. Discussion and Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AS | alternative splicing |
DCs | dendritic cells |
ECM | extracellular matrix |
Hct | hematocrit |
mtDNA | mitochondrial DNA |
ROS | reactive oxygen species |
SPARC | secreted protein acidic and rich in cysteine |
References
- Mansfeld, J.; Urban, N.; Priebe, S.; Groth, M.; Frahm, C.; Hartmann, N.; Gebauer, J.; Ravichandran, M.; Dommaschk, A.; Schmeisser, S.; et al. Branched-chain amino acid catabolism is a conserved regulator of physiological ageing. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adriaensen, W.; Derhovanessian, E.; Vaes, B.; Pottelbergh, G.V.; Degryse, J.M.; Pawelec, G.; Hamprecht, K.; Theeten, H.; Matheï, C. CD4:8 Ratio >5 Is Associated With a Dominant Naive T-Cell Phenotype and Impaired Physical Functioning in CMV-Seropositive Very Elderly People: Results From the BELFRAIL Study. J. Gerontol. Ser. A 2014, 70, 143–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radman, M. Protein damage, radiation sensitivity and aging. DNA Repair 2016, 44, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Höhn, A.; König, J.; Grune, T. Protein oxidation in aging and the removal of oxidized proteins. J. Proteom. 2013, 92, 132–159. [Google Scholar] [CrossRef]
- Fichtner, M.; Schuster, S.; Stark, H. Determination of scoring functions for protein damage susceptibility. BioSystems 2020, 187, 104035. [Google Scholar] [CrossRef]
- Kirkwood, T.B.L. Why and how are we living longer? Exp. Physiol. 2017, 102, 1067–1074. [Google Scholar] [CrossRef] [Green Version]
- Medvedev, Z.A. An attempt at a rational classification of theories of ageing. Biol. Rev. 1990, 65, 375–398. [Google Scholar] [CrossRef]
- Kirkwood, T.B.L. Understanding the odd science of aging. Cell 2005, 120, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Rosen, R. Feedforwards and global system failure: A general mechanism for senescence. J. Theor. Biol. 1978, 74, 579–590. [Google Scholar] [CrossRef]
- Heinrich, R.; Schuster, S. The Regulation of Cellular Systems; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Kriete, A. Robustness and aging—A systems-level perspective. Biosystems 2013, 112, 37–48. [Google Scholar] [CrossRef]
- Kitano, H. Biological robustness. Nat. Rev. Genet. 2004, 5, 826–837. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, M.; Howell, P.; Dutta, S.; Heintz, C.; Mair, W. Alternative splicing in aging and longevity. Hum. Genet. 2020, 139, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Smetana, K., Jr.; Lacina, L.; Szabo, P.; Dvořánková, B.; Brož, P.; Šedo, A. Ageing as an important risk factor for cancer. Anticancer Res. 2016, 36, 5009–5017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 6736, 1–9. [Google Scholar] [CrossRef]
- Clegg, R.J.; Dyson, R.J.; Kreft, J.U. Repair rather than segregation of damage is the optimal unicellular aging strategy. BMC Biol. 2014, 12. [Google Scholar] [CrossRef] [Green Version]
- Van Kleunen, M.; Fischer, M. Effects of four generations of density-dependent selection on life history traits and their plasticity in a clonally propagated plant. J. Evol. Biol. 2003, 16, 474–484. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Smith, O.; Ning, Y. Molecular genetic studies of cellular senescence. Exp. Gerontol. 1992, 27, 519–522. [Google Scholar] [CrossRef]
- Rosen, R. Life Itself: A Comprehensive Inquiry Into the Nature, Origin, and Fabrication of Life; Columbia University Press: New York, NY, USA, 1991. [Google Scholar]
- Hankinson, R.J. Cause and Explanation in Ancient Greek Thought; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Hofmeyr, J.H.S. Basic Biological Anticipation; Springer: Cham, Switzerland, 2017; pp. 1–15. [Google Scholar]
- De Magalhães, J.P.; Costa, J. A database of vertebrate longevity records and their relation to other life-history traits. J. Evol. Biol. 2009, 22, 1770–1774. [Google Scholar] [CrossRef]
- Franzese, A.T.; Rurka, M.M. Theories of Aging. Encycl. Family Stud. 2016, 1–9. [Google Scholar] [CrossRef]
- Libertini, G. Non-programmed versus programmed aging paradigm. Curr. Aging Sci. 2015, 8, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Kowald, A.; Kirkwood, T.B. Can aging be programmed? A critical literature review. Aging Cell 2016, 15, 986–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strehler, B.L. Understanding aging. In Aging Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–19. [Google Scholar]
- Friedman, D.B.; Johnson, T.E. Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis Elegans, Defin. Age-1 Gene. J. Gerontol. 1988, 43, B102–B109. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.D.; Tissenbaum, H.A.; Liu, Y.; Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis Elegans. Science 1997, 277, 942–946. [Google Scholar] [CrossRef] [PubMed]
- Bartke, A. Mutations prolong life in flies; implications for aging in mammals. Trends Endocrinol. Metab. TEM 2001, 12, 233–234. [Google Scholar] [CrossRef]
- Mao, S.A.; Glorioso, J.M.; Nyberg, S.L. Liver regeneration. Transl. Res. J. Lab. Clin. Med. 2014, 163, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Holzenberger, M.; Dupont, J.; Ducos, B.; Leneuve, P.; Géloën, A.; Even, P.C.; Cervera, P.; Le Bouc, Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003, 421, 182–187. [Google Scholar] [CrossRef]
- Travis, J.M.J. The evolution of programmed death in a spatially structured population. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2004, 59, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Skulachev, V.P. The programmed death phenomena, aging, and the Samurai law of biology. Exp. Gerontol. 2001, 36, 995–1024. [Google Scholar] [CrossRef]
- Skulachev, V.P. Programmed death phenomena: From organelle to organism. Ann. N. Y. Acad. Sci. 2002, 959, 214–237. [Google Scholar] [CrossRef]
- Griffith, J.D.; Comeau, L.; Rosenfield, S.; Stansel, R.M.; Bianchi, A.; Moss, H.; de Lange, T. Mammalian telomeres end in a large duplex loop. Cell 1999, 97, 503–514. [Google Scholar] [CrossRef] [Green Version]
- Collins, K. Mammalian telomeres and telomerase. Curr. Opin. Cell Biol. 2000, 12, 378–383. [Google Scholar] [CrossRef]
- Okuda, K.; Bardeguez, A.; Gardner, J.P.; Rodriguez, P.; Ganesh, V.; Kimura, M.; Skurnick, J.; Awad, G.; Aviv, A. Telomere length in the newborn. Pediatr. Res. 2002, 52, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Martin-Ruiz, C.M.; Takayama, M.; Abe, Y.; Takebayashi, T.; Koyasu, S.; Suematsu, M.; Hirose, N.; von Zglinicki, T. Inflammation, But Not Telomere Length, Predicts Successful Ageing at Extreme Old Age: A Longitudinal Study of Semi-supercentenarians. EBioMedicine 2015, 2, 1549–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnet, F.M. Intrinsic Mutagenesis: A Genetic Approach to Ageing; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Collado, M.; Blasco, M.A.; Serrano, M. Cellular senescence in cancer and aging. Cell 2007, 130, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Schäuble, S.; Klement, K.; Marthandan, S.; Münch, S.; Heiland, I.; Schuster, S.; Hemmerich, P.; Diekmann, S. Quantitative Model of Cell Cycle Arrest and Cellular Senescence in Primary Human Fibroblasts. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Olovnikov, A.M. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol. 1973, 41, 181–190. [Google Scholar] [CrossRef]
- Campisi, J. Aging, tumor suppression and cancer: High wire-act! Mech. Ageing Dev. 2005, 126, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Krtolica, A.; Parrinello, S.; Lockett, S.; Desprez, P.Y.; Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging. Proc. Natl. Acad. Sci. USA 2001, 98, 12072–12077. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 1957, 11, 398–411. [Google Scholar] [CrossRef]
- Kirkwood, T.B.; Austad, S.N. Why do we age? Nature 2000, 408, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Cherdyntseva, N.V.; Gervas, P.A.; Litvyakov, N.V.; Stakcheeva, M.N.; Ponomaryeva, A.A.; Dobrodeev, A.Y.; Denisov, E.V.; Belyavskaya, V.A.; Choinzonov, E.L. Age-related function of tumor suppressor gene TP53:contribution to cancer risk and progression. Exp. Oncol. 2010, 32, 205–208. [Google Scholar] [PubMed]
- Klein, R.; Zeiss, C.; Chew, E.; Tsai, J.; Sackler, R.; Haynes, C.; Henning, A.; SanGiovanni, J.; Mane, S.; Mayne, S.; et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Hummert, S.; Glock, C.; Lang, S.; Hummert, C.; Skerka, C.; Zipfel, P.; Germerodt, S.; Schuster, S. Playing ‘hide-and-seek’ with factor H: Game-theoretical analysis of a single nucleotide polymorphism. J. R. Soc. Interface 2018, 15, 20170963. [Google Scholar] [CrossRef] [Green Version]
- Holliday, R. Aging is no longer an unsolved problem in biology. Ann. N. Y. Acad. Sci. 2006, 1067, 1–9. [Google Scholar] [CrossRef]
- Dupont, C.; Armant, D.R.; Brenner, C.A. Epigenetics: Definition, mechanisms and clinical perspective. Semin. Reprod. Med. 2009, 27, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Buisman, S.C.; Haan, G.D. Epigenetic changes as a target in aging haematopoietic stem cells and age-related malignancies. Cells 2019, 8, 868. [Google Scholar] [CrossRef] [Green Version]
- Cencioni, C.; Heid, J.; Krepelova, A.; Rasa, S.M.M.; Kuenne, C.; Guenther, S.; Baumgart, M.; Cellerino, A.; Neri, F.; Spallotta, F.; et al. Aging Triggers H3K27 Trimethylation Hoarding in the Chromatin of Nothobranchius furzeri Skeletal Muscle. Cells 2019, 8, 1169. [Google Scholar] [CrossRef] [Green Version]
- Sorrentino, J.A.; Sanoff, H.K.; Sharpless, N.E. Defining the toxicology of aging. Trends Mol. Med. 2014, 20, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.B.; Gao, Y.; et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 2013, 49, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.T.; Tsai, P.C.; Yang, T.P.; Pidsley, R.; Nisbet, J.; Glass, D.; Mangino, M.; Zhai, G.; Zhang, F.; Valdes, A.; et al. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet. 2012, 8, e1002629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, C.M.; Wagner, W. Epigenetic-aging-signature to determine age in different tissues. Aging 2011, 3, 1018–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClay, J.L.; Aberg, K.A.; Clark, S.L.; Nerella, S.; Kumar, G.; Xie, L.Y.; Hudson, A.D.; Harada, A.; Hultman, C.M.; Magnusson, P.K.E.; et al. A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum. Mol. Genet. 2014, 23, 1175–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Issa, J.P. Aging and epigenetic drift: A vicious cycle. J. Clin. Investig. 2014, 124, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Day, K.; Waite, L.L.; Thalacker-Mercer, A.; West, A.; Bamman, M.M.; Brooks, J.D.; Myers, R.M.; Absher, D. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 2013, 14, R102. [Google Scholar] [CrossRef] [Green Version]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, 3156. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.J.; Goodman, S.J.; Kobor, M.S. DNA methylation and healthy human aging. Aging Cell 2015, 14, 924–932. [Google Scholar] [CrossRef]
- Fraga, M.F.; Ballestar, E.; Paz, M.F.; Ropero, S.; Setien, F.; Ballestar, M.L.; Heine-Suñer, D.; Cigudosa, J.C.; Urioste, M.; Benitez, J.; et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 2005, 102, 10604–10609. [Google Scholar] [CrossRef] [Green Version]
- Teschendorff, A.E.; West, J.; Beck, S. Age-associated epigenetic drift: Implications, and a case of epigenetic thrift? Hum. Mol. Genet. 2013, 22, R7–R15. [Google Scholar] [CrossRef]
- Shah, S.; McRae, A.F.; Marioni, R.E.; Harris, S.E.; Gibson, J.; Henders, A.K.; Redmond, P.; Cox, S.R.; Pattie, A.; Corley, J.; et al. Genetic and environmental exposures constrain epigenetic drift over the human life course. Genome Res. 2014, 24, 1725–1733. [Google Scholar] [CrossRef] [Green Version]
- Kirkwood, T.B. Evolution of ageing. Nature 1977, 270, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Finch, C.E.; Ruvkun, G. The genetics of aging. Annu. Rev. Genom. Hum. Genet. 2001, 2, 435–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, R.F.; Atzmon, G.; Gheorghe, C.; Liang, H.Q.; Lowes, C.; Greally, J.M.; Barzilai, N. Tissue-specific dysregulation of DNA methylation in aging. Aging Cell 2010, 9, 506–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Harman, D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956, 11, 298–300. [Google Scholar] [CrossRef] [Green Version]
- Harman, D. The biologic clock: The mitochondria? J. Am. Geriatr. Soc. 1972, 20, 145–147. [Google Scholar] [CrossRef]
- Harman, D. The free radical theory of aging. Antioxid. Redox Signal. 2003, 5, 557–561. [Google Scholar] [CrossRef]
- Devasagayam, T.P.A.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Physicians India 2004, 52, 794–804. [Google Scholar]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [Green Version]
- Schriner, S.E.; Linford, N.J.; Martin, G.M.; Treuting, P.; Ogburn, C.E.; Emond, M.; Coskun, P.E.; Ladiges, W.; Wolf, N.; van Remmen, H.; et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 2005, 308, 1909–1911. [Google Scholar] [CrossRef] [Green Version]
- Jang, Y.C.; Pérez, V.I.; Song, W.; Lustgarten, M.S.; Salmon, A.B.; Mele, J.; Qi, W.; Liu, Y.; Liang, H.; Chaudhuri, A.; et al. Overexpression of Mn superoxide dismutase does not increase life span in mice. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2009, 64, 1114–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, C.D.; Quain, D.E.; Smart, K.A. The impact of media composition and petite mutation on the longevity of a polyploid brewing yeast strain. Lett. Appl. Microbiol. 2000, 31, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, E.T.; Morimoto, R.I.; Dillin, A.; Kelly, J.W.; Balch, W.E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 2009, 78, 959–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Platt, F.M.; Boland, B.; van der Spoel, A.C. The cell biology of disease: Lysosomal storage disorders: The cellular impact of lysosomal dysfunction. J. Cell Biol. 2012, 199, 723–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowotny, K.; Jung, T.; Grune, T.; Höhn, A. Accumulation of modified proteins and aggregate formation in aging. Exp. Gerontol. 2014, 57, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Kochmanski, J.; Montrose, L.; Goodrich, J.M.; Dolinoy, D.C. Environmental Deflection: The Impact of Toxicant Exposures on the Aging Epigenome. Toxicol. Sci. Off. J. Soc. Toxicol. 2017, 156, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Medvedeva, Y.A.; Khamis, A.M.; Kulakovskiy, I.V.; Ba-Alawi, W.; Bhuyan, M.S.I.; Kawaji, H.; Lassmann, T.; Harbers, M.; Forrest, A.R.; Bajic, V.B. Effects of cytosine methylation on transcription factor binding sites. BMC Genom. 2014, 15, 119. [Google Scholar] [CrossRef] [Green Version]
- Martino, D.; Loke, Y.J.; Gordon, L.; Ollikainen, M.; Cruickshank, M.N.; Saffery, R.; Craig, J.M. Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance. Genome Biol. 2013, 14, R42. [Google Scholar] [CrossRef] [Green Version]
- Faulk, C.; Liu, K.; Barks, A.; Goodrich, J.M.; Dolinoy, D.C. Longitudinal epigenetic drift in mice perinatally exposed to lead. Epigenetics 2014, 9, 934–941. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, K.M.; Blossom, S.J.; Erickson, S.W.; Reisfeld, B.; Zurlinden, T.J.; Broadfoot, B.; West, K.; Bai, S.; Cooney, C.A. Chronic exposure to water pollutant trichloroethylene increased epigenetic drift in CD4(+) T cells. Epigenomics 2016, 8, 633–649. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Xian, B.; Dong, D.; Xia, K.; Zhu, S.; Zhang, Z.; Hou, L.; Zhang, Q.; Zhang, Y.; Han, J.D.J. A modular network model of aging. Mol. Syst. Biol. 2007, 3, 147. [Google Scholar] [CrossRef] [PubMed]
- Simkó, G.I.; Gyurkó, D.; Veres, D.V.; Nánási, T.; Csermely, P. Network strategies to understand the aging process and help age-related drug design. Genome Med. 2009, 1, 90. [Google Scholar] [CrossRef] [PubMed]
- Tosato, M.; Zamboni, V.; Ferrini, A.; Cesari, M. The aging process and potential interventions to extend life expectancy. Clin. Interv. Aging 2007, 2, 401–412. [Google Scholar] [PubMed]
- Epel, E.S.; Lithgow, G.J. Stress biology and aging mechanisms: Toward understanding the deep connection between adaptation to stress and longevity. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69 (Suppl. S1), S10–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawelec, G.; Goldeck, D.; Derhovanessian, E. Inflammation, ageing and chronic disease. Curr. Opin. Immunol. 2014, 29, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Weyand, C.M.; Goronzy, J.J. Aging of the Immune System. Mechanisms and Therapeutic Targets. Ann. Am. Thorac. Soc. 2016, 13 (Suppl. S5), S422–S428. [Google Scholar] [CrossRef] [PubMed]
- Janssen, N.; Derhovanessian, E.; Demuth, I.; Arnaout, F.; Steinhagen-Thiessen, E.; Pawelec, G. Responses of Dendritic Cells to TLR-4 Stimulation Are Maintained in the Elderly and Resist the Effects of CMV Infection Seen in the Young. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2015, 71, 1117–1123. [Google Scholar] [CrossRef] [Green Version]
- Qi, Q.; Liu, Y.; Cheng, Y.; Glanville, J.; Zhang, D.; Lee, J.Y.; Olshen, R.A.; Weyand, C.M.; Boyd, S.D.; Goronzy, J.J. Diversity and clonal selection in the human T-cell repertoire. Proc. Natl. Acad. Sci. USA 2014, 111, 13139–13144. [Google Scholar] [CrossRef] [Green Version]
- Palmer, D.B. The effect of age on thymic function. Front. Immunol. 2013, 4, 316. [Google Scholar] [CrossRef] [Green Version]
- Bucher, C.H.; Schlundt, C.; Wulsten, D.; Sass, F.A.; Wendler, S.; Ellinghaus, A.; Thiele, T.; Seemann, R.; Willie, B.M.; Volk, H.D.; et al. Experience in the adaptive immunity impacts bone homeostasis, remodeling and healing. Front. Immunol. 2019, 10, 797. [Google Scholar] [CrossRef] [Green Version]
- Jean, C.M.; Honarmand, S.; Louie, J.K.; Glaser, C.A. Risk factors for West Nile virus neuroinvasive disease, California, 2005. Emerg. Infect. Dis. 2007, 13, 1918–1920. [Google Scholar] [CrossRef] [PubMed]
- Peiris, J.S.M.; Chu, C.M.; Cheng, V.C.C.; Chan, K.S.; Hung, I.F.N.; Poon, L.L.M.; Law, K.I.; Tang, B.S.F.; Hon, T.Y.W.; Chan, C.S.; et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet 2003, 361, 1767–1772. [Google Scholar] [CrossRef] [Green Version]
- Derhovanessian, E.; Pawelec, G. Vaccination in the elderly. Microb. Biotechnol. 2012, 5, 226–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchholz, U.; Buda, S.; Streib, V.; Haas, W. Wochenbericht 51/2019. In GrippeWeb-Wochenbericht; Robert Koch-Institut: Berlin, Germany, 2019. [Google Scholar]
- Simonsen, L.; Clarke, M.J.; Schonberger, L.B.; Arden, N.H.; Cox, N.J.; Fukuda, K. Pandemic versus Epidemic Influenza Mortality: A Pattern of Changing Age Distribution. J. Infect. Dis. 1998, 178, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, M.; Carrat, F. Comparative age distribution of influenza morbidity and mortality during seasonal influenza epidemics and the 2009 H1N1 pandemic. BMC Infect. Dis. 2010, 10, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binns, S.H.; Dawson, S.; Speakman, A.J.; Cuevas, L.E.; Hart, C.A.; Gaskell, C.J.; Morgan, K.L.; Gaskell, R.M. A study of feline upper respiratory tract disease with reference to prevalence and risk factors for infection with feline calicivirus and feline herpesvirus. J. Feline Med. Surg. 2000, 2, 123–133. [Google Scholar] [CrossRef]
- Wistuba-Hamprecht, K.; Frasca, D.; Blomberg, B.; Pawelec, G.; Derhovanessian, E. Age-associated alterations in γδ T-cells are present predominantly in individuals infected with Cytomegalovirus. Immun. Ageing I A 2013, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Perner, F.; Perner, C.; Ernst, T.; Heidel, F.H. Roles of JAK2 in Aging, Inflammation, Hematopoiesis and Malignant Transformation. Cells 2019, 8, 854. [Google Scholar] [CrossRef] [Green Version]
- Coppé, J.; Patil, C.; Rodier, F.; Sun, Y.; Muñoz, D.; Goldstein, J.; Nelson, P.; Desprez, P.; Campisi, J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008, 6, 2853–2868. [Google Scholar] [CrossRef]
- Langhi Prata, L.; Ovsyannikova, I.; Tchkonia, T.; Kirkland, J. Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin. Immunol. 2018, 40, 101275. [Google Scholar] [CrossRef]
- Roubenoff, R. Catabolism of aging: Is it an inflammatory process? Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Faget, D.; Ren, Q.; Stewart, S. Unmasking senescence: Context-dependent effects of SASP in cancer. Nat. Rev. Cancer 2019, 19, 439–453. [Google Scholar] [CrossRef] [PubMed]
- Franco, I.; Fernandez-Gonzalo, R.; Vrtačnik, P.; Lundberg, T.; Eriksson, M.; Gustafsson, T. Healthy skeletal muscle aging: The role of satellite cells, somatic mutations and exercise. Int. Rev. Cell. Mol. Biol. 2019, 346, 157–200. [Google Scholar] [PubMed]
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Blaha, M.J.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; et al. Heart Disease and Stroke Statistics–2014 Update. Circulation 2014, 129, e28–e292. [Google Scholar] [CrossRef] [Green Version]
- Chiao, Y.A.; Rabinovitch, P.S. The aging heart. Cold Spring Harb. Perspect. Med. 2015, 5, a025148. [Google Scholar] [CrossRef]
- Bergmann, O.; Bhardwaj, R.D.; Bernard, S.; Zdunek, S.; Barnabé-Heider, F.; Walsh, S.; Zupicich, J.; Alkass, K.; Buchholz, B.A.; Druid, H.; et al. Evidence for cardiomyocyte renewal in humans. Science 2009, 324, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Lepers, R.; Maffiuletti, N. Age and gender interactions in ultraendurance performance: Insight from the triathlon. Med. Sci. Sport. Exerc. 2011, 43, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Liguori, I.; Russo, G.; Aran, L.; Bulli, G.; Curcio, F.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Sarcopenia: Assessment of disease burden and strategies to improve outcomes. Clin. Interv. Aging 2018, 13, 913–927. [Google Scholar] [CrossRef] [Green Version]
- Stenvinkel, P.; Ketteler, M.; Johnson, R.J.; Lindholm, B.; Pecoits-Filho, R.; Riella, M.; Heimbürger, O.; Cederholm, T.; Girndt, M. IL-10, IL-6, and TNF-α: Central factors in the altered cytokine network of uremia—The good, the bad, and the ugly. Kidney Int. 2005, 67, 1216–1233. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, H.; Blanco, C.; Sattler, F.; Schroeder, E.; Wiswell, R. Satellite cell numbers in young and older men 24 h after eccentric exercise. Muscle Nerve 2006, 33, 242–253. [Google Scholar] [CrossRef]
- Wanamaker, A.D.; Heinemeier, J.; Scourse, J.D.; Richardson, C.A.; Butler, P.G.; Eiríksson, J.; Knudsen, K.L. Very long-lived mollusks confirm 17th century AD tephra-based radiocarbon reservoir ages for North Icelandic shelf waters. Radiocarbon 2008, 50, 399–412. [Google Scholar] [CrossRef] [Green Version]
- Butler, P.G.; Wanamaker, A.D., Jr.; Scourse, J.D.; Richardson, C.A.; Reynolds, D.J. Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica Isl. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 373, 141–151. [Google Scholar] [CrossRef]
- Sosnowska, D.; Richardson, C.; Sonntag, W.E.; Csiszar, A.; Ungvari, Z.; Ridgway, I. A heart that beats for 500 years: Age-related changes in cardiac proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in Arctica islandica, the longest-living noncolonial animal. J. Gerontol. Ser. A 2013, 69, 1448–1461. [Google Scholar] [CrossRef] [Green Version]
- Ungvari, Z.; Ridgway, I.; Philipp, E.E.; Campbell, C.M.; McQuary, P.; Chow, T.; Coelho, M.; Didier, E.S.; Gelino, S.; Holmbeck, M.A.; et al. Extreme longevity is associated with increased resistance to oxidative stress in Arctica Isl. Long.-Living Non-Colon. Anim. J. Gerontol. Ser. A Biomed. Sci. Med Sci. 2011, 66, 741–750. [Google Scholar] [CrossRef] [Green Version]
- Ungvari, Z.; Sosnowska, D.; Mason, J.B.; Gruber, H.; Lee, S.W.; Schwartz, T.S.; Brown, M.K.; Storm, N.J.; Fortney, K.; Sowa, J.; et al. Resistance to genotoxic stresses in Arctica Isl. Long. Living Noncolonial Anim. Is Extrem. Longev. Assoc. A Multistress Resist. Phenotype? J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2012, 68, 521–529. [Google Scholar]
- Salmon, A.B.; Leonard, S.; Masamsetti, V.; Pierce, A.; Podlutsky, A.J.; Podlutskaya, N.; Richardson, A.; Austad, S.N.; Chaudhuri, A.R. The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J. 2009, 23, 2317–2326. [Google Scholar] [CrossRef]
- Rosenson, R.S.; McCormick, A.; Uretz, E.F. Distribution of blood viscosity values and biochemical correlates in healthy adults. Clin. Chem. 1996, 42, 1189–1195. [Google Scholar] [CrossRef] [Green Version]
- Schuster, S.; Stark, H. What can we learn from Einstein and Arrhenius about the optimal flow of our blood? Biochim. Biophys. Acta (BBA) Gen. Subj. 2014, 1840, 271–276. [Google Scholar] [CrossRef]
- Benderro, G.F.; LaManna, J.C. Kidney EPO expression during chronic hypoxia in aged mice. In Oxygen Transport to Tissue XXXIV; Springer: Berlin/Heidelberg, Germany, 2013; pp. 9–14. [Google Scholar]
- Weinert, D.; Waterhouse, J. The circadian rhythm of core temperature: Effects of physical activity and aging. Physiol. Behav. 2007, 90, 246–256. [Google Scholar] [CrossRef]
- Kelly, G. Body temperature variability (Part 1): A review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging. Altern. Med. Rev. 2006, 11, 278–293. [Google Scholar]
- Prinz, P.N.; Moe, K.E.; Vitiello, M.V.; Marks, A.L.; Larsen, L.H. Entrained body temperature rhythms are similar in mild Alzheimer’s Disease, geriatric onset depression, and normal aging. Top. Geriatr. 1992, 5, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenney, W.L.; Munce, T.A. Invited Review: Aging and human temperature regulation. J. Appl. Physiol. 2003, 95, 2598–2603. [Google Scholar] [CrossRef] [PubMed]
- Monk, T.H.; Buysse, D.J.; Reynolds, C.F.; Kupfer, D.J.; Houck, P.R. Circadian temperature rhythms of older people. Exp. Gerontol. 1995, 30, 455–474. [Google Scholar] [CrossRef]
- Monk, T.H.; Kupfer, D.J. Circadian rhythms in healthy aging-effects downstream from the pacemaker. Chronobiol. Int. 2000, 17, 355–368. [Google Scholar] [CrossRef]
- Weinert, D.; Waterhouse, J. Daily activity and body temperature rhythms do not change simultaneously with age in laboratory mice. Physiol. Behav. 1999, 66, 605–612. [Google Scholar] [CrossRef]
- Mailloux, A.; Benstaali, C.; Bogdan, A.; Auzéby, A.; Touitou, Y. Body temperature and locomotor activity as marker rhythms of aging of the circadian system in rodents. Exp. Gerontol. 1999, 34, 733–740. [Google Scholar] [CrossRef]
- Campbell, K.L.; Samu, D.; Davis, S.W.; Geerligs, L.; Mustafa, A.; Tyler, L.K. Robust resilience of the frontotemporal syntax system to aging. J. Neurosci. 2016, 36, 5214–5227. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.W.; Zhuang, J.; Wright, P.; Tyler, L.K. Age-related sensitivity to task-related modulation of language-processing networks. Neuropsychologia 2014, 63, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Samu, D.; Campbell, K.L.; Tsvetanov, K.A.; Shafto, M.A.; Tyler, L.K. Preserved cognitive functions with age are determined by domain-dependent shifts in network responsivity. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef]
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.; Croteau, D.L.; Bohr, V. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019, 15, 565–581. [Google Scholar] [CrossRef]
- Kadota, K.; Gomi, H. Implicit visuomotor processing for quick online reactions is robust against aging. J. Neurosci. 2010, 30, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Kimura, D.; Kadota, K.; Kinoshita, H. The impact of aging on the spatial accuracy of quick corrective arm movements in response to sudden target displacement during reaching. Front. Aging Neurosci. 2015, 7, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciccocioppo, R.; Cangemi, G.C.; Roselli, E.A.; Kruzliak, P. Are stem cells a potential therapeutic tool in coeliac disease? Cell. Mol. Life Sci. 2014, 72, 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Sorg, H.; Tilkorn, D.J.; Hager, S.; Hauser, J.; Mirastschijski, U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur. Surg. Res. 2016, 58, 81–94. [Google Scholar] [CrossRef]
- Zakeri, Z.; Penaloza, C.G.; Smith, K.; Ye, Y.; Lockshin, R.A. What cell death does in development. Int. J. Dev. Biol. 2015, 59, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Niwa, H. The principles that govern transcription factor network functions in stem cells. Development 2018, 145. [Google Scholar] [CrossRef] [Green Version]
- Cichocki, F.; Sitnicka, E.; Bryceson, Y.T. NK cell development and function—Plasticity and redundancy unleashed. Semin. Immunol. 2014, 26, 114–126. [Google Scholar] [CrossRef]
- Tu, C.T.; Chen, B.S. On the increase in network robustness and decrease in network response ability during the aging process: A Systems Biology approach via microarray data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2013, 10, 468–480. [Google Scholar] [CrossRef]
- Bodenstein, C.; Heiland, I.; Schuster, S. Temperature compensation and entrainment in circadian rhythms. Phys. Biol. 2012, 9, 036011. [Google Scholar] [CrossRef]
- Imai, S.I. “Clocks” in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2010, 1804, 1584–1590. [Google Scholar] [CrossRef] [Green Version]
- Imai, S.I. Dissecting systemic control of metabolism and aging in the NAD World: The importance of SIRT1 and NAMPT-mediated NAD biosynthesis. FEBS Lett. 2011, 585, 1657–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.C.; Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 2013, 153, 1448–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belden, W.J.; Dunlap, J.C. Aging well with a little wine and a good clock. Cell 2013, 153, 1421–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csete, M.E.; Doyle, J.C. Reverse engineering of biological complexity. Science 2002, 295, 1664–1669. [Google Scholar] [CrossRef]
- Bigham, A.W.; Wilson, M.J.; Julian, C.G.; Kiyamu, M.; Vargas, E.; Leon-Velarde, F.; Rivera-Chira, M.; Rodriquez, C.; Browne, V.A.; Parra, E.; et al. Andean and Tibetan patterns of adaptation to high altitude. Am. J. Hum. Biol. 2013, 25, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Fafournoux, P.; Bruhat, A.; Jousse, C. Amino acid regulation of gene expression. Biochem. J. 2000, 351, 1–12. [Google Scholar] [CrossRef]
- Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z.N.; Barabási, A.L. The large-scale organization of metabolic networks. Nature 2000, 407, 651–654. [Google Scholar] [CrossRef] [Green Version]
- Han, H.W.; Ohn, J.H.; Moon, J.; Kim, J.H. Yin and Yang of disease genes and death genes between reciprocally scale-free biological networks. Nucleic Acids Res. 2013, 41, 9209–9217. [Google Scholar] [CrossRef] [Green Version]
- Will, C.L.; Lührmann, R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 2011, 3, a003707. [Google Scholar] [CrossRef] [Green Version]
- Stamm, S.; Smith, C.W.J.; Reinhard, L. Alternative Pre-mRNA Splicing: Theory and Protocols, 1st ed.; Wiley VCH: Weinheim, Germany, 2012. [Google Scholar]
- Kelemen, O.; Convertini, P.; Zhang, Z.; Wen, Y.; Shen, M.; Falaleeva, M.; Stamm, S. Function of alternative splicing. Gene 2013, 514, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Matera, A.G.; Wang, Z. A day in the life of the spliceosome. Nat. Rev. Mol. Cell Biol. 2014, 15, 108–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Townsend, K.; Goldberg, T.E.; Davies, P.; Conejero-Goldberg, C. MAPT isoforms: Differential transcriptional profiles related to 3R and 4R splice variants. J. Alzheimer’s Dis. 2010, 22, 1313–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scuderi, S.; La Cognata, V.; Drago, F.; Cavallaro, S.; D’Agata, V. Alternative splicing generates different parkin protein isoforms: Evidences in human, rat, and mouse brain. BioMed Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.x.; Huang, Q.; Park, J.W.; Shen, S.; Lin, L.; Tokheim, C.J.; Henry, M.D.; Xing, Y. Transcriptome-wide landscape of pre-mRNA alternative splicing associated with metastatic colonization. Mol. Cancer Res. 2015, 13, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Sveen, A.; Kilpinen, S.; Ruusulehto, A.; Lothe, R.; Skotheim, R. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 2016, 35, 2413. [Google Scholar] [CrossRef]
- Kalsotra, A.; Cooper, T. Functional consequences of developmentally regulated alternative splicing. Nat. Rev. Genet. 2011, 12, 715–729. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.P.; Pilling, L.C.; Emond, F.; Flurkey, K.; Harrison, D.E.; Yuan, R.; Peters, L.L.; Kuchel, G.A.; Ferrucci, L.; Melzer, D.; et al. Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. Aging Cell 2016, 15, 903–913. [Google Scholar] [CrossRef] [Green Version]
- Sieber, P.; Barth, E.; Marz, M. The landscape of the alternatively spliced transcriptome remains stable during aging across different species and tissues. bioRxiv 2019. [Google Scholar] [CrossRef]
- Lin, W.W.; Murray, J.; Oberbauer, A. Overexpression of Growth Hormone Affects Alternatively Spliced IGF-I mRNA Expression in oMt1a-oGH Transgenic Mice. Transgenic Res. 1998, 7, 295–302. [Google Scholar] [CrossRef]
- Oberbauer, A. The Regulation of IGF-1 Gene Transcription and Splicing during Development and Aging. Front. Endocrinol. 2013, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Aristorena, M.; Blanco, F.J.; Casas-Engel, M.D.L.; Ojeda-Fernandez, L.; Gallardo-Vara, E.; Corbi, A.; Botella, L.M.; Bernabeu, C. Expression of endoglin isoforms in the myeloid lineage and their role during aging and macrophage polarization. J. Cell Sci. 2014, 127, 2723–2735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Wang, Z.; Ma, T.; Wei, G.; Ni, T. Alternative splicing in aging and age-related diseases. Transl. Med. Aging 2017, 1, 32–40. [Google Scholar] [CrossRef]
- Holly, A.C.; Melzer, D.; Pilling, L.C.; Fellows, A.C.; Tanaka, T.; Ferrucci, L.; Harries, L.W. Changes in splicing factor expression are associated with advancing age in man. Mech. Ageing Dev. 2013, 134, 356–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harries, L.W.; Hernandez, D.; Henley, W.; Wood, A.R.; Holly, A.C.; Bradley-Smith, R.M.; Yaghootkar, H.; Dutta, A.; Murray, A.; Frayling, T.M.; et al. Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell 2011, 10, 868–878. [Google Scholar] [CrossRef]
- Mazin, P.; Xiong, J.; Liu, X.; Yan, Z.; Zhang, X.; Li, M.; He, L.; Somel, M.; Yuan, Y.; Chen, Y.P.P.; et al. Widespread splicing changes in human brain development and aging. Mol. Syst. Biol. 2013, 9, 633. [Google Scholar] [CrossRef]
- Ubaida-Mohien, C.; Lyashkov, A.; Gonzalez-Freire, M.; Tharakan, R.; Shardell, M.; Moaddel, R.; Semba, R.D.; Chia, C.W.; Gorospe, M.; Sen, R.; et al. Discovery proteomics in aging human skeletal muscle finds change in spliceosome, immunity, proteostasis and mitochondria. eLife 2019, 8. [Google Scholar] [CrossRef]
- Lareau, L.F.; Brenner, S.E. Regulation of splicing factors by alternative splicing and NMD is cnserved between kingdoms yet evolutionarily flexible. Mol. Biol. Evol. 2015, 32, 1072–1079. [Google Scholar] [CrossRef] [Green Version]
- Mockenhaupt, S.; Makeyev, E.V. Non-coding functions of alternative pre-mRNA splicing in development. Semin. Cell Dev. Biol. 2015, 47-48, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Chern, T.M.; Nimwegen, E.V.; Kai, C.; Kawai, J.; Carninci, P.; Hayashizaki, Y.; Zavolan, M. A Simple Physical Model Predicts Small Exon Length Variations. PLoS Genet. 2006, 2. [Google Scholar] [CrossRef] [Green Version]
- Saudemont, B.; Popa, A.; Parmley, J.L.; Rocher, V.; Blugeon, C.; Necsulea, A.; Meyer, E.; Duret, L. The fitness cost of mis-splicing is the main determinant of alternative splicing patterns. Genome Biol. 2017, 18, 208. [Google Scholar] [CrossRef]
- Pickrell, J.K.; Pai, A.A.; Gilad, Y.; Pritchard, J.K. Noisy splicing drives mRNA isoform diversity in human cells. PLoS Genet. 2010, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiller, M.; Huse, K.; Szafranski, K.; Jahn, N.; Hampe, J.; Schreiber, S.; Backofen, R.; Platzer, M. Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity. Nat. Genet. 2004, 36, 1255–1257. [Google Scholar] [CrossRef] [PubMed]
- Kempken, F. Alternative splicing in ascomycetes. Appl. Microbiol. Biotechnol. 2013, 97, 4235–4241. [Google Scholar] [CrossRef] [PubMed]
- Grützmann, K.; Szafranski, K.; Pohl, M.; Voigt, K.; Petzold, A.; Schuster, S. Fungal alternative splicing is associated with multicellular complexity and virulence: A genome-wide multi-species study. DNA Res. 2014, 21, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doria, E.; Buonocore, D.; Focarelli, A.; Marzatico, F. Relationship between Human Aging Muscle and Oxidative System Pathway. Oxidative Med. Cell. Longev. 2012, 2012, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.A.; Tindale, L.; Cumming, R.C. Age-dependent metabolic dysregulation in cancer and Alzheimer’s disease. Biogerontology 2014, 15, 559–577. [Google Scholar] [CrossRef]
- Stolle, S.; Ciapaite, J.; Reijne, A.C.; Talarovicova, A.; Wolters, J.C.; Aguirre-Gamboa, R.; van der Vlies, P.; de Lange, K.; Neerincx, P.B.; van der Vries, G.; et al. Running-wheel activity delays mitochondrial respiratory flux decline in aging mouse muscle via a post-transcriptional mechanism. Aging Cell 2018, 17, e12700. [Google Scholar] [CrossRef]
- Stadtman, E. Biochemical markers of aging. Exp. Gerontol. 1988, 23, 327–347. [Google Scholar] [CrossRef]
- Gray, C.C.; Smolenski, R.T.; Amrani, M.; Goodwin, A.T.; Jayakumar, J.; Jagodzinski, P.; Yacoub, M.H. Influence of ageing on functional recovery and guanine nucleotide levels of the heart following cold cardioplegic arrest. Eur. J. Cardio Thorac. Surg. 1998, 13, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Wiley, L. Exploring the Potential of Oxidative Stress-Related Biomarkers of Ageing in a Population-Based Study of the Very Old. Ph.D. Thesis, Newcastle University, Newcastle-upon-Tyne, UK, 2014. [Google Scholar]
- Winkler, S.; Hempel, M.; Hsu, M.-J.; Gericke, M.; Kühne, H.; Brückner, S.; Erler, S.; Burkhardt, R.; Christ, B. Immune-Deficient Pfp/Rag2-/- Mice Featured Higher Adipose Tissue Mass and Liver Lipid Accumulation with Growing Age than Wildtype C57BL/6N Mice. Cells 2019, 8, 775. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, R.; Schuster, S. The Regulation of Cellular Systems; Chapman and Hall: London, UK, 1996. [Google Scholar]
- Grosman, B.; Shaik, O.; Helwig, B.; Leon, L.; Doyle, F.R. A physiological systems approach to modeling and resetting of mouse thermoregulation under heat stress. J. Appl. Physiol. 1985, 111, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Peelle, J.E. Language and aging. In The Oxford Handbook of Neurolinguistics; de Zubicaray, G.I., Schiller, N.O., Eds.; Oxford University Press: Oxford, UK, 2019; Chapter 12. [Google Scholar]
- Keating, N. Introduction: Perspectives on healthy aging. Can. J. Aging 2005, 24, 3–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blagosklonny, M.V. Paradoxes of Aging. Cell Cycle 2007, 6, 2997–3003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, J.W.; Kahn, R.L. Successful Aging. Gerontol 1997, 37, 433–440. [Google Scholar] [CrossRef]
- Whitson, H.E.; Duan-Porter, W.; Schmader, K.E.; Morey, M.C.; Cohen, H.J.; Colón-Emeric, C.S. Physical Resilience in Older Adults: Systematic Review and Development of an Emerging Construct. J. Gerontol. Ser. A 2015, 71, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Colcombe, S.J.; Erickson, K.I.; Raz, N.; Webb, A.G.; Cohen, N.J.; McAuley, E.; Kramer, A.F. Aerobic fitness reduces brain tissue loss in aging humans. J. Gerontol. Ser. A 2003, 58, M176–M180. [Google Scholar] [CrossRef] [Green Version]
- Kornadt, A.E.; Hess, T.M.; Rothermund, K. Domain-specific views on aging and preparation for age-related changes—Development and validation of three brief scales. J. Gerontol. Ser. B 2018. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barth, E.; Sieber, P.; Stark, H.; Schuster, S. Robustness during Aging—Molecular Biological and Physiological Aspects. Cells 2020, 9, 1862. https://doi.org/10.3390/cells9081862
Barth E, Sieber P, Stark H, Schuster S. Robustness during Aging—Molecular Biological and Physiological Aspects. Cells. 2020; 9(8):1862. https://doi.org/10.3390/cells9081862
Chicago/Turabian StyleBarth, Emanuel, Patricia Sieber, Heiko Stark, and Stefan Schuster. 2020. "Robustness during Aging—Molecular Biological and Physiological Aspects" Cells 9, no. 8: 1862. https://doi.org/10.3390/cells9081862
APA StyleBarth, E., Sieber, P., Stark, H., & Schuster, S. (2020). Robustness during Aging—Molecular Biological and Physiological Aspects. Cells, 9(8), 1862. https://doi.org/10.3390/cells9081862