Transcriptome Analyses Reveal Differential Transcriptional Profiles in Early- and Late-Dividing Porcine Somatic Cell Nuclear Transfer Embryos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Somatic Cell Preparation
2.2. Oocyte Collection and In Vitro Maturation
2.3. Somatic Cell Nuclear Transfer (SCNT)
2.4. SCNT 2-Cell Embryos Collection
2.5. RNA Isolation and Library Construction
2.6. Quality Control
2.7. Reads Mapping to Reference Genome
2.8. Quantification of Gene Expression Level
2.9. Analysis of Gene Differential Expression
2.10. GO and KEGG Enrichment Analysis of Differentially Expressed Genes
3. Results
3.1. Dividing Time and Developmental Competence of SCNT Embryos
3.2. Overview of the RNA-Seq Data in SCNT 2-Cell Embryos
3.3. Differentially Expressed Genes (DEGs) in Early-Dividing and Late-Dividing SCNT Embryos
3.4. GO and KEGG Analyses of DEGs in Early-Dividing and Late-Dividing SCNT 2-Cell Embryos
3.5. Oocyte Quality-Related Genes in SCNT Embryo Dividing
3.6. Somatic Memory Genes in SCNT Embryo Division
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gouveia, C.; Huyser, C.; Egli, D.; Pepper, M.S. Lessons learned from somatic cell nuclear transfer. Int. J. Mol. Sci. 2020, 21, 2314. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qu, J.; Li, J.; He, H.; Liu, Z.; Huan, Y. Epigenetic reprogramming during somatic cell nucleartTransfer: Recent progress and future Directions. Front. Genet. 2020, 11, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochota, M.; Niżański, W. Time of early cleavage affects the developmental potential of feline preimplantation embryos in vitro. Theriogenology 2017, 89, 26–31. [Google Scholar] [CrossRef]
- Luo, X.; Xiao, W.; Feng, C.; Long, C.; Yan, J.; Xue, Z.; Yun, P.; Pan, D. Timing of the first Zyogte cleavage as a developmental potential marker for procine cloned Embryos. Prog. Biochem. Biophys. 2010, 37, 1339–1345. [Google Scholar] [CrossRef]
- Lundin, K.; Bergh, C.; Hardarson, T. Early embryo cleavage is a strong indicator of embryo quality in human IVF. Hum. Reprod. 2001, 16, 2652–2657. [Google Scholar] [CrossRef] [PubMed]
- Bos-Mikich, A.; Mattos, A.L.G.; Ferrai, A.N. Early cleavage of human embryos: An effective method for predicting successful IVF/ICSI outcome. Hum. Reprod. 2001, 16, 2658–2661. [Google Scholar] [CrossRef] [Green Version]
- Lechniak, D.; Pers-Kamczyc, E.; Pawlak, P. Timing of the first zygotic cleavage as a marker of developmental potential of mammalian embryos. Reprod. Biol. 2008, 8, 23–42. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, R.K.; Lin, M.H.; Hwu, Y.M. Cleavage speed and implantation potential of early-cleavage embryos in IVF or ICSI cycles. J. Assist. Reprod. Genet. 2012, 29, 745–750. [Google Scholar] [CrossRef] [Green Version]
- Milazzotto, M.P.; Goissis, M.D.; Chitwood, J.L.; Annes, K.; Soares, C.A.; Ispada, J.; Assumpção, M.E.O.Á.; Ross, P.J. Early cleavages influence the molecular and the metabolic pattern of individually cultured bovine blastocysts. Mol. Reprod. Dev. 2016, 83, 324–336. [Google Scholar] [CrossRef]
- Torner, E.; Bussalleu, E.; Briz, M.D.; Yeste, M.; Bonet, S. Energy substrate influences the effect of the timing of the first embryonic cleavage on the development of in vitro-produced porcine embryos in a sex-related manner. Mol. Reprod. Dev. 2013, 80, 924–935. [Google Scholar] [CrossRef]
- Isom, S.C.; Li, R.F.; Whitworth, K.M.; Prather, R.S. Timing of first embryonic cleavage is a positive indicator of the in vitro developmental potential of porcine embryos derived from in vitro fertilization, somatic cell nuclear transfer and parthenogenesis. Mol. Reprod. Dev. 2012, 79, 197–207. [Google Scholar] [CrossRef]
- Lee, Y.S.; Thouas, G.A.; Gardner, D.K. Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage. Hum. Reprod. 2015, 30, 543–552. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kato, Y.; Tsunoda, Y. Effect of the timing of the first cleavage on the developmental potential of nuclear-transferred mouse oocytes receiving embryonic stem cells. Theriogenology 2004, 62, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.J.; Lee, S.E.; Park, Y.G.; Jeong, S.G.; Shin, M.Y.; Kim, E.Y.; Park, S.P. Fibroblast growth factor 10 enhances the developmental efficiency of Somatic Cell Nuclear Transfer Embryos by Accelerating the Kinetics of Cleavage During In Vitro Maturation. Cell. Reprogramming 2018, 20, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Prather, R.S. Production of cloned pigs by using somatic cells as donors. Cloning Stem Cells 2003, 5, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Fan, J.; Li, L.; Liu, Z.; Li, K. Pretreating porcine sperm with lipase enhances developmental competence of embryos produced by intracytoplasmic sperm injection. Zygote 2016, 24, 594–602. [Google Scholar] [CrossRef]
- Yoshioka, K.; Suzuki, C.; Tanaka, A.; Anas, I.M.-K.; Iwamura, S. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium1. Biol. Reprod. 2002, 66, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef] [Green Version]
- ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Nakai, M.; Ozawa, M.; Maedomari, N.; Noguchi, J.; Kaneko, H.; Ito, J.; Onishi, A.; Kashiwazaki, N.; Kikuchi, K. Delay in cleavage of porcine embryos after intracytoplasmic sperm injection (ICSI) shows poorer embryonic development. J. Reprod. Dev. 2014, 60, 256–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, Y.; Jeong, S.H.; Biswas, D.; Jung, E.M.; Jeung, E.B.; Lee, E.S.; Hyun, S.H. Cleavage pattern and survivin expression in porcine embryos by somatic cell nuclear transfer. Theriogenology 2011, 76, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Lonergan, P.; Gutiérrez-Adán, A.; Pintado, B.; Fair, T.; Ward, F.; Fuente, J.D.; Boland, M. Relationship between time of first cleavage and the expression of IGF-I growth factor, its receptor, and two housekeeping genes in bovine two-cell embryos and blastocysts produced in vitro. Mol. Reprod. Dev. 2000, 57, 146–152. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, J.; Zhang, M.; Wang, D.; Ma, Y.; Wang, Y.; Wang, Y.; Huang, Y.; Zhang, Y. Transcriptional memory inherited from donor cells is a developmental defect of bovine cloned embryos. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2020, 34, 1637–1651. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Doi, A.; Wen, B.; Ng, K.; Zhao, R.; Cahan, P.; Kim, J.; Aryee, M.J.; Ji, H.; Ehrlich, L.I.R.; et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010, 467, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yu, M.; Xu, H.; Wei, X.; Liu, Y.; Huang, C.; Chen, H.; Guo, Z. RNA sequencing revealed the abnormal transcriptional profile in cloned bovine embryos. Int. J. Biol. Macromol. 2020, 150, 492–500. [Google Scholar] [CrossRef]
- Li, H.; Song, M.; Yang, W.; Cao, P.; Zheng, L.; Zuo, Y. A comparative analysis of single-cell transcriptome identifies reprogramming driver factors for efficiency improvement. Mol. Ther. Nucleic Acids 2020, 19, 1053–1064. [Google Scholar] [CrossRef]
- Duan, J.; Zhu, L.; Dong, H.; Zheng, X.; Jiang, Z.; Chen, J.; Tian, X.C. Analysis of mRNA abundance for histone variants, histone- and DNA-modifiers in bovine in vivo and in vitro oocytes and embryos. Sci. Rep. 2019, 9, 1217. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, F.; Zhang, L.; Wu, X.; Li, D.; Xin, J.; Xie, J.; Kong, F.; Wang, W.; Wu, Q.; et al. Transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo RNA sequencing. BMC Genomics 2018, 19, 734. [Google Scholar] [CrossRef]
- Akagi, S.; Tamura, S.; Matsukawa, K. Timing of the first cleavage and in vitro developmental potential of bovine somatic cell nuclear transfer embryos activated by different protocols. Cell. Reprogramming 2020, 22, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Amarnath, D.; Kato, Y.; Tsunoda, Y. Effect of the timing of first cleavage on in vitro developmental potential of nuclear-transferred bovine oocytes receiving cumulus and fibroblast cells. J. Reprod. Dev. 2007, 53, 491–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Latham, K.E. Maternal and environmental factors in early cloned embryo development. Cytogenet. Genome Res. 2004, 105, 279–284. [Google Scholar] [CrossRef] [PubMed]
Number of Cultured Embryos | Replicates | Time of First Division | Number of 2-Cell Embryos | Number (%) of Blastocysts * |
---|---|---|---|---|
295 | 4 | 12–24 h | 108 | 36 (33.6 ± 3.7) a |
25–36 h | 93 | 11 (11.3 ± 3.5) b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Xiang, G.; Xu, K.; Che, J.; Xu, C.; Li, K.; Wang, B.; Mu, Y. Transcriptome Analyses Reveal Differential Transcriptional Profiles in Early- and Late-Dividing Porcine Somatic Cell Nuclear Transfer Embryos. Genes 2020, 11, 1499. https://doi.org/10.3390/genes11121499
Liu Z, Xiang G, Xu K, Che J, Xu C, Li K, Wang B, Mu Y. Transcriptome Analyses Reveal Differential Transcriptional Profiles in Early- and Late-Dividing Porcine Somatic Cell Nuclear Transfer Embryos. Genes. 2020; 11(12):1499. https://doi.org/10.3390/genes11121499
Chicago/Turabian StyleLiu, Zhiguo, Guangming Xiang, Kui Xu, Jingjing Che, Changjiang Xu, Kui Li, Bingyuan Wang, and Yulian Mu. 2020. "Transcriptome Analyses Reveal Differential Transcriptional Profiles in Early- and Late-Dividing Porcine Somatic Cell Nuclear Transfer Embryos" Genes 11, no. 12: 1499. https://doi.org/10.3390/genes11121499
APA StyleLiu, Z., Xiang, G., Xu, K., Che, J., Xu, C., Li, K., Wang, B., & Mu, Y. (2020). Transcriptome Analyses Reveal Differential Transcriptional Profiles in Early- and Late-Dividing Porcine Somatic Cell Nuclear Transfer Embryos. Genes, 11(12), 1499. https://doi.org/10.3390/genes11121499