Balancing the Photoreceptor Proteome: Proteostasis Network Therapeutics for Inherited Retinal Disease
Abstract
:1. Introduction
2. The Different Branches of the Proteostasis Network
2.1. Pathways Involved in Protein Trafficking
2.1.1. Chaperones Involved in Lipid-Dependent Trafficking
2.2. Pathways Involved in Protein Folding
2.2.1. Chaperonins, Phosducins and Ric8A
2.2.2. Heat Shock Response (HSR)
2.2.3. Unfolded Protein Response (UPR)
2.3. Pathways Involved in Protein Degradation
2.3.1. ER-associated Degradation (ERAD)
2.3.2. Autophagy
3. Therapeutic Approaches to Restore Protein Balance
3.1. Therapeutic Strategies Involved in Protein Trafficking
3.1.1. Targeting Protein Lipid Modifications
3.2. Therapeutic Strategies Involved in Protein Folding
3.2.1. Targeting Chaperonins and Their Co-chaperones
3.2.2. Targeting the Heat Shock Response (HSR)
3.2.3. Targeting the Unfolded Protein Response (UPR)
3.3. Therapeutic Strategies Involved in Protein Degradation
3.3.1. Targeting the ER-associated Degradation (ERAD)
3.3.2. Targeting Autophagy
4. Discussion and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Osterberg, G. Topography of the layer of rods and cones in the human retina. Acta Ophthalmol. Suppl. 1935, 6, 1–103. [Google Scholar]
- May-Simera, H.; Nagel-Wolfrum, K.; Wolfrum, U. Cilia-The sensory antennae in the eye. Prog. Retin. Eye Res. 2017, 60, 144–180. [Google Scholar] [CrossRef] [PubMed]
- Arshavsky, V.Y.; Lamb, T.D.; Pugh, E.N., Jr. G proteins and phototransduction. Annu. Rev. Physiol. 2002, 64, 153–187. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, M.; Yadav, R.P.; Brooks, C.; Artemyev, N.O. Chaperones and retinal disorders. Adv. Protein Chem. Struct. Biol. 2019, 114, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Krizaj, D. Calcium regulation in photoreceptors. Front. Biosci. A J. Virtual Libr. 2002, 7, 2023–2044. [Google Scholar] [CrossRef]
- Martemyanov, A.K. The Transduction Cascade in Retinal ON-Bipolar Cells: Signal Processing and Disease. Annu. Rev. Vis. Sci. 2017, 3, 25–51. [Google Scholar] [CrossRef] [PubMed]
- Young, R.W.R. The renewal of photoreceptor cell outer segments. J. Cell Biol. 1967, 33, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Baehr, W. Membrane protein transport in photoreceptors: The function of PDEdelta: The Proctor lecture. Investig. Ophthalmol. Vis. Sci. 2014, 55, 8653–8666. [Google Scholar] [CrossRef]
- Leveillard, T.; Sahel, J.A. Metabolic and redox signaling in the retina. Cell Mol. Life Sci. 2017, 74, 3649–3665. [Google Scholar] [CrossRef]
- Narayan, D.S.; Chidlow, G.; Wood, J.P.; Casson, R.J. Glucose metabolism in mammalian photoreceptor inner and outer segments. Clin. Exp. Ophthalmol. 2017, 45, 730–741. [Google Scholar] [CrossRef] [Green Version]
- Bujakowska, K.M.; Liu, Q.; Pierce, E.A. Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harb. Perspect. Biol. 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Daiger, S.P.; Sullivan, L.S.; Rossiter, B.J.F. Cloned and/or Mapped Human Genes Causing Retinal Degeneration or Related Diseases. Available online: https://sph.uth.edu/retnet/ (accessed on 23 July 2019).
- Roepman, R. Protein networks and complexes in photoreceptor cilia. Sub-Cell. Biochem. 2007, 43, 209–235. [Google Scholar]
- Liu, Q. The proteome of the mouse photoreceptor sensory cilium complex. Mol. Cell. Proteom. 2007, 6, 1299–1317. [Google Scholar] [CrossRef] [PubMed]
- Athanasiou, D.; Aguila, M.; Bellingham, J.; Li, W.; McCulley, C.; Reeves, P.J.; Cheetham, M.E. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog. Retin. Eye Res. 2018, 62, 1–23. [Google Scholar] [CrossRef] [PubMed]
- den Hollander, A.I.; Koenekoop, R.K.; Mohamed, M.D.; Arts, H.H.; Boldt, K.; Towns, K.V.; Sedmak, T.; Beer, M.; Nagel-Wolfrum, K.; McKibbin, M.; et al. Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nat. Genet. 2007, 39, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Hamel, C.P. Cone rod dystrophies. Orphanet J. Rare Dis. 2007, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Hirji, N.; Aboshiha, J.; Georgiou, M.; Bainbridge, J.; Michaelides, M. Achromatopsia: Clinical features, molecular genetics, animal models and therapeutic options. Ophthalmic Genet. 2018, 39, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Song, J.Y.; Aravand, P.; Nikonov, S.; Leo, L.; Lyubarsky, A.; Bennicelli, J.L.; Pan, J.; Wei, Z.; Shpylchak, I.; Herrera, P.; et al. Amelioration of neurosensory structure and function in animal and cellular models of a congenital blindness. Mol. Ther. 2018. [Google Scholar] [CrossRef]
- Garanto, A.; Chung, D.C.; Duijkers, L.; Corral-Serrano, J.C.; Messchaert, M.; Xiao, R.; Bennett, J.; Vandenberghe, L.H.; Collin, R.W. In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery. Hum. Mol. Genet. 2016, 25, 2552–2563. [Google Scholar] [CrossRef]
- Athanasiou, D.; Aguila, M.; Bevilacqua, D.; Novoselov, S.S.; Parfitt, D.A.; Cheetham, M.E. The cell stress machinery and retinal degeneration. FEBS Lett. 2013, 587, 2008–2017. [Google Scholar] [CrossRef] [Green Version]
- Maurer-Stroh, S.; Koranda, M.; Benetka, W.; Schneider, G.; Sirota, F.L.; Eisenhaber, F. Towards complete sets of farnesylated and geranylgeranylated proteins. PLoS Comput. Biol. 2007, 3, e66. [Google Scholar] [CrossRef] [PubMed]
- Casey, P.J.P. Protein prenyltransferases. J. Biol. Chem. 1996, 271, 5289–5292. [Google Scholar] [CrossRef] [PubMed]
- Sohocki, M.M.M. Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis. Nat. Genet. 2000, 24, 79–83. [Google Scholar] [CrossRef] [PubMed]
- den Hollander, A.I. Leber congenital amaurosis: Genes, proteins and disease mechanisms. Prog. Retin. Eye Res. 2008, 27, 391–419. [Google Scholar] [CrossRef] [PubMed]
- Liu, X. AIPL1, the protein that is defective in Leber congenital amaurosis, is essential for the biosynthesis of retinal rod cGMP phosphodiesterase. Proc. Natl. Acad. Sci. USA 2004, 101, 13903–13908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramamurthy, V. Leber congenital amaurosis linked to AIPL1: A mouse model reveals destabilization of cGMP phosphodiesterase. Proc. Natl. Acad. Sci. USA 2004, 101, 13897–13902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramamurthy, V. AIPL1, a protein implicated in Leber’s congenital amaurosis, interacts with and aids in processing of farnesylated proteins. Proc. Natl. Acad. Sci. USA 2003, 100, 12630–12635. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.P.; Artemyev, N.O. AIPL1: A specialized chaperone for the phototransduction effector. Cell Signal. 2017, 40, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Roosing, S.; Collin, R.W.; den Hollander, A.I.; Cremers, F.P.; Siemiatkowska, A.M. Prenylation defects in inherited retinal diseases. J. Med. Genet. 2014, 51, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Constantine, R.; Frederick, J.M.; Baehr, W. The prenyl-binding protein PrBP/delta: A chaperone participating in intracellular trafficking. Vis. Res. 2012, 75, 19–25. [Google Scholar] [CrossRef]
- Zhang, H.H. Deletion of PrBP/delta impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. Proc. Natl. Acad. Sci. USA 2007, 104, 8857–8862. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S. A homozygous PDE6D mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to the primary cilium. Hum. Mutat. 2014, 35, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Megarbane, A.; Hmaimess, G.; Bizzari, S.; El-Bazzal, L.; Al-Ali, M.T.; Stora, S.; Delague, V.; El-Hayek, S. A novel PDE6D mutation in a patient with Joubert syndrome type 22 (JBTS22). Eur. J. Med. Genet. 2018. [Google Scholar] [CrossRef]
- Rao, K.N.; Zhang, W.; Li, L.; Anand, M.; Khanna, H. Prenylated retinal ciliopathy protein RPGR interacts with PDE6delta and regulates ciliary localization of Joubert syndrome-associated protein INPP5E. Hum. Mol. Genet. 2016, 25, 4533–4545. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, B.M.; Schmidt, A.; Behrmann, E.; Burger, J.; Mielke, T.; Spahn, C.M.T.; Heck, M.; Scheerer, P. Mechanistic insights into the role of prenyl-binding protein PrBP/delta in membrane dissociation of phosphodiesterase 6. Nat. Commun. 2018, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Hanke-Gogokhia, C.; Frederick, J.M.; Zhang, H.; Baehr, W. Binary Function of ARL3-GTP Revealed by Gene Knockouts. Adv. Exp. Med. Biol. 2018, 1074, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.S. Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nat. Chem. Biol. 2011, 7, 942–949. [Google Scholar] [CrossRef]
- Fansa, K.E. Sorting of lipidated cargo by the Arl2/Arl3 system. Small GTPases 2016, 7, 222–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constantine, R. Uncoordinated (UNC)119: Coordinating the trafficking of myristoylated proteins. Vis. Res. 2012, 75, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H. UNC119 is required for G protein trafficking in sensory neurons. Nat. Neurosci. 2011, 14, 874–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishiba, Y. Targeted inactivation of synaptic HRG4 (UNC119) causes dysfunction in the distal photoreceptor and slow retinal degeneration, revealing a new function. Exp. Eye Res. 2007, 84, 473–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Frederick, J.M.; Baehr, W. Unc119 gene deletion partially rescues the GRK1 transport defect of Pde6d (-/-) cones. Adv. Exp. Med. Biol. 2014, 801, 487–493. [Google Scholar] [CrossRef]
- Kobayashi, A.A. HRG4 (UNC119) mutation found in cone-rod dystrophy causes retinal degeneration in a transgenic model. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3268–3277. [Google Scholar]
- Zhang, J. Mechanism of folding chamber closure in a group II chaperonin. Sci. Am. 2010, 463, 379–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, A.C. Role of the chaperonin CCT/TRiC complex in G protein betagamma-dimer assembly. J. Biol. Chem. 2006, 281, 20221–20232. [Google Scholar] [CrossRef] [PubMed]
- Lukov, L.G. Phosducin-like protein acts as a molecular chaperone for G protein betagamma dimer assembly. EMBO J. 2005, 24, 1965–1975. [Google Scholar] [CrossRef] [PubMed]
- Loew, A.A. Phosducin induces a structural change in transducin β γ. Structure 1998, 6, 1007–1019. [Google Scholar] [CrossRef]
- Brooks, C. Farnesylation of the Transducin G Protein γ Subunit Is a Prerequisite for Its Ciliary Targeting in Rod Photoreceptors. Front. Mol. Neurosci. 2018, 11, 16. [Google Scholar] [CrossRef]
- Obin, M. Ubiquitylation of the transducin betagamma subunit complex. Regulation by phosducin. J. Biol. Chem. 2002, 277, 44566–44575. [Google Scholar] [CrossRef]
- Zhang, Q. Intrinsic protein-protein interaction-mediated and chaperonin-assisted sequential assembly of stable bardet-biedl syndrome protein complex, the BBSome. J. Biol. Chem. 2012, 287, 20625–20635. [Google Scholar] [CrossRef]
- Klink, B.U. A recombinant BBSome core complex and how it interacts with ciliary cargo. eLife 2017, 6, e27434. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, E. Bardet-Biedl syndrome. Eur. J. Hum. Genet. 2013, 21, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Jin, H. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 2010, 141, 1208–1219. [Google Scholar] [CrossRef] [PubMed]
- Chan, P. Molecular chaperoning function of Ric-8 is to fold nascent heterotrimeric G protein a subunits. Proc. Natl. Acad. Sci. USA 2013, 110, 3794–3799. [Google Scholar] [CrossRef] [PubMed]
- Tall, G.G. Ric-8 regulation of heterotrimeric G proteins. J. Recept. Signal Transduct. 2013, 33, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Fenech, C. Ric-8A, a Gα protein guanine nucleotide exchange factor potentiates taste receptor signaling. Front. Cell. Neurosci. 2009, 3, 11. [Google Scholar] [CrossRef] [PubMed]
- Sprang, R.S. Structural basis of effector regulation and signal termination in heterotrimeric Gα proteins. Adv. Protein Chem. 2007, 74, 1–65. [Google Scholar]
- Joutsen, J.; Sistonen, L. Tailoring of Proteostasis Networks with Heat Shock Factors. Cold Spring Harb. Perspect. Biol. 2019, 11. [Google Scholar] [CrossRef]
- Morimoto, R.I.R. The heat-shock response: Regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem. 1997, 32, 17–29. [Google Scholar]
- Vabulas, R.M.R.M. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harbor Perspect. Biol. 2010, 2, a004390. [Google Scholar] [CrossRef]
- Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 2011, 475, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Apetri, C.A. Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Proc. Natl. Acad. Sci. USA 2008, 105, 17351–17355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, P. The unfolded protein response: From stress pathway to homeostatic regulation. Science 2011, 334, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Bertolotti, A.A. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2000, 2, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Lamriben, L. Activating and Repressing IRE1a: The Hsp47 and BiP Tug of War. Mol. Cell 2018, 69, 159–160. [Google Scholar] [CrossRef] [PubMed]
- Calfon, M. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Sci. Am. 2002, 415, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 2003, 23, 7448–7459. [Google Scholar] [CrossRef] [PubMed]
- Fritz, M.J. Deficiency of the BiP cochaperone ERdj4 causes constitutive endoplasmic reticulum stress and metabolic defects. Mol. Biol. Cell 2014, 25, 431–440. [Google Scholar] [CrossRef]
- Eletto, D. Protein disulfide isomerase A6 controls the decay of IRE1a signaling via disulfide-dependent association. Mol. Cell 2014, 53, 562–576. [Google Scholar] [CrossRef] [PubMed]
- Harding, H.P.H. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Sci. Am. 1999, 397, 271–274. [Google Scholar]
- Vattem, M.K. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl. Acad. Sci. USA 2004, 101, 11269–11274. [Google Scholar] [CrossRef] [PubMed]
- Novoa, I.I. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 2001, 153, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, J.S. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Gen. Dev. 2004, 18, 3066–3077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 2002, 3, 99–111. [Google Scholar] [CrossRef]
- Haze, K.K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 1999, 10, 3787–3799. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell 2007, 13, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Schubert, U.U. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Sci. Am. 2000, 404, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Olzmann, A.J. The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harbor Perspect. Biol. 2013, 5. [Google Scholar] [CrossRef] [PubMed]
- Helenius, A. Roles of N-linked glycans in the endoplasmic reticulum. Ann. Rev. Biochem. 2004, 73, 1019–1049. [Google Scholar] [CrossRef]
- Aebi, M. N-glycan structures: Recognition and processing in the ER. Trends Biochem. Sci. 2010, 35, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Hebert, N.D. ERAD substrates: Which way out? Semin. Cell Dev. Biol. 2010, 21, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, D.S.D. Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. J. Biol. Chem. 1999, 274, 21375–21386. [Google Scholar] [CrossRef] [PubMed]
- Olivari, S. EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation. Biochem. Biophys. Res. Commun. 2006, 349, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Hirao, K. EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. J. Biol. Chem. 2006, 281, 9650–9658. [Google Scholar] [CrossRef] [PubMed]
- Hampton, Y.R. Finding the will and the way of ERAD substrate retrotranslocation. Curr. Opin. Cell Biol. 2012, 24, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Sci. Am. 2004, 429, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 2012, 14, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y. SGTA recognizes a noncanonical ubiquitin-like domain in the Bag6-Ubl4A-Trc35 complex to promote endoplasmic reticulum-associated degradation. Cell Rep. 2012, 2, 1633–1644. [Google Scholar] [CrossRef] [PubMed]
- Boya, P.; Esteban-Martinez, L.; Serrano-Puebla, A.; Gomez-Sintes, R.; Villarejo-Zori, B. Autophagy in the eye: Development, degeneration, and aging. Prog. Retin. Eye Res. 2016, 55, 206–245. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.M. The ULK1 complex: Sensing nutrient signals for autophagy activation. Autophagy 2013, 9, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Walker, S. Making autophagosomes: Localized synthesis of phosphatidylinositol 3-phosphate holds the clue. Autophagy 2008, 4, 1093–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, L.S.; Mitchell, C.H.; Boesze-Battaglia, K. Autophagy in the eye: Implications for ocular cell health. Exp. Eye Res. 2014, 124, 56–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, E. Chaperone-mediated autophagy in protein quality control. Curr. Opin. Cell Biol. 2011, 23, 184–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dice, J.F.J. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem. Sci. 1990, 15, 305–309. [Google Scholar] [CrossRef]
- Chiang, H.L.H. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 1989, 246, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Cuervo, A.M.A. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 1996, 273, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Sahu, R. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 2011, 20, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Morozova, K. Structural and Biological Interaction of hsc-70 Protein with Phosphatidylserine in Endosomal Microautophagy. J. Biol. Chem. 2016, 291, 18096–18106. [Google Scholar] [CrossRef] [Green Version]
- Capell, C.B. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 2005, 102, 12879–12884. [Google Scholar] [CrossRef] [Green Version]
- Gordon, B.L. Clinical Trial of the Protein Farnesylation Inhibitors Lonafarnib, Pravastatin, and Zoledronic Acid in Children With Hutchinson-Gilford Progeria Syndrome. Circ. J. Am. Heart Assoc. 2016, 134, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Martin, E.N. A phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L-778,123 and radiotherapy for locally advanced pancreatic cancer. Clin. Cancer Res. 2004, 10, 5447–5454. [Google Scholar] [CrossRef] [PubMed]
- Posokhova, E. Disruption of the chaperonin containing TCP-1 function affects protein networks essential for rod outer segment morphogenesis and survival. Mol. Cell. Proteom. 2011, 10. [Google Scholar] [CrossRef] [PubMed]
- Willardson, M.B. Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell Signal. 2007, 19, 2417–2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Satta, M. Bardet-Biedl Syndrome as a Chaperonopathy: Dissecting the Major Role of Chaperonin-Like BBS Proteins (BBS6-BBS10-BBS12). Front. Mol. Biosci. 2017, 4, 55. [Google Scholar] [CrossRef] [PubMed]
- Papasergi, M.M. The G protein a chaperone Ric-8 as a potential therapeutic target. Mol. Pharmacol. 2015, 87, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Szabo, V. p.Gln200Glu, a putative constitutively active mutant of rod α-transducin (GNAT1) in autosomal dominant congenital stationary night blindness. Hum. Mutat. 2007, 28, 741–742. [Google Scholar] [CrossRef] [PubMed]
- Supko, J.G.J. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother. Pharmacol. 1995, 36, 305–315. [Google Scholar] [CrossRef]
- Jhaveri, K. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim. Biophys. Acta 2012, 1823, 742–755. [Google Scholar] [CrossRef] [Green Version]
- Tam, C.S.L. Prevention of autosomal dominant retinitis pigmentosa by systemic drug therapy targeting heat shock protein 90 (Hsp90). Hum. Mol. Genet. 2010, 19, 4421–4436. [Google Scholar] [CrossRef] [Green Version]
- Aguilà, M. Hsp90 inhibition protects against inherited retinal degeneration. Hum. Mol. Genet. 2014, 23, 2164–2175. [Google Scholar] [CrossRef]
- Zhou, D. A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors. Toxicol. Appl. Pharmacol. 2013, 273, 401–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorbatyuk, S.M. Functional rescue of P23H rhodopsin photoreceptors by gene delivery. Adv. Exp. Med. Biol. 2012, 723, 191–197. [Google Scholar] [PubMed]
- Parfitt, D.A.; Aguila, M.; McCulley, C.H.; Bevilacqua, D.; Mendes, H.F.; Athanasiou, D.; Novoselov, S.S.; Kanuga, N.; Munro, P.M.; Coffey, P.J.; et al. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Cell Death Dis. 2014, 5, e1236. [Google Scholar] [CrossRef] [PubMed]
- Gorbatyuk, S.M. Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Proc. Natl. Acad. Sci. USA 2010, 107, 5961–5966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaderi, S.; Ahmadian, S.; Soheili, Z.S.; Ahmadieh, H.; Samiei, S.; Kheitan, S.; Pirmardan, E.R. AAV delivery of GRP78/BiP promotes adaptation of human RPE cell to ER stress. J. Cell Biochem. 2018, 119, 1355–1367. [Google Scholar] [CrossRef] [PubMed]
- Nashine, S. Ablation of C/EBP homologous protein does not protect T17M RHO mice from retinal degeneration. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Adekeye, A. Ablation of the proapoptotic genes CHOP or Ask1 does not prevent or delay loss of visual function in a P23H transgenic mouse model of retinitis pigmentosa. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Chiang, W.C. Ablation of Chop Transiently Enhances Photoreceptor Survival but Does Not Prevent Retinal Degeneration in Transgenic Mice Expressing Human P23H Rhodopsin. Adv. Exp. Med. Biol. 2016, 854, 185–191. [Google Scholar]
- Bhootada, Y.; Kotla, P.; Zolotukhin, S.; Gorbatyuk, O.; Bebok, Z.; Athar, M.; Gorbatyuk, M. Limited ATF4 Expression in Degenerating Retinas with Ongoing ER Stress Promotes Photoreceptor Survival in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa. PLoS ONE 2016, 11, e0154779. [Google Scholar] [CrossRef]
- Athanasiou, D.; Aguila, M.; Bellingham, J.; Kanuga, N.; Adamson, P.; Cheetham, M.E. The role of the ER stress-response protein PERK in rhodopsin retinitis pigmentosa. Hum. Mol. Genet. 2017, 26, 4896–4905. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, R. Allosteric inhibition of the IRE1a RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 2014, 158, 534–548. [Google Scholar] [CrossRef]
- Takasugi, N. The Emerging Role of Electrophiles as a Key Regulator for Endoplasmic Reticulum (ER) Stress. Int. J. Mol. Sci. 2019, 20, 1783. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T. Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiol. Dis. 2015, 84, 99–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groeger, L.A. Signaling actions of electrophiles: Anti-inflammatory therapeutic candidates. Mol. Interv. 2010, 10, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Sakanyan, V. Reactive Chemicals and Electrophilic Stress in Cancer: A Minireview. High-Throughput 2018, 7, 12. [Google Scholar] [CrossRef]
- Uehara, T. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Sci. Am. 2006, 441, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Nakato, R. Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress. Sci. Rep. 2015, 5, 14812. [Google Scholar] [CrossRef]
- Gallagher, M.C. Ceapins are a new class of unfolded protein response inhibitors, selectively targeting the ATF6a branch. eLife 2016, 5, e11878. [Google Scholar] [CrossRef]
- Gallagher, M.C. Ceapins inhibit ATF6a signaling by selectively preventing transport of ATF6a to the Golgi apparatus during ER stress. eLife 2016, 5, e11880. [Google Scholar] [CrossRef]
- Kakizuka, A. VCP, a Major ATPase in the Cells, as a Novel Drug Target for Currently Incurable Disorders. In Innovative Medicine: Basic Research and Development; Nakao, K., Minato, N., Uemoto, S., Eds.; Springer: Tokyo, Japan, 2015. [Google Scholar]
- Brooks, C. Archaeal Unfoldase Counteracts Protein Misfolding Retinopathy in Mice. J. Neurosci. 2018, 38, 7248–7254. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, K.D.K. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 1997, 11, 1245–1256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W. Generation and Validation of Intracellular Ubiquitin Variant Inhibitors for USP7 and USP10. J. Mol. Biol. 2017, 429, 3546–3560. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. Roles of p97-associated deubiquitinases in protein quality control at the endoplasmic reticulum. Curr. Protein Pept. Sci. 2012, 13, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Sizova, S.O. Modulation of cellular signaling pathways in P23H rhodopsin photoreceptors. Cell. Signal. 2014, 26, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Athanasiou, D.; Aguila, M.; Opefi, C.A.; South, K.; Bellingham, J.; Bevilacqua, D.; Munro, P.M.; Kanuga, N.; Mackenzie, F.E.; Dubis, A.M.; et al. Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration. Hum. Mol. Genet. 2017, 26, 305–319. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S. Metformin protects against retinal cell death in diabetic mice. Biochem. Biophys. Res. Commun. 2017, 492, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Vent-Schmidt, R.Y.J.; Wen, R.H.; Zong, Z.; Chiu, C.N.; Tam, B.M.; May, C.G.; Moritz, O.L. Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic, X. laevis Models of Retinitis Pigmentosa. J. Neurosci. 2017, 37, 1039–1054. [Google Scholar] [CrossRef] [PubMed]
- Mockel, A.; Obringer, C.; Hakvoort, T.B.; Seeliger, M.; Lamers, W.H.; Stoetzel, C.; Dollfus, H.; Marion, V. Pharmacological modulation of the retinal unfolded protein response in Bardet-Biedl syndrome reduces apoptosis and preserves light detection ability. J. Biol. Chem. 2012, 287, 37483–37494. [Google Scholar] [CrossRef] [PubMed]
- Mitton, P.K. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol. Vis. 2014, 20, 1527–1544. [Google Scholar]
- Reuter, C.W.C. Targeting the Ras signaling pathway: A rational, mechanism-based treatment for hematologic malignancies? Blood 2000, 96, 1655–1669. [Google Scholar]
- Whyte, D.B.D. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. 1997, 272, 14459–14464. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, M. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Sci. Am. 2003, 423, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Thulasiraman, V.V. In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J. 1999, 18, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler Lisa, M.L. Maximizing the Therapeutic Potential of HSP90 Inhibitors. Mol. Cancer Res. 2015, 13, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Workman, P. Drugging the cancer chaperone HSP90: Combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. N. Y. Acad. Sci. 2007, 1113, 202–216. [Google Scholar] [CrossRef] [PubMed]
- Han, J. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 2013, 15, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Upton, J.P. IRE1a cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 2012, 338, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y. Transcription Factor C/EBP Homologous Protein in Health and Diseases. Front. Immunol. 2017, 8, 1612. [Google Scholar] [CrossRef] [PubMed]
- Milisav, I. Unfolded Protein Response and Macroautophagy in Alzheimer’s, Parkinson’s and Prion Diseases. Molecules 2015, 20, 22718–22756. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. The unfolded protein response in familial amyotrophic lateral sclerosis. Hum. Mol. Genet. 2011, 20, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Ma, T. Suppression of eIF2a kinases alleviates Alzheimer’s disease-related plasticity and memory deficits. Nat. Neurosci. 2013, 16, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.J. Sustained translational repression by eIF2a-P mediates prion neurodegeneration. Sci. Am. 2012, 485, 507–511. [Google Scholar]
- Moreno, A.J. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med. 2013, 5, 206ra138. [Google Scholar] [CrossRef] [PubMed]
- Xu, M. ATF6 Is Mutated in Early Onset Photoreceptor Degeneration With Macular Involvement. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3889–3895. [Google Scholar] [CrossRef] [PubMed]
- Ansar, M. Mutation of ATF6 causes autosomal recessive achromatopsia. Hum. Genet. 2015, 134, 941–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bug, M. Expanding into new markets--VCP/p97 in endocytosis and autophagy. J. Struct. Biol. 2012, 179, 78–82. [Google Scholar] [CrossRef] [PubMed]
- March, Z.M.; Mack, K.L.; Shorter, J. AAA+ Protein-Based Technologies to Counter Neurodegenerative Disease. Biophys. J. 2019. [Google Scholar] [CrossRef] [PubMed]
- Rivlin, N. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer 2011, 2, 466–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuong, L. p53 selectively regulates developmental apoptosis of rod photoreceptors. PLoS ONE 2013, 8, e67381. [Google Scholar] [CrossRef]
- Yoshizawa, K. N-methyl-N-nitrosourea-induced retinal degeneration in mice is independent of the p53 gene. Mol. Vis. 2009, 15, 2919–2925. [Google Scholar] [PubMed]
- Yi, Z. Biallelic mutations in USP45, encoding a deubiquitinating enzyme, are associated with Leber congenital amaurosis. J. Med. Genet. 2019, 56, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Ballou, M.L. Rapamycin and mTOR kinase inhibitors. J. Chem. Biol. 2008, 1, 27–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walters, E.H. mTORC Inhibitors as Broad-Spectrum Therapeutics for Age-Related Diseases. Int. J. Mol. Sci. 2018, 19, 2325. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.H. Toward rapamycin analog (rapalog)-based precision cancer therapy. Acta Pharmacol. Sin. 2015, 36, 1163–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesh, A. Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. J. Clin. Investig. 2015, 125, 1446–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajala, A. Constitutive Activation Mutant mTOR Promote Cone Survival in Retinitis Pigmentosa Mice. Adv. Exp. Med. Biol. 2018, 1074, 491–497. [Google Scholar] [PubMed]
- Punzo, C.; Kornacker, K.; Cepko, C.L. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat. Neurosci. 2009, 12, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, D. Rapamycin passes the torch: A new generation of mTOR inhibitors. Nat. Rev. Drug Discov. 2011, 10, 868–880. [Google Scholar] [CrossRef] [PubMed]
- Rotermund, C. The Therapeutic Potential of Metformin in Neurodegenerative Diseases. Front. Endocrinol. 2018, 9, 400. [Google Scholar] [CrossRef] [PubMed]
- Buzzai, M. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007, 67, 6745–6752. [Google Scholar] [CrossRef]
- Kurelac, I. The multifaceted effects of metformin on tumor microenvironment. Semin. Cell Dev. Biol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Williams, A. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol. 2008, 4, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Campello, L.; Esteve-Rudd, J.; Cuenca, N.; Martin-Nieto, J. The ubiquitin-proteasome system in retinal health and disease. Mol. Neurobiol. 2013, 47, 790–810. [Google Scholar] [CrossRef] [PubMed]
- Chuang, D.M. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci. 2009, 32, 591–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, J.; Qi, L. Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem. Sci. 2018, 43, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Horimoto, S. The unfolded protein response transducer ATF6 represents a novel transmembrane-type endoplasmic reticulum-associated degradation substrate requiring both mannose trimming and SEL1L protein. J. Biol. Chem. 2013, 288, 31517–31527. [Google Scholar] [CrossRef] [PubMed]
- Orhan, E. Genotypic and phenotypic characterization of P23H line 1 rat model. PLoS ONE 2015, 10, e0127319. [Google Scholar] [CrossRef] [PubMed]
- Monai, N. Characterization of photoreceptor degeneration in the rhodopsin P23H transgenic rat line 2 using optical coherence tomography. PLoS ONE 2018, 13, e0193778. [Google Scholar] [CrossRef]
- Machida, S.S. P23H rhodopsin transgenic rat: Correlation of retinal function with histopathology. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3200–3209. [Google Scholar]
- Olsson, J.E.J. Transgenic mice with a rhodopsin mutation (Pro23His): A mouse model of autosomal dominant retinitis pigmentosa. Neuron 1992, 9, 815–830. [Google Scholar] [CrossRef]
- Leyk, J.; Daly, C.; Janssen-Bienhold, U.; Kennedy, B.N.; Richter-Landsberg, C. HDAC6 inhibition by tubastatin A is protective against oxidative stress in a photoreceptor cell line and restores visual function in a zebrafish model of inherited blindness. Cell Death Dis. 2017, 8, e3028. [Google Scholar] [CrossRef] [PubMed]
- Daly, C. Histone Deacetylase: Therapeutic Targets in Retinal Degeneration. Adv. Exp. Med. Biol. 2016, 854, 455–461. [Google Scholar] [PubMed]
- Tanackovic, G. PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum. Mol. Genet. 2011, 20, 2116–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buskin, A. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat. Commun. 2018, 9, 4234. [Google Scholar] [CrossRef] [PubMed]
- Collin, W.J.R. Applications of antisense oligonucleotides for the treatment of inherited retinal diseases. Curr. Opin. Ophthalmol. 2017, 28, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Viringipurampeer, I.A.; Metcalfe, A.L.; Bashar, A.E.; Sivak, O.; Yanai, A.; Mohammadi, Z.; Moritz, O.L.; Gregory-Evans, C.Y.; Gregory-Evans, K. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum. Mol. Genet. 2016, 25, 1501–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Baehr, W.; Fu, Y. Chemical chaperone TUDCA preserves cone photoreceptors in a mouse model of Leber congenital amaurosis. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3349–3356. [Google Scholar] [CrossRef] [PubMed]
- Leonard, C.K. XIAP protection of photoreceptors in animal models of retinitis pigmentosa. PLoS ONE 2007, 2, e314. [Google Scholar] [CrossRef]
- Thanos, C. Delivery of neurotrophic factors and therapeutic proteins for retinal diseases. Exp. Opin. Biol. Ther. 2005, 5, 1443–1452. [Google Scholar] [CrossRef]
- Himawan, E.; Ekstrom, P.; Buzgo, M.; Gaillard, P.; Stefansson, E.; Marigo, V.; Loftsson, T.; Paquet-Durand, F. Drug delivery to retinal photoreceptors. Drug Discov. Today 2019. [Google Scholar] [CrossRef]
Target | Compounds * | Function | Effect on PRs | References |
---|---|---|---|---|
Protein lipid-modifications | FTase inhibitors | Inhibits the farnesylation of proteins | (Proposed) underprenylation and mislocalization of many PR proteins | [100,101] |
GGTase-I inhibitors | Inhibits the geranylgeranylation of proteins | (Proposed) underprenylation and mislocalization of many PR proteins | [102] | |
(Co-)chaperonins | CCT inducers * | Improves folding of transducin and possibly other PR proteins | Undetermined | [103] |
PhLP1 inducers * | Improves function of CCTs and possibly CCT-independent functions | Malformation of OS by transgenic expression of a PhLP1 dominant-negative mutant | [47,103,104] | |
CCT-BBSome stabilizers * | Stabilizes BBSome formation and thereby the export of molecules from the OS | Undetermined | [105] | |
Small molecule Ric8 inhibitors * | Prevents folding of disease-causing Gα | Undetermined | [106,107] | |
Heat shock response (HSR) | geldanamycin, tanespimycin, alvespimycin | 1st generation HSP90 inhibitors | Geldanamycin not suitable for future experiments because of poor applicability and toxicity; Tanespimycin reduced mutant protein accumulation in rat RP model (R135L); prolonged treatment with alvespimycin leads to PR cell death | [108,109,110,111,112] |
luminespib, onalespib, ganetespib, HSP990 | Newer generation HSP90 inhibitors | HSP990 treatment in a RP rat model (P23H) enhances visual function and delayed PR degeneration, but prolonged treatment led to visual impairment by GRK1 and PDE6 reduction; prolonged treatment with ganetespib led to PR cell death | [109,111,112] | |
AAV-HSF-1 | Overexpressing HSF-1 and thereby transcriptional activation of HSPs | Subretinal injection of AAV-Hsf-1 in a RP rat model (P23H) improved visual reponse | [113] | |
Arimoclomol | Induces HSR and UPR, only in stressed cells | Prolonged PR survival and improved visual responses in P23H transgenic rats | [114] | |
Unfolded protein response (UPR) | AAV-BiP | Relieves ER stress by reducing cleaved ATF6, phosphorylated eIF2α and CHOP | Subretinal delivery of AAV5-BiP reduced PR cell death and improved visual responses in P23H transgenic rats | [115,116] |
CHOP inhibitors * | Inhibits proapoptotic transcription activity of CHOP | CHOP knockout in a trangenic mouse model of RP (T17M) led to PR cell death and strong impairment in visual function; CHOP knockout in P23H RHO mice had no effect on PR survival in young mice, but partly protected PR degeneration in older mice | [117,118,119] | |
ATF4 inhibitors * | Inhibits downstream transcription activation of Chop, Ero1, and Gadd34 | ATF4 knockdown in T17M RHO mice decreased retinal degeneration and improved PR survival | [120] | |
GSK2606414A | Specific PERK inhibitor | Treatment with GSK2606414A in P23H RHO rats accelerated PR cell death and further impaired visual function | [121] | |
Salubrinal | Inhibitor of eIF2α dephosphorylation | Treatment with salubrinal in P23H RHO rats improved PR survival | [121] | |
KIRA6 | Allosterically inhibits IRE1α RNase activity | Intravitreal injection of KIRA6 in P23H RHO rats increased PR survival | [122] | |
Reactive electrophilic species (RES) modulators * | Modulate the effects of RES on IRE1 | Undetermined | [123,124,125,126,127,128] | |
Ceapins | Selective inhibitors of ATF6α | Undetermined | [129,130] | |
ER-associated degradation (ERAD) | Kyoto University Substances (KUSs) | Inhibits VCP’s ATPase activity, without affecting the cellular functions of VCP | Individual treatment with KUS121 and KUS187 in a rd10 mouse model preserved ONL thickness and improved visual function | [131] |
AAA+ protein derivatives * | Unfolding of misfolded proteins | Transgenic expression of PAN in Gy-/- mice increased PR survival and preserved visual function | [132] | |
DUB/USP modulators | Modulating the ubiquitin cleavage from proteins, thereby modulating proteosomal degradation | Undetermined | [133,134,135] | |
Autophagy | Rapamycin, everolimus, temsirolimus, ridaforolimus | Inhibiting mTOR pathway by directly binding to mTORC1 | Improved rod survival in P23H-3 rats | [136] |
Metformin | Activation of AMP-activated protein kinase (AMPK) | Metformin treatment protected against retinal cell death in diabetic mice, whereas it accelerated PR degeneration in P23H RHO mice | [137,138] | |
Valproic acid (VPA) | Upregulates autophagy by inhibiting inositol synthesis | VPA treatment in BBS12-/- mice, P23H RHO Xenopus laevis, and a rd1 mouse model resulted in PR protection, whereas treatment in T17M RHO X. laevis, a P23H-1 rat model, and a rd10 mouse model excerbated PR degeneration | [139,140,141] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faber, S.; Roepman, R. Balancing the Photoreceptor Proteome: Proteostasis Network Therapeutics for Inherited Retinal Disease. Genes 2019, 10, 557. https://doi.org/10.3390/genes10080557
Faber S, Roepman R. Balancing the Photoreceptor Proteome: Proteostasis Network Therapeutics for Inherited Retinal Disease. Genes. 2019; 10(8):557. https://doi.org/10.3390/genes10080557
Chicago/Turabian StyleFaber, Siebren, and Ronald Roepman. 2019. "Balancing the Photoreceptor Proteome: Proteostasis Network Therapeutics for Inherited Retinal Disease" Genes 10, no. 8: 557. https://doi.org/10.3390/genes10080557
APA StyleFaber, S., & Roepman, R. (2019). Balancing the Photoreceptor Proteome: Proteostasis Network Therapeutics for Inherited Retinal Disease. Genes, 10(8), 557. https://doi.org/10.3390/genes10080557