Network and Evolutionary Analysis of Human Epigenetic Regulators to Unravel Disease Associations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Epigenetic Regulators (ERs)
2.2. Curation and Clustering of Diseases Enriched for the ER Gene Set
2.3. Construction of a Protein–Protein Interaction (PPI) Network
2.4. PPI Subnetworks among Proteins Encoded by Disease-Associated ER Genes
2.5. PPI Subnetworks Simulation
2.6. Tissue-Specific Gene Expression Analysis
2.7. Weighted Gene Co-Expression Network Analysis (WGCNA)
2.8. Estimation of Evolutionary Rates and Gene Evolutionary Origin
2.9. Analysis of Positive Selection Using Divergence and Polymorphism Data
2.10. Pathway and GO Enrichment Analysis
3. Results
3.1. Identification of ER Genes Associated with Various Human Disorders
3.2. Functional Characterization of the Cancer Disease and Developmental Disease Clusters
3.3. Construction of the Cancer Disease ER Network and Developmental Disease ER Network
3.4. Tissue-Dependent Expression Levels of the CDEN and the DDEN Gene Sets
3.5. Identification of Co-Expression Network Modules Associated with the CDEN and the DDEN
3.6. Selective Pressure and Evolutionary Ages of the CDEN and DDEN Gene Sets
3.7. Positive Selection Inferred from Divergence and Polymorphism Data
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bernstein, B.E.; Meissner, A.; Lander, E.S. The mammalian epigenome. Cell 2007, 128, 669–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16, 6–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef] [Green Version]
- Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016, 17, 487–500. [Google Scholar] [CrossRef]
- Mulligan, C.J. Insights from epigenetic studies on human health and evolution. Curr. Opin. Genet. Dev. 2018, 53, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Xie, W. Epigenome in Early Mammalian Development: Inheritance, Reprogramming and Establishment. Trends Cell Biol. 2018, 28, 237–253. [Google Scholar] [CrossRef]
- Plass, C.; Pfister, S.M.; Lindroth, A.M.; Bogatyrova, O.; Claus, R.; Lichter, P. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat. Rev. Genet. 2013, 14, 765–780. [Google Scholar] [CrossRef]
- Lu, J.; Xu, J.; Li, J.; Pan, T.; Bai, J.; Wang, L.; Jin, X.; Lin, X.; Zhang, Y.; Li, Y.; et al. FACER: Comprehensive molecular and functional characterization of epigenetic chromatin regulators. Nucleic Acids Res. 2018, 46, 10019–10033. [Google Scholar] [CrossRef]
- Medvedeva, Y.A.; Lennartsson, A.; Ehsani, R.; Kulakovskiy, I.V.; Vorontsov, I.E.; Panahandeh, P.; Khimulya, G.; Kasukawa, T.; Consortium, F.; Drablos, F. EpiFactors: A comprehensive database of human epigenetic factors and complexes. Database (Oxford) 2015, 2015, bav067. [Google Scholar] [CrossRef]
- Bintu, L.; Yong, J.; Antebi, Y.E.; McCue, K.; Kazuki, Y.; Uno, N.; Oshimura, M.; Elowitz, M.B. Dynamics of epigenetic regulation at the single-cell level. Science 2016, 351, 720–724. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Perez, A.; Jene-Sanz, A.; Lopez-Bigas, N. The mutational landscape of chromatin regulatory factors across 4,623 tumor samples. Genome Biol. 2013, 14, r106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larizza, L.; Finelli, P. Developmental disorders with intellectual disability driven by chromatin dysregulation: Clinical overlaps and molecular mechanisms. Clin. Genet. 2019, 95, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, A.; de Las Heras, J.I.; Schirmer, E.C. Spatial Genome Organization: From Development to Disease. Front. Cell Dev. Biol. 2019, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Boukas, L.; Havrilla, J.M.; Hickey, P.F.; Quinlan, A.R.; Bjornsson, H.T.; Hansen, K.D. Coexpression patterns define epigenetic regulators associated with neurological dysfunction. Genome Res. 2019, 29, 532–542. [Google Scholar] [CrossRef]
- Pinero, J.; Bravo, A.; Queralt-Rosinach, N.; Gutierrez-Sacristan, A.; Deu-Pons, J.; Centeno, E.; Garcia-Garcia, J.; Sanz, F.; Furlong, L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017, 45, D833–D839. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009, 37, W305–W311. [Google Scholar] [CrossRef]
- Isserlin, R.; Merico, D.; Voisin, V.; Bader, G.D. Enrichment Map—A Cytoscape app to visualize and explore OMICs pathway enrichment results. F1000Research 2014, 3, 141. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Kucera, M.; Isserlin, R.; Arkhangorodsky, A.; Bader, G.D. AutoAnnotate: A Cytoscape app for summarizing networks with semantic annotations. F1000Research 2016, 5, 1717. [Google Scholar] [CrossRef]
- Takahashi, Y.; Terada, T.; Muto, Y. Systems Level Analysis and Identification of Pathways and Key Genes Associated with Delirium. Genes (Basel) 2020, 11, 1225. [Google Scholar] [CrossRef]
- Razick, S.; Magklaras, G.; Donaldson, I.M. iRefIndex: A consolidated protein interaction database with provenance. BMC Bioinform. 2008, 9, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huttlin, E.L.; Bruckner, R.J.; Paulo, J.A.; Cannon, J.R.; Ting, L.; Baltier, K.; Colby, G.; Gebreab, F.; Gygi, M.P.; Parzen, H.; et al. Architecture of the human interactome defines protein communities and disease networks. Nature 2017, 545, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Menche, J.; Sharma, A.; Kitsak, M.; Ghiassian, S.D.; Vidal, M.; Loscalzo, J.; Barabasi, A.L. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 2015, 347, 1257601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghiassian, S.D.; Menche, J.; Barabasi, A.L. A DIseAse MOdule Detection (DIAMOnD) algorithm derived from a systematic analysis of connectivity patterns of disease proteins in the human interactome. PLoS Comput. Biol. 2015, 11, e1004120. [Google Scholar] [CrossRef] [PubMed]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Frankish, A.; Diekhans, M.; Ferreira, A.M.; Johnson, R.; Jungreis, I.; Loveland, J.; Mudge, J.M.; Sisu, C.; Wright, J.; Armstrong, J.; et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019, 47, D766–D773. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Uesaka, M.; Guo, S.; Shimai, K.; Lu, T.M.; Li, F.; Fujimoto, S.; Ishikawa, M.; Liu, S.; Sasagawa, Y.; et al. Constrained vertebrate evolution by pleiotropic genes. Nat. Ecol. Evol. 2017, 1, 1722–1730. [Google Scholar] [CrossRef]
- Horvath, S. Weighted Network Analysis: Application in Genomics and Systems Biology; Springer: New York, NY, USA, 2011; pp. 91–121. [Google Scholar]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Langfelder, P.; Horvath, S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 2007, 1, 54. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, F.; Amode, M.R.; Barrell, D.; Beal, K.; Billis, K.; Brent, S.; Carvalho-Silva, D.; Clapham, P.; Coates, G.; Fitzgerald, S.; et al. Ensembl 2015. Nucleic Acids Res. 2015, 43, D662–D669. [Google Scholar] [CrossRef]
- Spataro, N.; Rodriguez, J.A.; Navarro, A.; Bosch, E. Properties of human disease genes and the role of genes linked to Mendelian disorders in complex disease aetiology. Hum. Mol. Genet. 2017, 26, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Capra, J.A.; Williams, A.G.; Pollard, K.S. ProteinHistorian: Tools for the comparative analysis of eukaryote protein origin. PLoS Comput. Biol. 2012, 8, e1002567. [Google Scholar] [CrossRef] [PubMed]
- Domazet-Loso, T.; Brajkovic, J.; Tautz, D. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet. 2007, 23, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Trigos, A.S.; Pearson, R.B.; Papenfuss, A.T.; Goode, D.L. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proc. Natl. Acad. Sci. USA 2017, 114, 6406–6411. [Google Scholar] [CrossRef] [Green Version]
- George, R.D.; McVicker, G.; Diederich, R.; Ng, S.B.; MacKenzie, A.P.; Swanson, W.J.; Shendure, J.; Thomas, J.H. Trans genomic capture and sequencing of primate exomes reveals new targets of positive selection. Genome Res. 2011, 21, 1686–1694. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [Green Version]
- Murga-Moreno, J.; Coronado-Zamora, M.; Bodelon, A.; Barbadilla, A.; Casillas, S. PopHumanScan: The online catalog of human genome adaptation. Nucleic Acids Res. 2019, 47, D1080–D1089. [Google Scholar] [CrossRef]
- Pybus, M.; Luisi, P.; Dall’Olio, G.M.; Uzkudun, M.; Laayouni, H.; Bertranpetit, J.; Engelken, J. Hierarchical boosting: A machine-learning framework to detect and classify hard selective sweeps in human populations. Bioinformatics 2015, 31, 3946–3952. [Google Scholar] [CrossRef] [Green Version]
- Pybus, M.; Dall’Olio, G.M.; Luisi, P.; Uzkudun, M.; Carreno-Torres, A.; Pavlidis, P.; Laayouni, H.; Bertranpetit, J.; Engelken, J. 1000 Genomes Selection Browser 1.0: A genome browser dedicated to signatures of natural selection in modern humans. Nucleic Acids Res. 2014, 42, D903–D909. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Bis-Brewer, D.M.; Danzi, M.C.; Wuchty, S.; Zuchner, S. A network biology approach to unraveling inherited axonopathies. Sci. Rep. 2019, 9, 1692. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Menche, J.; Huang, C.C.; Ort, T.; Zhou, X.; Kitsak, M.; Sahni, N.; Thibault, D.; Voung, L.; Guo, F.; et al. A disease module in the interactome explains disease heterogeneity, drug response and captures novel pathways and genes in asthma. Hum. Mol. Genet. 2015, 24, 3005–3020. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liu, Y.; Hou, Y.; Gan, J.; Wu, P.; Li, C. 3D genome and its disorganization in diseases. Cell Biol. Toxicol. 2018, 34, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar]
- Blekhman, R.; Man, O.; Herrmann, L.; Boyko, A.R.; Indap, A.; Kosiol, C.; Bustamante, C.D.; Teshima, K.M.; Przeworski, M. Natural selection on genes that underlie human disease susceptibility. Curr. Biol. 2008, 18, 883–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, S.; Panda, A.; Ghosh, T.C. Exploring the evolutionary rate differences between human disease and non-disease genes. Genomics 2016, 108, 18–24. [Google Scholar] [CrossRef]
- Quintana-Murci, L.; Barreiro, L.B. The role played by natural selection on Mendelian traits in humans. Ann. N. Y. Acad. Sci. 2010, 1214, 1–17. [Google Scholar] [CrossRef]
- Arrowsmith, C.H.; Bountra, C.; Fish, P.V.; Lee, K.; Schapira, M. Epigenetic protein families: A new frontier for drug discovery. Nat. Rev. Drug Discov. 2012, 11, 384–400. [Google Scholar] [CrossRef] [Green Version]
- Ramly, B.; Afiqah-Aleng, N.; Mohamed-Hussein, Z.A. Protein-Protein Interaction Network Analysis Reveals Several Diseases Highly Associated with Polycystic Ovarian Syndrome. Int. J. Mol. Sci. 2019, 20, 2959. [Google Scholar] [CrossRef] [Green Version]
- Conte, F.; Fiscon, G.; Licursi, V.; Bizzarri, D.; D’Anto, T.; Farina, L.; Paci, P. A paradigm shift in medicine: A comprehensive review of network-based approaches. Biochim. Biophys. Acta Gene Regul. Mech. 2020, 1863, 194416. [Google Scholar] [CrossRef]
- Millan, M.J. An epigenetic framework for neurodevelopmental disorders: From pathogenesis to potential therapy. Neuropharmacology 2013, 68, 2–82. [Google Scholar] [CrossRef] [PubMed]
- Eifler, K.; Vertegaal, A.C.O. SUMOylation-Mediated Regulation of Cell Cycle Progression and Cancer. Trends Biochem. Sci. 2015, 40, 779–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeggo, P.A.; Pearl, L.H.; Carr, A.M. DNA repair, genome stability and cancer: A historical perspective. Nat. Rev. Cancer 2016, 16, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izumi, K. Disorders of Transcriptional Regulation: An Emerging Category of Multiple Malformation Syndromes. Mol. Syndromol. 2016, 7, 262–273. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Jing, L.; Tu, X. Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease. BMC Cardiovasc. Disord. 2016, 16, 54. [Google Scholar] [CrossRef] [Green Version]
- Sipahi, L.; Uddin, M.; Hou, Z.C.; Aiello, A.E.; Koenen, K.C.; Galea, S.; Wildman, D.E. Ancient evolutionary origins of epigenetic regulation associated with posttraumatic stress disorder. Front. Hum. Neurosci. 2014, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Dickerson, J.E.; Robertson, D.L. On the origins of Mendelian disease genes in man: The impact of gene duplication. Mol. Biol. Evol. 2012, 29, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Kelley, J.L.; Swanson, W.J. Positive selection in the human genome: From genome scans to biological significance. Annu. Rev. Genom. Hum. Genet. 2008, 9, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Schaschl, H.; Wallner, B. Population-specific, recent positive directional selection suggests adaptation of human male reproductive genes to different environmental conditions. BMC Evol. Biol. 2020, 20, 27. [Google Scholar] [CrossRef] [Green Version]
- Torgerson, D.G.; Boyko, A.R.; Hernandez, R.D.; Indap, A.; Hu, X.; White, T.J.; Sninsky, J.J.; Cargill, M.; Adams, M.D.; Bustamante, C.D.; et al. Evolutionary processes acting on candidate cis-regulatory regions in humans inferred from patterns of polymorphism and divergence. PLoS Genet. 2009, 5, e1000592. [Google Scholar] [CrossRef] [Green Version]
- Byars, S.G.; Voskarides, K. Antagonistic Pleiotropy in Human Disease. J. Mol. Evol. 2020, 88, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Corbett, S.; Courtiol, A.; Lummaa, V.; Moorad, J.; Stearns, S. The transition to modernity and chronic disease: Mismatch and natural selection. Nat. Rev. Genet. 2018, 19, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Xiao, A.; Li, H.; Shechter, D.; Ahn, S.H.; Fabrizio, L.A.; Erdjument-Bromage, H.; Ishibe-Murakami, S.; Wang, B.; Tempst, P.; Hofmann, K.; et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 2009, 457, 57–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Lee, Y.R.; Dang, F.; Gan, W.; Menon, A.V.; Katon, J.M.; Hsu, C.H.; Asara, J.M.; Tibarewal, P.; Leslie, N.R.; et al. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discov. 2019, 9, 1306–1323. [Google Scholar] [CrossRef] [Green Version]
- Cosentino, M.S.; Oses, C.; Vazquez Echegaray, C.; Solari, C.; Waisman, A.; Alvarez, Y.; Petrone, M.V.; Francia, M.; Schultz, M.; Sevlever, G.; et al. Kat6b Modulates Oct4 and Nanog Binding to Chromatin in Embryonic Stem Cells and Is Required for Efficient Neural Differentiation. J. Mol. Biol. 2019, 431, 1148–1159. [Google Scholar] [CrossRef]
- Huang, W.H.; Guenthner, C.J.; Xu, J.; Nguyen, T.; Schwarz, L.A.; Wilkinson, A.W.; Gozani, O.; Chang, H.Y.; Shamloo, M.; Luo, L. Molecular and Neural Functions of Rai1, the Causal Gene for Smith-Magenis Syndrome. Neuron 2016, 92, 392–406. [Google Scholar] [CrossRef] [Green Version]
- Prohaska, A.; Racimo, F.; Schork, A.J.; Sikora, M.; Stern, A.J.; Ilardo, M.; Allentoft, M.E.; Folkersen, L.; Buil, A.; Moreno-Mayar, J.V.; et al. Human Disease Variation in the Light of Population Genomics. Cell 2019, 177, 115–131. [Google Scholar] [CrossRef] [Green Version]
- Vicens, A.; Posada, D. Selective Pressures on Human Cancer Genes along the Evolution of Mammals. Genes (Basel) 2018, 9, 582. [Google Scholar] [CrossRef] [Green Version]
Symbol | Gene Name | Functional Category | Turquoise Module |
---|---|---|---|
ADNP | activity dependent neuroprotector homeobox | Chromatin remodeling | + |
ARID1A | AT-rich interaction domain 1A | Chromatin remodeling | − |
ARID1B | AT-rich interaction domain 1B | Histone modification | − |
BAZ1B | bromodomain adjacent to zinc finger domain 1B | Histone modification | + |
CREBBP | CREB binding protein | Histone modification | − |
HUWE1 | HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1 | Histone modification | + |
KANSL1 | KAT8 regulatory NSL complex subunit 1 | Histone modification | − |
KAT6B | lysine acetyltransferase 6B | Histone modification | + |
NIPBL | NIPBL cohesin loading factor | Histone modification | − |
NSD2 | nuclear receptor binding SET domain protein 2 | Histone modification | + |
RAI1 | retinoic acid induced 1 | Chromatin remodeling | + |
SMARCA2 | SWI/SNF related, matrix associated, actin dependent regulator of chromatin | Histone modification | − |
SRCAP | Snf2 related CREBBP activator protein | Chromatin remodeling | + |
VRK1 | VRK serine/threonine kinase 1 | Histone modification | − |
ZMYND11 | zinc finger MYND-type containing 11 | Histone modification | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohsawa, S.; Umemura, T.; Terada, T.; Muto, Y. Network and Evolutionary Analysis of Human Epigenetic Regulators to Unravel Disease Associations. Genes 2020, 11, 1457. https://doi.org/10.3390/genes11121457
Ohsawa S, Umemura T, Terada T, Muto Y. Network and Evolutionary Analysis of Human Epigenetic Regulators to Unravel Disease Associations. Genes. 2020; 11(12):1457. https://doi.org/10.3390/genes11121457
Chicago/Turabian StyleOhsawa, Shinji, Toshiaki Umemura, Tomoyoshi Terada, and Yoshinori Muto. 2020. "Network and Evolutionary Analysis of Human Epigenetic Regulators to Unravel Disease Associations" Genes 11, no. 12: 1457. https://doi.org/10.3390/genes11121457
APA StyleOhsawa, S., Umemura, T., Terada, T., & Muto, Y. (2020). Network and Evolutionary Analysis of Human Epigenetic Regulators to Unravel Disease Associations. Genes, 11(12), 1457. https://doi.org/10.3390/genes11121457