Pharmacogenomic Biomarkers in Docetaxel Treatment of Prostate Cancer: From Discovery to Implementation
Abstract
:1. Introduction
2. Docetaxel in Prostate Cancer Treatment
3. Germline Genomic Biomarkers in Research Studies for Prostate Cancer Treatment with Docetaxel
3.1. Docetaxel Monotherapy
3.2. Docetaxel Combination Therapies
3.2.1. Docetaxel and Vinorelbine or Estramustine Phosphate
3.2.2. Docetaxel and Estramustin, Thalidomide, and Prednisone
3.2.3. Docetaxel and Thalidomide
3.2.4. Docetaxel and Prednisone
3.2.5. Docetaxel and Estramustine, Thalidomide, and Ketoconazole
3.2.6. Docetaxel, Prednisone, and Metronomic Cyclophosphamide
3.2.7. Docetaxel and Atrasentan
3.2.8. Docetaxel and Dexamethasone
Biomarker | Variant | Effect | Number of Samples/Study Method | Study Type | Country | Reference |
---|---|---|---|---|---|---|
I. Docetaxel Monotherapy | ||||||
CYP3A4 | rs2740574 (c.−392G>A) | D (Clearance↑) | 58 patients initiating chemotherapy | Interventional | France | Tran et al. [18] |
CYP3A5 | rs776746(c.219−237A>G) | D (Clearance↑) | ||||
GSTP1 | rs1695 (A313G, Ile105Val) | TOX | ||||
MDR1 | rs1045642 (C3435T, Ile1145Ile) | TOX | ||||
ABCC2 | rs12762549 | TOX | 84 patients: 28 patients with leukopenia/neutropenia vs. 56 with no TOX | Case–control | Japan | Kiyotani et al. [19] |
SLCO1B3 | rs11045585 | TOX | ||||
CYP1B1 | rs1056836 (C1294G, Leu432Val) | OS | 55-year-old male with multifocal adenocarcinoma; 75 mg/m2 docetaxel every three weeks for six cycles | Case report | Italy | Brandi et al. [21] |
rs1800440 (A1358G, Asn453Ser) | ||||||
ABCC2 | rs12762549 | D (Clearance↓) | 64 patients received a single cycle of 75 mg/m2 docetaxel | Interventional | United States | Lewis et al. [20] |
SLCO1B3 | rs11045585 | No effect | ||||
ABCG2 | rs2231142 (C421A, Q141K) | CR | HEK293 cells, 40 patients | In vitro, Validated in vivo | United States | Sobek et al. [22] |
II. Docetaxel Combination Therapies | ||||||
Docetaxel and Vinorelbine, Estramustine Phosphate | ||||||
ABCG2 | rs2231142 (C421A, Q141K) | OS | 64 chemotherapy-naive patients with HRPC were randomized to (1) docetaxel (20 mg/m2 i.v. days 1 and 8) + vinorelbine (25 mg/m2 i.v. days 1 and 8) and (2) docetaxel (60–70 mg/m2 i.v. day 1) + estramustine phosphate (280 mg oral 3x/day, days 1–5) | Interventional | United States | Hahn et al. [23] |
Docetaxel and Estramustin, Thalidomide, Prednisone | ||||||
CYP1B1 | rs1056836 (C4326G, Leu432Val) | OS | 52 patients with AIPC: (1) docetaxel (n = 25, 1 h i.v.,30 mg/m2); (2) docetaxel + estramustine + thalidomide (n = 20, 30 min i.v., 30 mg/m2) docetaxel + prednisone (n = 7, 1 h i.v., 75 mg/m2) | Observational retrospective | United States | Sissung et al. [24] |
Docetaxel and Thalidomide | ||||||
ABCB1 | rs1128503 (C1236T) | OS | AIPC patients; 50 patients with docetaxel + thalidomide; 23 patients with docetaxel; | Interventional | United States | Sissung et al. [27] |
rs2032582 (G2677T/A) | OS, TOX | |||||
rs1045642 (C3435T) | OS, TOX | |||||
PPAR-δ | rs6922548 | CR | 74 CRPC patients: (1) CRPC patients (n = 25) with docetaxel (30 mg/m2 weekly for three weeks, followed by a one-week rest); (2) patients (n = 49) with docetaxel (30 mg/m2 weekly for three weeks followed by a one-week rest) + thalidomide (200 mg orally each day) | Interventional | United States | Deeken et al. [28] |
rs2016520 | CR | |||||
rs1883322 | CR | |||||
rs3734254 | CR | |||||
rs7769719 | CR | |||||
CHST3 | rs4148943 | CR | ||||
rs4148947 | CR | |||||
rs12418 | CR | |||||
rs730720 | CR | |||||
rs4148950 | CR, TOX | |||||
rs1871450 | CR, TOX | |||||
rs4148945 | CR, TOX | |||||
SULT1C2 | rs1402467 | CR | ||||
SPG7 | rs2292954 | TOX | ||||
rs12960 | TOX | |||||
CYP2D6 | *19 (2539_2542delAACT) | TOX | ||||
NAT2 | rs1799931 | TOX | ||||
ABCC6 | rs2238472 | TOX | ||||
ATP7A | rs2227291 | TOX | ||||
CYP4B1 | rs4646487 | TOX | ||||
SLC10A2 | rs2301159 | TOX | ||||
ABCB4 | rs2302387 | OS | 74 CRPC patients: (1) patients (n = 49) with docetaxel (30 mg/m2 weekly for three weeks followed by a one-week rest); (2) patients (n = 25) with docetaxel (same schedule) + thalidomide (200 mg orally each day) | Observational, retrospective | United States | Sissung et al. [29] |
ABCB11 | rs7602171 | OS | ||||
ABCC5 | rs939336 | OS | ||||
GSTP1 | rs1799811 | OS | ||||
SLC5A6 | rs1395 | OS | ||||
Docetaxel and Prednisone | ||||||
CYP1B1 | rs10012 (C142G, Arg48Gly) | No effect | 60 CRPC patients: (1) docetaxel (1 h, 75 mg/m2 on day 1) every 21 days, or (2) docetaxel (30 mg/m2 weekly for five of every six weeks) + prednisone (10 mg os daily) | Interventional | Italy | Pastina et al. [30] |
rs1056836 (C4326G, Leu432Val) | CR, OS, PFS | |||||
rs1800440 (A4390G, Asn453Ser) | No effect | |||||
Docetaxel and Estramustine, Thalidomide, Ketoconazole | ||||||
CYP19 (now CYP19A1) | rs700519 (c.C790T, R264C) | OS | 111 CRPC patients: (1) n = 20 with estramustine, docetaxel, and thalidomide; (2) n = 21 with ketoconazole + docetaxel; (3) n = 50 with docetaxel + thalidomide; (4) n = 24 with docetaxel alone; 289 healthy controls | Observational, retrospective | United States | Sissung et al. [31] |
ERα (now ESR1) | rs2234693 | OS | ||||
rs9340799 | OS | |||||
Docetaxel and Prednisone and Metronomic CTX | ||||||
VEGF-A | rs699947 (A22578C) | PFS | 41 mCRPC patients on day 1 received docetaxel (60 mg/m2 intravenously every three weeks, up to 12 cycles) + prednisone (10 mg/day, from day 2 continuously) + celecoxib 200 mg orally 2×/day | Interventional | Italy | Derosa et al. [32] |
rs1570360 (A21154G) | PFS | |||||
rs2010963 (C2634G) | PFS | |||||
rs3025039 (C1936T) | PFS | |||||
Docetaxel and Atrasentan | ||||||
AAG | rs250242 (A4069G) | Clearance↑. No info about dosage effect. | 21 PC patients; docetaxel (60–75 mg/m2, every 3 weeks, i.v.) + atrasentan (10 mg/day starting on day 3 of cycle 1, given continuously, oral) | Interventional | United States | Younis et al. [33] |
Docetaxel and Dexamethasone | ||||||
ATP8A2 | rs11017056 | TOX | 623 mCRPC Caucasian patients randomized into two arms; drugs were administered to both arms (arm 1 and arm 2): docetaxel (75 mg/m2 i.v., 1 h on day 1 of each 21-day cycle) + dexamethasone (8 mg oral, 12, 3, 1 h prior to docetaxel i.v.) + prednisone (5 mg oral 2×/day); (arm 1) adding bevacizumab (15 mg/kg i.v. on day 1 of each cycle), and (arm 2) adding placebo (i.v. on day 1 of each cycle) | Interventional | United States | Hertz et al. [34] |
rs1326116 | TOX | |||||
VAC14 | rs875858 | TOX |
4. Clinical Trials of Docetaxel Treatment in Prostate Cancer Incorporating Genomic Signature
4.1. Biomarkers in ClinicalTrials.gov
4.2. Biomarkers in the EU Clinical Trials Register
5. Pharmacogenomic Biomarkers in Prostate Cancer Treatment Guidelines
6. Biomarkers with Translational Potential in Docetaxel Treatment of Prostate Cancer
7. Challenges, Conclusions, and Outlook
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartor, O.; de Bono, J.S. Metastatic Prostate Cancer. N. Engl. J. Med. 2018, 378, 1653–1654. [Google Scholar] [CrossRef] [PubMed]
- Dellis, A.; Zagouri, F.; Liontos, M.; Mitropoulos, D.; Bamias, A.; Papatsoris, A.G.; Hellenic Genito-Urinary Cancer Group (HCUCG). Management of advanced prostate cancer: A systematic review of existing guidelines and recommendations. Cancer Treat. Rev. 2019, 73, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Attard, G.; Parker, C.; Eeles, R.A.; Schröder, F.; Tomlins, S.A.; Tannock, I.; Drake, C.G.; de Bono, J.S. Prostate cancer. Lancet 2016, 387, 70–82. [Google Scholar] [CrossRef]
- Lauschke, V.M.; Milani, L.; Ingelman-Sundberg, M. Pharmacogenomic Biomarkers for Improved Drug Therapy-Recent Progress and Future Developments. AAPS J. 2017, 20, 4. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Antona, C.; Taron, M. Pharmacogenomic biomarkers for personalized cancer treatment. J. Intern. Med. 2015, 277, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Gaudreau, P.O.; Stagg, J.; Soulières, D.; Saad, F. The Present and Future of Biomarkers in Prostate Cancer: Proteomics, Genomics, and Immunology Advancements. Biomark. Cancer 2016, 8, 15–33. [Google Scholar] [CrossRef]
- Terada, N.; Akamatsu, S.; Kobayashi, T.; Inoue, T.; Ogawa, O.; Antonarakis, E.S. Prognostic and predictive biomarkers in prostate cancer: latest evidence and clinical implications. Ther. Adv. Med. Oncol. 2017, 9, 565–573. [Google Scholar] [CrossRef]
- Quinn, D.I.; Sandler, H.M.; Horvath, L.G.; Goldkorn, A.; Eastham, J.A. The evolution of chemotherapy for the treatment of prostate cancer. Ann. Oncol. 2017, 28, 2658–2669. [Google Scholar] [CrossRef]
- Dagher, R.; Li, N.; Abraham, S.; Rahman, A.; Sridhara, R.; Pazdur, R. Approval summary: Docetaxel in combination with prednisone for the treatment of androgen-independent hormone-refractory prostate cancer. Clin. Cancer Res. 2004, 10, 8147–8151. [Google Scholar] [CrossRef]
- National Cancer Institute. Docetaxel. Available online: https://www.cancer.gov/publications/dictionaries/cancer-drug/def/docetaxel (accessed on 5 June 2019).
- Engels, F.K.; Ten Tije, A.J.; Baker, S.D.; Lee, C.K.; Loos, W.J.; Vulto, A.G.; Verweij, J.; Sparreboom, A. Effect of cytochrome P450 3A4 inhibition on the pharmacokinetics of docetaxel. Clin. Pharmacol. Ther. 2004, 75, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.D.; Verweij, J.; Cusatis, G.A.; van Schaik, R.H.; Marsh, S.; Orwick, S.J.; Franke, R.M.; Hu, S.; Schuetz, E.G.; Lamba, V.; et al. Pharmacogenetic pathway analysis of docetaxel elimination. Clin. Pharmacol. Ther. 2009, 85, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Galletti, G.; Leach, B.I.; Lam, L.; Tagawa, S.T. Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer Treat. Rev. 2017, 57, 16–27. [Google Scholar] [CrossRef] [PubMed]
- USA Food and Drug Administration. Table of Pharmacogenomic Biomarkers in Drug Labeling. Available online: https://www.fda.gov/drugs/science-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling (accessed on 11 June 2019).
- European Medicine Agency. Taxotere (Docetaxel) Drug Label. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/taxotere (accessed on 11 June 2019).
- Xu, J.; Qiu, Y. Current opinion and mechanistic interpretation of combination therapy for castration-resistant prostate cancer. Asian J. Androl. 2019, 21, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Tran, A.; Jullien, V.; Alexandre, J.; Rey, E.; Rabillon, F.; Girre, V.; Dieras, V.; Pons, G.; Goldwasser, F.; Tréluyer, J.M. Pharmacokinetics and toxicity of docetaxel: Role of CYP3A, MDR1, and GST polymorphisms. Clin. Pharmacol. Ther. 2006, 79, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Kiyotani, K.; Mushiroda, T.; Kubo, M.; Zembutsu, H.; Sugiyama, Y.; Nakamura, Y. Association of genetic polymorphisms in SLCO1B3 and ABCC2 with docetaxel-induced leukopenia. Cancer Sci. 2008, 99, 967–972. [Google Scholar] [CrossRef]
- Lewis, L.D.; Miller, A.A.; Owzar, K.; Bies, R.R.; Markova, S.; Jiang, C.; Kroetz, D.L.; Egorin, M.J.; McLeod, H.L.; Ratain, M.J.; et al. The relationship of polymorphisms in ABCC2 and SLCO1B3 with docetaxel pharmacokinetics and neutropenia: CALGB 60805 (Alliance). Pharmacogenet. Genomics 2013, 23, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Brandi, G.; de Rosa, F.; Danesi, R.; Montini, G.C.; Biasco, G. Durable complete response to frontline docetaxel in an advanced prostate cancer patient with favourable CYP1B1 isoforms: Suggestion for changing paradigms? Eur. Urol. 2008, 54, 938–941. [Google Scholar] [CrossRef]
- Sobek, K.M.; Cummings, J.L.; Bacich, D.J.; O’Keefe, D.S. Contrasting roles of the ABCG2 Q141K variant in prostate cancer. Exp. Cell Res. 2017, 354, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Hahn, N.M.; Marsh, S.; Fisher, W.; Langdon, R.; Zon, R.; Browning, M.; Johnson, C.S.; Scott-Horton, T.J.; Li, L.; McLeod, H.L.; et al. Hoosier Oncology Group randomized phase II study of docetaxel, vinorelbine, and estramustine in combination in hormone-refractory prostate cancer with pharmacogenetic survival analysis. Clin. Cancer Res. 2006, 12, 6094–6099. [Google Scholar] [CrossRef]
- Sissung, T.M.; Danesi, R.; Price, D.K.; Steinberg, S.M.; de Wit, R.; Zahid, M.; Gaikwad, N.; Cavalieri, E.; Dahut, W.L.; Sackett, D.L.; et al. Association of the CYP1B1*3 allele with survival in patients with prostate cancer receiving docetaxel. Mol. Cancer Ther. 2008, 7, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Yager, J.D.; Liehr, J.G. Molecular mechanisms of estrogen carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 1996, 36, 203–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shen, Y.; Li, S.; Lv, M.; Zhang, X.; Yang, J.; Wang, F. Importance of the interaction between immune cells and tumor vasculature mediated by thalidomide in cancer treatment (Review). Int. J. Mol. Med. 2016, 38, 1021–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sissung, T.M.; Baum, C.E.; Deeken, J.; Price, D.K.; Aragon-Ching, J.; Steinberg, S.M.; Dahut, W.; Sparreboom, A.; Figg, W.D. ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. Clin. Cancer Res. 2008, 14, 4543–4549. [Google Scholar] [CrossRef]
- Deeken, J.F.; Cormier, T.; Price, D.K.; Sissung, T.M.; Steinberg, S.M.; Tran, K.; Liewehr, D.J.; Dahut, W.L.; Miao, X.; Figg, W.D. A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform. Pharmacogenomics J. 2010, 10, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Sissung, T.M.; Deeken, J.; Leibrand, C.R.; Price, D.K.; Ehrlich, S.; Steinberg, S.M.; Liewehr, D.J.; Dahut, W.; Figg, W.D. Identification of novel SNPs associated with risk and prognosis in patients with castration-resistant prostate cancer. Pharmacogenomics 2016, 17, 1979–1986. [Google Scholar] [CrossRef] [Green Version]
- Pastina, I.; Giovannetti, E.; Chioni, A.; Sissung, T.M.; Crea, F.; Orlandini, C.; Price, D.K.; Cianci, C.; Figg, W.D.; Ricci, S.; et al. Cytochrome 450 1B1 (CYP1B1) polymorphisms associated with response to docetaxel in Castration-Resistant Prostate Cancer (CRPC) patients. BMC Cancer 2010, 10, 511. [Google Scholar] [CrossRef] [PubMed]
- Sissung, T.M.; Danesi, R.; Kirkland, C.T.; Baum, C.E.; Ockers, S.B.; Stein, E.V.; Venzon, D.; Price, D.K.; Figg, W.D. Estrogen receptor α and aromatase polymorphisms affect risk, prognosis, and therapeutic outcome in men with castration-resistant prostate cancer treated with docetaxel-based therapy. J. Clin. Endocrinol. Metab. 2011, 96, E368–E372. [Google Scholar] [CrossRef]
- Derosa, L.; Galli, L.; Orlandi, P.; Fioravanti, A.; Di Desidero, T.; Fontana, A.; Antonuzzo, A.; Biasco, E.; Farnesi, A.; Marconcini, R.; et al. Docetaxel plus oral metronomic cyclophosphamide: A phase II study with pharmacodynamic and pharmacogenetic analyses in castration-resistant prostate cancer patients. Cancer 2014, 120, 3923–3931. [Google Scholar] [CrossRef] [Green Version]
- Younis, I.R.; George, D.J.; McManus, T.J.; Hurwitz, H.; Creel, P.; Armstrong, A.J.; Yu, J.J.; Bacon, K.; Hobbs, G.; Peer, C.J.; et al. Clinical pharmacology of an atrasentan and docetaxel regimen in men with hormone-refractory prostate cancer. Cancer Chemother. Pharmacol. 2014, 73, 991–997. [Google Scholar] [CrossRef]
- Hertz, D.L.; Owzar, K.; Lessans, S.; Wing, C.; Jiang, C.; Kelly, W.K.; Patel, J.; Halabi, S.; Furukawa, Y.; Wheeler, H.E.; et al. Pharmacogenetic Discovery in CALGB (Alliance) 90401 and Mechanistic Validation of a VAC14 Polymorphism that Increases Risk of Docetaxel-Induced Neuropathy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 4890–4900. [Google Scholar] [CrossRef] [PubMed]
- Clinical Trials. Available online: www.clinicaltrials.gov (accessed on 25 March 2019).
- EU Clinical Trials Register. Available online: www.clinicaltrialsregister.eu (accessed on 25 March 2019).
- Robert, J.; Le Morvan, V.; Giovannetti, E.; Peters, G.J.; PAMM Group of EORTC. On the use of pharmacogenetics in cancer treatment and clinical trials. Eur. J. Cancer 2014, 50, 2532–2543. [Google Scholar] [CrossRef]
- Salman, J.W.; Schoots, I.G.; Carlsson, S.V.; Jenster, G.; Roobol, M.J. Prostate Specific Antigen as a Tumor Marker in Prostate Cancer: Biochemical and Clinical Aspects. Adv. Exp. Med. Biol. 2015, 867, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Mita, A.C.; Figlin, R.; Mita, M.M. Cabazitaxel: More than a new taxane for metastatic castrate-resistant prostate cancer? Clin. Cancer Res. 2012, 18, 6574–6579. [Google Scholar] [CrossRef] [PubMed]
- Singal, R.; Ramachandran, K.; Gordian, E.; Quintero, C.; Zhao, W.; Reis, I.M. Phase I/II study of azacitidine, docetaxel, and prednisone in patients with metastatic castration-resistant prostate cancer previously treated with docetaxel-based therapy. Clin. Genitourin. Cancer 2015, 13, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, K.; Gopisetty, G.; Gordian, E.; Navarro, L.; Hader, C.; Reis, I.M.; Schulz, W.A.; Singal, R. Methylation-mediated repression of GADD45alpha in prostate cancer and its role as a potential therapeutic target. Cancer Res. 2009, 69, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Hancox, U.; Cosulich, S.; Hanson, L.; Trigwell, C.; Lenaghan, C.; Ellston, R.; Dry, H.; Crafter, C.; Barlaam, B.; Fitzek, M.; et al. Inhibition of PI3Kβ signaling with AZD8186 inhibits growth of PTEN-deficient breast and prostate tumors alone and in combination with docetaxel. Mol. Cancer Ther. 2015, 14, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef]
- Cornford, P.; Bellmunt, J.; Bolla, M.; Briers, E.; De Santis, M.; Gross, T.; Henry, A.M.; Joniau, S.; Lam, T.B.; Mason, M.D.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: Treatment of Relapsing, Metastatic, and Castration-Resistant Prostate Cancer. Eur. Urol. 2017, 71, 630–642. [Google Scholar] [CrossRef]
- Parker, C.; Gillessen, S.; Heidenreich, A.; Horwich, A.; Committee, E.G. Cancer of the prostate: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. 5), v69–v77. [Google Scholar] [CrossRef]
- Carlo, M.I.; Giri, V.N.; Paller, C.J.; Abida, W.; Alumkal, J.J.; Beer, T.M.; Beltran, H.; George, D.J.; Heath, E.I.; Higano, C.S.; et al. Evolving Intersection Between Inherited Cancer Genetics and Therapeutic Clinical Trials in Prostate Cancer: A White Paper From the Germline Genetics Working Group of the Prostate Cancer Clinical Trials Consortium. JCO Precis. Oncol. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Verweij, J.; Hendriks, H.R.; Zwierzina, H.; Forum, C.D.D. Innovation in oncology clinical trial design. Cancer Treat. Rev. 2019, 74, 15–20. [Google Scholar] [CrossRef] [PubMed]
National Clinical Trial Number | Study Period | Status | Intervention | Genomic Signature | Phase | Total Number of Participants | Study Type | Results |
---|---|---|---|---|---|---|---|---|
NCT00089609 | Apr 2005–Jan 2018 | Completed | docetaxel + thalidomide + prednisone + bevacizumab | Association of SNPs in CYP3A4, CYP3A5 (docetaxel), and CYP2C19 (thalidomide) with pharmacokinetics and efficacy | II | 73 | Interventional | Yes. Association of the SNPs and efficacy was not investigated. |
NCT01308567 | May 2011–May 2018 | Completed | cabazitaxel + prednisone or docetaxel + prednisone | Pharmacogenomics of cabazitaxel | III | 1170 | Interventional | Yes. Results of pharmacogenomic studies were not published. |
NCT00619996 | Mar 2007–Jan 2009 | Completed | sorafenib + docetaxel | Gene expression profiling on blood cells and tumor biopsy | II | 43 | Interventional | No. |
NCT00503984 | May 2007–Jun 2015 | Terminated (withdrawal of funding) | azacitidine + docetaxel + growth factor support | GADD45A methylation and expression after azacitidine treatment in patients whose disease is progressing on docetaxel treatment | I, II | 22 | Interventional | Yes. Significant demethylation of GADD45A was observed. Azacitidine may reverse docetaxel resistance. |
NCT01253642 | Jul 2010–Sep 2017 | Terminated (low enrollment) | phenelzine sulfate + docetaxel | Frequency of MAOA overexpression CRPC tumors that are progressing on docetaxel treatment. HIF-1alpha and MAOA expression in Circulating Tumor Cells (CTCs). | II | 11 | Interventional | Yes. MAOA was overexpressed in all examined tumors. HIF-1alpha and MAOA expression in CTCs was not analyzed. |
National Clinical Trial Number | Status | Interventions | Genomic Signature | Phase | Participants (Estimated) | Study Type |
---|---|---|---|---|---|---|
NCT02975934 | Recruiting | rucaparib or abiraterone + prednisone/enzalutamide/docetaxel + prednisone | Response in patients with evidence of a homologous recombination gene deficiency (BRCA1/2 or ATM) | III | 400 | Interventional |
NCT03442556 | Recruiting | docetaxel + carboplatin + rucaparib | Response in patients with homologous recombination DNA repair deficiency (BRCA1/2, ATM, PALB2 germline mutations) | II | 20 | Interventional |
NCT02985021 | Recruiting | docetaxel + carboplatin | Response in patients with germline or somatic inactivation of DNA repair pathway genes (BRCA1, BRCA2, ATM) | II | 35 | Interventional |
NCT03517969 | Recruiting | docetaxel + carboplatin or carboplatin + ATR1 kinase inhibitor VX-970 | Response in tumors with homologous recombination deficiency | II | 130 | Interventional |
NCT02598895 | Recruiting | docetaxel + carboplatin | Response in tumors with mutation of DNA repair pathway genes (BRCA1, BRCA2, ATM) | NA | 14 | Interventional |
NCT03070886 | Recruiting | ADT2 + external beam radiotherapy + docetaxel or ADT + external beam radiotherapy | Response in genomically defined sub-groups of patients | II, III | 612 | Interventional |
NCT02649855 | Recruiting | docetaxel + PROSTVAC (vaccine) | Evaluate drug metabolism and transporters | II | 74 | Interventional |
NCT03358563 | Recruiting | ADT + docetaxel + Radical prostatectomy | Evaluation of genomic signatures and gene expression after treatment. Evaluation of biomarkers in tumor cells in circulation, as well a bone marrow before and after treatment. | Early I | 30 | Interventional |
NCT03218826 | Recruiting | docetaxel + AZD8186 | Dose escalation and anti-tumor activity of AZD8186 when given together with docetaxel in patients’ solid tumors with PTEN or PIK3CB mutations. Evaluation of co-mutated genes and their association with treatment response or resistance. | I | 58 | Interventional |
NCT02362620 | Active, not recruiting | docetaxel or cabazitaxel | Exploration of prognostic biomarkers (overall survival). Evaluation of the prognostic value of TMPRSS2-ERG re-arrengement, PTEN loss, and AR splicing variants. Association of somatic and germline mutations and the outcomes of the patients. | NA | 402 | Observational (prospective) |
NCT03700099 | Not yet recruiting | docetaxel + enzalutamide | Association of the AR gene alteration, AR-V7 status, and PSA response. | II | 30 | Interventional |
NCT03356444 | Not yet recruiting | abiraterone + prednisone or docetaxel + prednisone | Exploration of some of the genes related to the treatment efficacy | II | 140 | Interventional |
NCT03816904 | Not yet recruiting | docetaxel or paclitaxel | Determination of the number of CAG triplets in the KCNN3/SK3 gene associated with neuropathy | NA | 250 | Observational (prospective) |
Eudra Clinical Trial Number | Intervention | Genomic Signature | Results | Phase/Status | Study Type/Participants | Comparison with ClinicalTrials.gov |
---|---|---|---|---|---|---|
2008-000701-11 | dasatinib + docetaxel + prednisone OR placebo + docetaxel + prednisone | Samples collected for future pharmacogenomic studies | Yes. Nothing on pharmacogenomics | III/Completed | Interventional/1930 | Listed on ClinicalTrials.gov Pharmacogenomic aspect was not mentioned on ClinicalTrials.gov (NCT00744497). |
2007-000323-17 | docetaxel + ADT (leuprolide + bicalutamide) OR ADT alone | Evaluation of gene expression profiles, genetic changes, and quantitative methylation of different genes, and their ability to predict the treatment outcome of high-risk prostate cancer subjects | Yes. Nothing on pharmacogenomics | III/Terminated | Interventional/413 | Trial was listed on ClinicalTrials.gov. Pharmacogenomic aspect was mentioned in the original but not in the current secondary outcome measures on ClinicalTrials.gov (NCT00514917). |
2013-000809-23 | masitinib + docetaxel + prednisone OR placebo + docetaxel + prednisone | In a sub-study: relationship between genomic data and overall survival | No | III/Ongoing | Interventional/581 | Trial was listed on ClinicalTrials.gov Pharmacogenomic aspect was not mentioned on ClinicalTrials.gov (NCT03761225). |
2006-004478-29 | docetaxel + prednisone + ciclophosphamide + celecoxib | Evaluation of the most frequent genetic polymorphisms of CYP2B6, CYP2C19, CYP2C9, and CYP3A5 and their association with the observed response | No | II/Ongoing | Interventional/45 | Not found on ClinicalTrials.gov |
Biomarker | Predicitive | Prognostic | |||
---|---|---|---|---|---|
Clinical Response (↑) | Toxicity | Dosing (Clearance) | Overall Survival (↑) | Progression Free Survival (↑) | |
CYP1B1 (rs1056836) | X | XXX | X | ||
ABCG2 (rs2231142) | X | X | |||
CHST3 (rs4148950) | X | X | |||
CHST3 (rs1871450) | X | X | |||
CHST3 (rs4148945) | X | X | |||
MDR1/ABCB1 (rs1045642) | XX | X | |||
MDR1/ABCB1 (rs2032582) | X | X | |||
ABCC2 (rs12762549) | X | X (reduced) | |||
CHST3 (rs4148947) | X | ||||
CHST3 (rs12418) | X | ||||
CHST3 (rs730720) | X | ||||
CHST3 (rs4148943) | X | ||||
PPAR-δ (rs6922548) | X | ||||
PPAR-δ (rs2016520) | X | ||||
PPAR-δ (rs1883322) | X | ||||
PPAR-δ (rs3734254) | X | ||||
PPAR-δ (rs7769719) | X | ||||
SULT1C2 (rs1402467) | X | ||||
ABCC6 (rs2238472) | X | ||||
ATP7A (rs2227291) | X | ||||
ATP8A2 (rs11017056) | X | ||||
ATP8A2 (rs1326116) | X | ||||
CYP2D6*19 | X | ||||
CYP4B1 (rs4646487) | X | ||||
GSTP1 (rs1695) | X | ||||
NAT2 (rs1799931) | X | ||||
SLC10A2 (rs2301159) | X | ||||
SLCO1B3 (rs11045585) | X | ||||
SPG7 (rs2292954) | X | ||||
SPG7 (rs12960) | X | ||||
VAC14 (rs875858) | X | ||||
AAG (rs250242) | (enhanced) | ||||
CYP3A4 (rs2740574) | X (enhanced) | ||||
CYP3A5 (rs776746) | X (enhanced) | ||||
ABCB4 (rs2302387) | X | ||||
ABCB11 (rs7602171) | X | ||||
ABCC5 (rs939336) | X | ||||
CYP1B1 (rs1800440) | X | ||||
CYP19A1 (rs700519) | X | ||||
ERα/ESR1 (rs2234693) | X | ||||
ERα/ESR1 (rs9340799) | X | ||||
GSTP1 (rs1799811) | X | ||||
MDR1/ABCB1 (rs1128503) | X | ||||
SLC5A6 (rs1395) | X | ||||
VEGF-A (rs699947) | X | ||||
VEGF-A (rs1570360) | X | ||||
VEGF-A (rs2010963) | X | ||||
VEGF-A (rs3025039) | X |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varnai, R.; Koskinen, L.M.; Mäntylä, L.E.; Szabo, I.; FitzGerald, L.M.; Sipeky, C. Pharmacogenomic Biomarkers in Docetaxel Treatment of Prostate Cancer: From Discovery to Implementation. Genes 2019, 10, 599. https://doi.org/10.3390/genes10080599
Varnai R, Koskinen LM, Mäntylä LE, Szabo I, FitzGerald LM, Sipeky C. Pharmacogenomic Biomarkers in Docetaxel Treatment of Prostate Cancer: From Discovery to Implementation. Genes. 2019; 10(8):599. https://doi.org/10.3390/genes10080599
Chicago/Turabian StyleVarnai, Reka, Leena M. Koskinen, Laura E. Mäntylä, Istvan Szabo, Liesel M. FitzGerald, and Csilla Sipeky. 2019. "Pharmacogenomic Biomarkers in Docetaxel Treatment of Prostate Cancer: From Discovery to Implementation" Genes 10, no. 8: 599. https://doi.org/10.3390/genes10080599
APA StyleVarnai, R., Koskinen, L. M., Mäntylä, L. E., Szabo, I., FitzGerald, L. M., & Sipeky, C. (2019). Pharmacogenomic Biomarkers in Docetaxel Treatment of Prostate Cancer: From Discovery to Implementation. Genes, 10(8), 599. https://doi.org/10.3390/genes10080599