Gene‒Prostate-Specific-Antigen-Guided Personalized Screening for Prostate Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. The Natural History Model of PrCa with PSA and Genetic Variants
2.3. Risk Stratification
2.4. Computer Simulation
3. Results
3.1. The Effect of PSA on the Risk of Developing Prostate Cancer
3.2. Estimates of the Risks for PrCa by Genetics and PSA Level
3.3. Personalized Screening Policy
3.4. The Effectiveness of Universal and Gene‒PSA-Guided Personalized Screening Regimes
4. Discussion
4.1. Benefits of the Gene‒PSA-Guided Personalized Screening Regime
4.2. Personalized Multistate Risk Assessment Model with Gene and PSA
4.3. Economical Aspects of Genetic Testing
4.4. Clinical Relevance of Computer Algorithms Considering Personalized Risk
4.5. Limitations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hugosson, J.; Roobol, M.J.; Månsson, M.; Tammela, T.L.J.; Zappa, M.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Carlsson, S.V.; Talala, K.M.; et al. A 16-yr Follow-up of the European Randomized study of Screening for Prostate Cancer. Eur. Urol. 2019, 76, 43–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.H.; Auvinen, A.; Määttänen, L.; Tammela, T.L.; Stenman, U.H.; Hakama, M.; Yen, A.M.; Chen, H.H. Number of screens for overdetection as an indicator of absolute risk of overdiagnosis in prostate cancer screening. Int. J. Cancer 2012, 131, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.L.; Coletti, R.J.; Harris, R.P. Quantifying and monitoring overdiagnosis in cancer screening: A systematic review of methods. BMJ 2015, 350, g7773. [Google Scholar] [CrossRef] [PubMed]
- Aus, G.; Damber, J.E.; Khatami, A.; Lilja, H.; Stranne, J.; Hugosson, J. Individualized screening interval for prostate cancer based on prostate-specific antigen level: Results of a prospective, randomized, population-based study. Arch. Intern. Med. 2005, 165, 1857–1861. [Google Scholar] [CrossRef] [PubMed]
- Thompson, I.M.; Ankerst, D.P.; Chi, C.; Goodman, P.J.; Tangen, C.M.; Lucia, M.S.; Feng, Z.; Parnes, H.L.; Coltman, C.A., Jr. Assessing prostate cancer risk: Results from the Prostate Cancer Prevention Trial. J. Natl. Cancer Inst. 2006, 98, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Holmström, B.; Johansson, M.; Bergh, A.; Stenman, U.H.; Hallmans, G.; Stattin, P. Prostate specific antigen for early detection of prostate cancer: Longitudinal study. BMJ 2009, 339, b3537. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, F.R.; Olama, A.A.A.; Berndt, S.I.; Benlloch, S.; Ahmed, M.; Saunders, E.J.; Dadaev, T.; Leongamornlert, D.; Anokian, E.; Cieza-Borrella, C.; et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 2018, 50, 928–936. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Tao, S.; Gao, Y.; Peng, T.; Tan, A.; Zhang, H.; Yang, X.; Qin, X.; Hu, Y.; Feng, J.; et al. Genome-wide association study identified novel genetic variant on SLC45A3 gene associated with serum levels prostate-specific antigen (PSA) in a Chinese population. Hum. Genet. 2013, 132, 423–429. [Google Scholar] [CrossRef]
- Terao, C.; Terada, N.; Matsuo, K.; Kawaguchi, T.; Yoshimura, K.; Hayashi, N.; Shimizu, M.; Soga, N.; Takahashi, M.; Kotoura, Y.; et al. A genome-wide association study of serum levels of prostate-specific antigen in the Japanese population. Eur. Urol. 2016, 70, 6–8. [Google Scholar] [CrossRef]
- Hoffmann, T.J.; Passarelli, M.N.; Graff, R.E.; Emami, N.C.; Sakoda, L.C.; Jorgenson, E.; Habel, L.A.; Shan, J.; Ranatunga, D.K.; Quesenberry, C.P.; et al. Genome-wide association study of prostate-specific antigen levels identifies novel loci independent of prostate cancer. Nat. Commun. 2017, 8, 14248. [Google Scholar] [CrossRef]
- Gudmundsson, J.; Besenbacher, S.; Sulem, P.; Gudbjartsson, D.F.; Olafsson, I.; Arinbjarnarson, S.; Agnarsson, B.A.; Benediktsdottir, K.R.; Isaksson, H.J.; Kostic, J.P.; et al. Genetic correction of PSA values using sequence variants associated with PSA levels. Sci. Transl. Med. 2010, 2, 62ra92. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.L.-S.; Fann, J.C.-Y.; Sipeky, C.; Yang, T.K.; Yueh-Hsia Chiu, S.; Yen, A.M.-F.; Laitinen, V.; Tammela, T.L.J.; Stenman, U.H.; Auvinen, A.; et al. Risk Prediction of Prostate Cancer with Single Nucleotide Polymorphisms and Prostate Specific Antigen. J. Urol. 2019, 201, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.H.; Auvinen, A.; Yen, A.M.; Hakama, M.; Tammela, T.L.; Stenman, U.H.; Kujala, P.; Ruutu, M.; Chen, H.H. The impact of interscreening interval and age on prostate cancer screening with prostate-specific antigen. Eur. Urol. 2012, 61, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Yen, A.M.; Auvinen, A.; Schleutker, J.; Wu, Y.Y.; Fann, J.C.; Tammela, T.; Chen, S.L.; Chiu, S.Y.; Chen, H.H. Prostate cancer screening using risk stratification based on a multi-state model of genetic variants. Prostate 2015, 75, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Orsted, D.D.; Nordestgaard, B.G.; Jensen, G.B.; Schnohr, P.; Bojesen, S.E. Prostate-specific antigen and long-term prediction of prostate cancer incidence and mortality in the general population. Eur. Urol. 2012, 61, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Gelfond, J.; Choate, K.; Ankerst, D.P.; Hernandez, J.; Leach, R.J.; Thompson, I.M., Jr. Intermediate-Term Risk of Prostate Cancer is Directly Related to Baseline Prostate Specific Antigen: Implications for Reducing the Burden of Prostate Specific Antigen Screening. J. Urol. 2015, 194, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.H.H.; Prevost, T.C.; Duffy, S.W. Evaluation of screening for nasopharyngeal carcinoma: Trial design using Markov chain models. Br. J. Cancer 1999, 79, 1894–1900. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.L.; Sun, J.; Wiklund, F.; Smith, S.; Stattin, P.; Li, G.; Adami, H.O.; Hsu, F.C.; Zhu, Y.; Bälter, K.; et al. Cumulative association of five genetic variants with prostate cancer. N. Engl. J. Med. 2008, 358, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Al Olama, A.A.; Kote-Jarai, Z.; Giles, G.G.; Guy, M.; Morrison, J.; Severi, G.; Leongamornlert, D.A.; Tymrakiewicz, M.; Jhavar, S.; Saunders, E.; et al. Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat. Genet. 2009, 41, 1058–1060. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, J.; Sulem, P.; Manolescu, A.; Amundadottir, L.T.; Gudbjartsson, D.; Helgason, A.; Rafnar, T.; Bergthorsson, J.T.; Agnarsson, B.A.; Baker, A.; et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet. 2007, 39, 631–637. [Google Scholar] [CrossRef]
- Ewing, C.M.; Ray, A.M.; Lange, E.M.; Zuhlke, K.A.; Robbins, C.M.; Tembe, W.D.; Wiley, K.E.; Isaacs, S.D.; Johng, D.; Wang, Y.; et al. Germline mutations in HOXB13 and prostate-cancer risk. N. Engl. J. Med. 2012, 366, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Laitinen, V.H.; Wahlfors, T.; Saaristo, L.; Rantapero, T.; Pelttari, L.M.; Kilpivaara, O.; Laasanen, S.L.; Kallioniemi, A.; Nevanlinna, H.; Aaltonen, L.; et al. HOXB13 G84 Emutation in Finland: Population-based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol. Biomark. Prev. 2013, 22, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Kote-Jarai, Z.; Easton, D.F.; Stanford, J.L.; Ostrander, E.A.; Schleutker, J.; Ingles, S.A.; Schaid, D.; Thibodeau, S.; Dörk, T.; Neal, D.; et al. Multiple novel prostate cancer predisposition loci confirmed by an international study: The PRACTICAL Consortium. Cancer Epidemiol. Biomark. Prev. 2008, 17, 2052–2061. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, J.; Sulem, P.; Rafnar, T.; Bergthorsson, J.T.; Manolescu, A.; Gudbjartsson, D.; Agnarsson, B.A.; Sigurdsson, A.; Benediktsdottir, K.R.; Blondal, T.; et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat. Genet. 2008, 40, 281–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, G.; Jacobs, K.B.; Yeager, M.; Kraft, P.; Wacholder, S.; Orr, N.; Yu, K.; Chatterjee, N.; Welch, R.; Hutchinson, A.; et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet. 2008, 40, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zheng, S.L.; Isaacs, S.D.; Wiley, K.E.; Wiklund, F.; Sun, J.; Kader, A.K.; Li, G.; Purcell, L.D.; Kim, S.T.; et al. Inherited genetic variant predisposes to aggressive but not indolent prostate cancer. Proc. Natl. Acad. Sci. USA 2010, 107, 2136–2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eeles, R.A.; Kote-Jarai, Z.; Giles, G.G.; Olama, A.A.; Guy, M.; Jugurnauth, S.K.; Mulholland, S.; Leongamornlert, D.A.; Edwards, S.M.; Morrison, J.; et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat. Genet. 2008, 40, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.M.; Stampfer, M.J.; Ma, J.; Gann, P.; Gaziano, J.M.; Pollak, M.; Giovannucci, E. Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J. Natl. Cancer Inst. 2002, 94, 1099–1106. [Google Scholar] [CrossRef]
- Nakayama, M.; Gonzalgo, M.L.; Yegnasubramanian, S.; Lin, X.; De Marzo, A.M.; Nelson, W.G. GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J. Cell. Biochem. 2004, 91, 540–552. [Google Scholar] [CrossRef]
Prostate-Specific Antigen, SNPs, and Family History | % in Population | Weights | References | ||
Incidence of Preclinical Low-Grade PrCa | |||||
PSA, ng/mL | |||||
≤1.0 | 47.8% | 0.0000 | [12,15,16] | ||
1.01‒2.0 | 30.3% | 1.3415 | |||
2.01‒3.0 | 10.7% | 2.2147 | |||
3.01‒4.0 | 5.1% | 2.5799 | |||
4.01‒6.0 | 3.5% | 2.7377 | |||
6.01‒8.0 | 1.3% | 3.2789 | |||
8.01‒10 | 0.5% | 3.9098 | |||
>10 | 0.8% | 4.7430 | |||
SNPs | Position | Associated Allele | |||
rs4242382 | 8q24 (region) | AA | 4.36% | 0.4978 | [14] |
GA | 30.6% | 0.1084 | |||
rs138213197 | 17q21-22 | T | 1% | 3·60 | [14] |
rs4430796 | 17q12 | TT (30%) | 56% | 0.3221 | [18] |
rs1859962 | 17q24.3 | GG (25%) | 50% | 0.2468 | |
rs16901979 | 8q24(region 2) | AA/CA (7%) | 3% | 0.4253 | [18,19,20] |
rs6983267 | 8q24(region 3) | GT/GG (77%) | 51% | 0.3184 | |
rs1447295 | 8q24(region 1) | CA/AA (26%) | 14% | 0.1988 | |
rs2660753 | 3p12 | C | 11% | 0.0769 | [23] |
rs9364554 | 6q25 | C | 28% | 0.1310 | |
rs6465657 | 7q21 | T | 47% | 0.1132 | |
rs10993994 | 10q11 | C | 39% | 0.2231 | |
rs7931342 | 11q13 | G | 50% | ‒0.1625 | |
rs2735839 | 19q13 | G | 15% | ‒0.1165 | |
rs5945619 | Xp11 | T | 35% | 0.2546 | |
rs721048 | 2p15 | A | 19% | 0.3197 | [24] |
rs5945572 | Xp11 | A | 35.1% | 0.2070 | |
rs10486567 | JAZF1 (7) | GG | 59.29% | ‒0.3011 | [25] |
GA | 35.42% | ‒0.3424 | |||
rs4054823 | 17p12 | T | 72% | 0.1823 | [26] |
rs7920517 | 10 | AG | 47.6% | 0.1988 | [27] |
Family history | 4.6% | 0.6471 | [14] | ||
From Low-Grade Preclinical PrCa to High-Grade PrCa or Clinical PrCa | |||||
SNPs | Position | Associated Allele | |||
rs200331695 | 11q13 | A | 0.2% | 2.0643 | [14] |
IGF-I | Q2 | 1.1631 | [28] | ||
Q3 | 1.2528 | ||||
Q4 | 1.6292 | ||||
GSTP1 hypermethylation | 11:67584109-6758428 | 68% | 1.5151 | [29] |
Prostate-Specific Antigen (ng/mL) | Genetic Risk | 10-Year Risk for Prostate Cancer | Positive Likelihood Ratio | Negative Likelihood Ratio |
---|---|---|---|---|
>10 | High | 72.5% | — | 0.93 |
>10 | Low | 30.9% | 69.17 | 0.87 |
8.01‒10 | High | 43.0% | 25.59 | 0.89 |
8.01‒10 | Low | 15.0% | 39.23 | 0.74 |
6.01‒8 | High | 27.3% | 10.12 | 0.82 |
6.01‒8 | Low | 8.1% | 18.06 | 0.50 |
4.01‒6 | High | 17.4% | 5.26 | 0.75 |
4.01‒6 | Low | 4.9% | 10.65 | 0.48 |
3.01‒4.0 | High | 15.0% | 4.71 | 0.65 |
3.01‒4.0 | Low | 4.2% | 7.71 | 0.28 |
2.01‒3.0 | High | 10.7% | 2.69 | 0.51 |
2.01‒3.0 | Low | 2.9% | 5.45 | 0.24 |
1.01‒2.0 | High | 4.7% | 2.40 | 0.31 |
1.01‒2.0 | Low | 1.2% | 2.83 | 0.08 |
0‒1.0 | High | 1.3% | 1.30 | 0.18 |
0‒1.0 | Low | 0.3% | 1.55 | — |
Prostate-Specific Antigen, ng/mL | Genetic Risk | Screening Starting Age, Years | Screening Interval, Years |
---|---|---|---|
>10 | High | 47 | 1 |
>10 | Low | 50 | 2 |
8.01‒10 | High | 47 | 1 |
8.01‒10 | Low | 52 | 3 |
6.01‒8 | High | 50 | 2 |
6.01‒8 | Low | 55 | 4 |
4.01‒6 | High | 52 | 3 |
4.01‒6 | Low | 55 | 4 |
3.01‒4.0 | High | 52 | 3 |
3.01‒4.0 | Low | 55 | 4 |
2.01‒3.0 | High | 52 | 3 |
2.01‒3.0 | Low | 55 | 4 |
1.01‒2.0 | High | 55 | 4 |
1.01‒2.0 | Low | 60 | 12 |
0‒1.0 | High | 60 | 12 |
0‒1.0 | Low | 60 | 12 |
NSG | USG | PSG | |
---|---|---|---|
Participants | 15,000 | 15,000 | 15,000 |
Prostate cancer deaths, n | 384 | 307 | 299 |
Mortality reduction, rate ratio (95% CI) | Reference | 0.80 | 0.78 |
(0.67‒0.91) | (0.69‒0.93) | ||
High-grade cancers, n | 251 | 158 | 148 |
Incidence reduction, rate ratio (95% CI) | Reference | 0.63 | 0.59 |
(0.52‒0.77) | (0.48‒0.72) | ||
Number of PSA tests, n | - | 88,673 | 65,586 |
Test reduction, % | - | Reference | 26 |
Over-detection cases, n | - | 193 | 190 |
% of avoid over-detection | - | Reference | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.-K.; Chuang, P.-C.; Yen, A.M.-F.; Chen, H.-H.; Chen, S.L.-S. Gene‒Prostate-Specific-Antigen-Guided Personalized Screening for Prostate Cancer. Genes 2019, 10, 641. https://doi.org/10.3390/genes10090641
Yang T-K, Chuang P-C, Yen AM-F, Chen H-H, Chen SL-S. Gene‒Prostate-Specific-Antigen-Guided Personalized Screening for Prostate Cancer. Genes. 2019; 10(9):641. https://doi.org/10.3390/genes10090641
Chicago/Turabian StyleYang, Teng-Kai, Pi-Chun Chuang, Amy Ming-Fang Yen, Hsiu-Hsi Chen, and Sam Li-Sheng Chen. 2019. "Gene‒Prostate-Specific-Antigen-Guided Personalized Screening for Prostate Cancer" Genes 10, no. 9: 641. https://doi.org/10.3390/genes10090641
APA StyleYang, T. -K., Chuang, P. -C., Yen, A. M. -F., Chen, H. -H., & Chen, S. L. -S. (2019). Gene‒Prostate-Specific-Antigen-Guided Personalized Screening for Prostate Cancer. Genes, 10(9), 641. https://doi.org/10.3390/genes10090641