Molecular Mechanism Underlying Mechanical Wounding-Induced Flavonoid Accumulation in Dalbergia odorifera T. Chen, an Endangered Tree That Produces Chinese Rosewood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemicals and Reagents
2.3. Histological Observation of D. odorifera Stems
2.4. Measurement of Total Flavonoids Content
2.5. Simultaneous Determination of Six Flavonoids in D. odorifera Using HPLC
2.6. Quantification of Plant Hormones and H2O2 in the D and H Zones
2.6.1. SA, ABA, and JA
2.6.2. H2O2
2.6.3. Ethylene
2.7. Transcriptome Analysis of Zones D and H
2.8. Plant Hormone Treatment and Flavonoid Analysis
2.9. Statistical Analysis
3. Results
3.1. The Discolored Wood of D. odorifera Induced by Pruning Displays Structural Similarity to That of Natural Heartwood
3.2. The Flavonoids Profiles in Zone D are Similar to Those in Natural Heartwood
3.3. Characterization of Gene Expression Patterns in D and H Through RNA Sequencing
3.4. Wounding Induced the Expression of The Genes Involved in The Phenylpropanoid and Flavonoid Biosynthesis
3.5. Changes in Signal Molecules Associated with Plant Defense in Response To Pruning
3.6. Expression Patterns of The Genes Involved in The Production of ET, JA, ABA, ROS, and SA in The D Zone of D. odorifera
3.7. Wounding-Associated Signals Induced Flavonoid Biosynthesis in Cell Suspensions of D. odorifera
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
IUCN | The International Union for Conservation of Nature |
CITES | Trade in Endangered Species |
RNA-Seq | RNA sequencing |
N | Necrosis |
D | Discolored |
H | Healthy |
HW | Heartwood |
SW | Sapwood |
CTF | The content of total flavonoids |
C4H | Trans-cinnamate4-monooxygenase |
4CL | 4-coumarate-CoA ligase |
CHS | Chalcone synthase |
CHI | Chalcone isomerase |
6DCS | NAD(P)H-dependent 6’-deoxychalcone synthase |
F3’5’H | Flavonoid-3’,5’-hydroxylase |
FNS | Flavone synthase |
COMT | Flavone 3’-O-methyltransferase |
IFS | 2-hydroxyisoflavanone synthase |
HI4’OMT | 2,7,4’-trihydroxyisoflavanone 4’-O-methyltransferase |
HID | 2-hydroxyisoflavanone dehydratases |
IOMT | Isoflavone 7-O-methyltransferase |
I2’H | Isoflavone 2’-hydroxylase |
IFR | Isoflavone reductase |
F3H | Flavonone 3-hydroxylase |
FMO | Flavonoid 3’-monooxygenase |
I3’H | Isoflavone 3’-hydroxylase |
GT | UDP-glucose flavonoid 3-O-glucosyltransferase |
PMAT | Phenolic glucoside malonyltransferase |
ACC synthase | 1-aminocyclopropane 1-carboxylate synthase |
ACC oxidase | 1-aminocyclopropane-1-carboxylate oxidase |
LOX | Linoleate 13S-lipoxygenase |
AOS | Allene oxide synthase |
AOC | Allene oxide cyclase |
OPR | 12-oxophytodienoate reductase |
ICS | Isochorismate synthase |
NCED | 9-cis-epoxycarotenoid dioxygenase |
SDR | Short-chain dehydrogenase reductase |
AAO | Abscisic-aldehyde oxidase |
ROS | Reactive oxygen species |
NR | Nonredundant |
KEGG | The Kyoto Encyclopedia of Genes and Genomes |
COG | The Clusters of Orthologus Groups |
GO | The Gene Ontology |
References
- Meng, H.; Yang, Y.; Gao, Z.H.; Wei, J.H. Selection and validation of reference genes for gene expression studies by RT-PCR in Dalbergia odorifera. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.S.; Wang, C.H.; Meng, H.; Yu, Z.; Yang, M.H.; Wei, J.H. Dalbergia odorifera: A review of its traditional uses, phytochemistry, pharmacology, and quality control. J. Ethnopharmacol. 2019, 248, 112328. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.; Li, B.; Im, N.K.; Kim, Y.C.; Jeong, G.S. 4,2’,5’-Trihydroxy-4’-methoxychalcone from Dalbergia odorifera exhibits anti-inflammatory properties by inducing heme oxygenase-1 in murine macrophages. Int. Immunopharmacol. 2013, 16, 114–121. [Google Scholar] [CrossRef]
- Lee, D.S.; Kim, K.S.; Ko, W.; Li, B.; Keo, S.; Jeong, G.S.; Oh, H.; Kim, Y.C. The neoflavonoid latifolin isolated from MeOH extract of Dalbergia odorifera attenuates inflammatory responses by inhibiting NF-κB activation via Nrf2-mediated heme oxygenase-1 expression. Phytother. Res. 2014, 28, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, X.; Yang, Y.; Wei, J.H.; Meng, H.; Gao, Z.H.; Xu, Y.H. Hydrogen peroxide induces vessel occlusions and stimulates sesquiterpenes accumulation in stems of Aquilaria sinensis. Plant Growth Regul. 2014, 72, 81–87. [Google Scholar] [CrossRef]
- Yahara, S.; Ogata, T.; Saijo, R.; Konishi, R.Y.; Amahara, J.; Miyahara, K.; Nohara, T. Isoflavan and related compounds from Dalbergia odorifera I. Chem. Pharm. Bull. 1989, 37, 979–987. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.M.; Wang, D.Y.; Yang, J.M.; Lin, Z.X.; Yang, A.L.; Fan, H.; Cao, M.; Yuan, S.Y.; Liu, Z.J.; Zhou, X.; et al. Dalbergia odorifera extract promotes angiogenesis through upregulation of VEGFRs and PI3K/MAPK signaling pathways. J. Ethnopharmacol. 2017, 204, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Park, K.R.; Yun, H.M.; Quang, T.H.; Oh, H.; Lee, D.S.; Auh, Q.S.; Kim, E.C. 4-Methoxydalbergione suppresses growth and induces apoptosis in human osteosarcoma cells in vitro and in vivo xenograft model through down-regulation of the jak2/stat3 pathway. Oncotarget 2016, 7, 6960–6971. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Dong, W.H.; Zuo, W.J.; Wang, H.; Mei, W.L.; Dai, H.F. Three new phenolic compounds from Dalbergia odorifera. J. Asian Nat. Prod. Res. 2014, 16, 1109–1118. [Google Scholar] [CrossRef]
- Yang, Z.H.; Mei, C.; He, X.H.; Sun, X.B. Advance in studies on chemical constitutions, pharmacological mechanism and pharmacokinetic profile of Dalbergia odorifera Lignum. Chin. J. Chin. Mater. Med. 2013, 38, 1679–1683. [Google Scholar] [CrossRef]
- Yu, X.L.; Wang, W.; Yang, M. Antioxidant activities of compounds isolated from Dalbergia odorifera T. Chen and their inhibition effects on the decrease of glutathione level of rat lens induced by UV irradiation. Food Chem. 2007, 104, 715–720. [Google Scholar] [CrossRef]
- Pharmacopoeia, Chinese. The State Pharmacopoeia Commission of PR China; Chemical Industry Press: Beijing, China, 2000; Volume 1, pp. 184–185. [Google Scholar]
- World Conservation Monitoring Centre. Dalbergia odorifera. The IUCN Red List of Threatened Species. 1998: e.T32398A9698077. Available online: http://www.iucnredlist.org/details/32398/0 (accessed on 16 August 2019).
- CITES. Amendments to Appendix I and II of CITES. In Proceedings of the CITES Secretary-General’s remarks at the 4th Regional Dialogue on Combating Trafficking in Wild Fauna and Flora, Bangkok, Thailand, 11–15 September 2017. [Google Scholar]
- Liu, F.M.; Zhang, N.N.; Liu, X.J.; Yang, Z.J.; Jia, H.Y.; Xu, D.P. Genetic diversity and population structure analysis of Dalbergia odorifera germplasm and development of a core collection using microsatellite markers. Genes 2019, 10, 281. [Google Scholar] [CrossRef] [Green Version]
- Jacobo-Velázquez, D.A.; Cisneros-Zevallos, L. An Alternative Use of Horticultural Crops: Stressed Plants as Biofactories of Bioactive Phenolic Compounds. Agriculture 2013, 3, 596–598. [Google Scholar] [CrossRef] [Green Version]
- Torres-Contrerasa, A.M.; Senés-Guerrero, C.; Pacheco, A.; González-Agüero, M.; Ramos-Parra, P.A.; Cisneros-Zevallos, L.; Jacobo-Velázquez, L. Genes differentially expressed in broccoli as an early and late response to wounding stress. Postharvest Biol. Tec. 2018, 145, 172–182. [Google Scholar] [CrossRef]
- Jacobo-Velázquez, D.A.; Martınez-Hernandez, G.B.; Rodrıguez, S.D.C.; Cao, C.M.; Cisneros-Zevallos, L. Plants as biofactories: Physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. J. Agric. Food Chem. 2011, 59, 6583–6593. [Google Scholar] [CrossRef]
- Becerra-Moreno, A.; Redondo-Gil, M.; Benavides, J.; Nair, V.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Front. Plant Sci. 2015, 6, 837–851. [Google Scholar] [CrossRef] [Green Version]
- Cisneros-Zevallos, L. The use of controlled postharvest abiotic stresses as a tool for enhancing the nutraceutical content and adding-value of fresh fruits and vegetables. J. Food Sci. 2006, 68, 1560–1565. [Google Scholar] [CrossRef]
- Jacobo-Velázquez, D.A.; González-Agüero, M.; Cisneros-Zevallos, L. Cross-talk between signaling pathways: The link between plant secondary metabolite production and wounding stress response. Sci. Rep. 2015, 5, 8608–8618. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.; Yang, Y.; Feng, J.D. The present situation and development of the introduction of Dalbergia odorifera T. Chen. Guangdong Agric. Sci. 2010, 37, 79–80. [Google Scholar]
- Kukurba, K.R.; Montgomery, S.B. RNA sequencing and analysis. Cold Spring Harb. Protoc. 2015, 11, 951–969. [Google Scholar] [CrossRef] [Green Version]
- Diretto, G.; Al-Babili, G.; Tavazza, R.; Papacchioli, R. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE 2007, 2, e350. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Al-Babili, S.; Klöti, A.; Zhang, J.; Lucca, P.; Beyer, P.; Potrykus, I. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 2000, 287, 303–305. [Google Scholar] [CrossRef] [Green Version]
- Niggeweg, R.; Michael, A.J.; Martin, C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat. Biotechnol. 2004, 22, 746–754. [Google Scholar] [CrossRef]
- Guo, L.B.; Wang, L. Study on the determination of total flavonoids in D. odorifera. J. Chin. Med. Mater. 2008, 31, 694–696. [Google Scholar]
- Pharmacopoeia, Chinese. The State Pharmacopoeia Commission of PR China; Chemical Industry Press: Beijing, China, 2015; Volume 4. [Google Scholar]
- Liu, R.X.; Wang, Q.; Guo, H.Z.; Li, L.; Bi, K.S.; Guo, D.A. Simultaneous determination of 10 major flavonoids in Dalbergia odorifera by high performance liquid chromatography. J. Pharm. Biomed. Anal. 2005, 39, 469–476. [Google Scholar] [CrossRef]
- Pan, X.Q.; Welti, R.; Wang, X. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat. Protoc. 2010, 5, 986. [Google Scholar] [CrossRef]
- Bellincampi, D.; Dipierro, N.; Salvi, G.; Cervone, F.; De Lorenzo, G. Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants. Plant Physiol. 2000, 122, 1379–1386. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.Y.; Ding, X.; Xu, S.; Wang, R.; Xuan, W.; Cao, Z.Y.; Chen, J.; Wu, H.H.; Ye, M.B.; Shen, W.B. Endogenous hydrogen peroxide plays a positive role in the upregulation of heme oxygenase and acclimation to oxidative stress in wheat seedling leaves. J. Integr. Plant Biol. 2009, 51, 951–960. [Google Scholar] [CrossRef]
- Mariani, T.J.; Budhraja, V.; Mecham, B.H.; Gu, C.C.; Watson, M.A.; Sadovsky, Y. A variable fold change threshold determines significance for expression microarrays. FASEB J. 2003, 17, 321–323. [Google Scholar] [CrossRef] [Green Version]
- Audic, S.; Claverie, J.M. The significance of digital gene expression profiles. Genome Res. 1997, 7, 986–995. [Google Scholar] [CrossRef]
- Ramya, M.; Park, P.H.; Chuang, Y.C.; Kwon, O.K.; An, H.R.; Park, P.M.; Baek, Y.S.; Kang, B.C.; Tsai, W.C.; Chen, H.H. RNA sequencing analysis of Cymbidium goeringii identifies floral scent biosynthesis related genes. BMC Plant Biol. 2019, 19, 337–350. [Google Scholar] [CrossRef]
- Taylor, A.M.; Gartner, B.L.; Morrell, J.J. Heartwood formation and natural durability—A review. Wood Fiber Sci. 2002, 34, 587–611. [Google Scholar] [CrossRef]
- Jia, R. Study on the Artificial Promotion of Heartwood Formation by Flavonoids. Ph.D. Thesis, Chinese Academy of Forestry, Pekin, China, June 2014. [Google Scholar]
- Cui, Z.; Yang, Z.; Xu, D. Synergistic roles of biphasic ethylene and hydrogen peroxide in wound-induced vessel occlusions and essential oil accumulation in Dalbergia odorifera. Front. Plant Sci. 2019, 10, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Zeng, X.; Zhang, D.; Guo, S. Diverse fungi associated with partial irregular heartwood of Dalbergia odorifera. Sci. Rep. 2015, 5, 8464–8470. [Google Scholar] [CrossRef]
- Hart, J.H. Development of wound heartwood in Iowa hardwoods. Past Present 1963, 7, A55–A84. [Google Scholar]
- Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Gadzovska, S.; Maury, S.; Delaunay, A.; Spasenoski, M.; Hagege, D.; Courtois, D.; Joseph, C. The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell Tissue Organ. Cult. 2013, 113, 25–39. [Google Scholar] [CrossRef]
- Zhao, J.; Verpoorte, R. Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: From biochemical processing to metabolic engineering. Phytochem. Res. 2007, 6, 435–457. [Google Scholar] [CrossRef]
- Ren, C.G.; Dai, C.C. Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC Plant Biol. 2012, 12, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Savatin, D.V.; Gramegna, G.; Modesti, V.; Cervone, F. Wounding in the plant tissue: The defense of a dangerous passage. Front. Plant Sci. 2014, 5, 470–480. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Mittler, R. Reactive oxygen species-dependent wound responses in animals and plants. Free Radic. Biol. Med. 2012, 53, 2269–2276. [Google Scholar] [CrossRef]
- Minibayeva, F.; Beckett, R.P.; Kranner, I. Roles of apoplastic peroxidases in plant response to wounding. Phytochemistry 2015, 112, 122–129. [Google Scholar] [CrossRef]
- Farmer, E.E.; Johnson, R.R.; Ryan, C.A. Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol. 1992, 98, 995–1002. [Google Scholar] [CrossRef] [Green Version]
- Pena-Cortes, H.; Prat, S.; Atzorn, R.; Wasternack, C.; Willmitzer, L. Abscisic acid-deficient plants do not accumulate proteinase inhibitor II following systemin treatment. Planta Med. 1996, 198, 447–451. [Google Scholar] [CrossRef]
- O’Donnell, P.J.; Jones, J.B.; Antoine, F.R.; Ciardi, J.; Klee, H.J. Ethylene dependent salicylic acid regulates an expanded cell death response to a plant pathogen. Plant J. 2001, 25, 315–323. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, P.J.; Calvert, C.; Atzorn, R.; Wasternack, C.; Leyser, H.M.O.; Bowles, D.J. Ethylene as a signal mediating the wound response of tomato plants. Science 1996, 274, 1914–1917. [Google Scholar] [CrossRef]
- Stratmann, J. Ultraviolet-B radiation co-opts defense signaling pathways. Trends Plant Sci. 2003, 8, 526–533. [Google Scholar] [CrossRef]
- Thakur, M.; Bhattacharya, S.; Khosla, P.K.; Khosla, P.K.; Puri, S. Improving production of plant secondary metabolites through biotic and abiotic elicitation. J. Appl. Res. Med. Aroma. Plants 2019, 12, 1–12. [Google Scholar] [CrossRef]
- Tiwari, R.; Rana, C.S. Plant secondary metabolites: A review. Int. J. Eng. Res. Gen. Sci. 2015, 3, 661–670. [Google Scholar]
- van der Fits, L.; Memelink, J. ORCA-3, a jasmonate responsive transcriptional regulator of plant primary and secondary metabolism. Science 2000, 289, 295–297. [Google Scholar] [CrossRef]
- Zhou, M.; Memelink, J. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol. Adv. 2016, 34, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Hayat, Q.; Hayat, S.; Irfan, M.; Ahmad, A. Effect of exogenous salicylic acid under changing environment: A review. Environ. Exp. Bot. 2010, 68, 14–25. [Google Scholar] [CrossRef]
- Singh, A.; Dwivedi, P. Methyl-jasmonate and salicylic acid as potent elicitors for secondary metabolite production in medicinal plants: A review. J. Pharmacogn. Phytochem. 2018, 7, 750–757. [Google Scholar]
- Xu, M.; Jin, H.; Dong, J.; Zhang, M.; Xu, X.; Zhou, T. Abscisic acid plays critical role in ozone-induced taxol production of Taxus chinensis suspension cell cultures. Biotechnol. Prog. 2011, 27, 1415–1420. [Google Scholar] [CrossRef]
- Ferrandino, A.; Lovisolo, C. Abiotic stress effects on grapevine (Vitis vinifera L.): Focus on abscisic acid-mediated consequences on secondary metabolism and berry quality. Environ. Exp. Bot. 2014, 103, 138–147. [Google Scholar] [CrossRef]
- Khan, T.A.; Mazid, M.; Mohammad, F. Status of secondary plant products under abiotic stress: An overview. J. Stress Physiol. Biochem. 2011, 7, 75–98. [Google Scholar]
- Francini, A.; Giro, A.; Ferrante, A. Biochemical and molecular regulation of phenylpropanoids pathway under abiotic stresses. In Plant Signaling Molecule: Role and Regulation under Stressful Environments; Khan, M.I.R., Reddy, P.S., Ferrante, A., Khan, N.A., Eds.; Woodhead Publishing: Sawston, Cambridge, UK, 2019; pp. 183–192. [Google Scholar]
- Song, C.J.; Steinebrunner, I.; Wang, X.Z.; Stout, S.S.; Roux, S.J. Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiol. 2006, 140, 1222–1232. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Gao, M.; Kang, S.; Yang, C.; Meng, H.; Yang, Y.; Zhao, X.; Gao, Z.; Xu, Y.; Jin, Y.; et al. Molecular Mechanism Underlying Mechanical Wounding-Induced Flavonoid Accumulation in Dalbergia odorifera T. Chen, an Endangered Tree That Produces Chinese Rosewood. Genes 2020, 11, 478. https://doi.org/10.3390/genes11050478
Sun Y, Gao M, Kang S, Yang C, Meng H, Yang Y, Zhao X, Gao Z, Xu Y, Jin Y, et al. Molecular Mechanism Underlying Mechanical Wounding-Induced Flavonoid Accumulation in Dalbergia odorifera T. Chen, an Endangered Tree That Produces Chinese Rosewood. Genes. 2020; 11(5):478. https://doi.org/10.3390/genes11050478
Chicago/Turabian StyleSun, Ying, Mei Gao, Seogchan Kang, Chengmin Yang, Hui Meng, Yun Yang, Xiangsheng Zhao, Zhihui Gao, Yanhong Xu, Yue Jin, and et al. 2020. "Molecular Mechanism Underlying Mechanical Wounding-Induced Flavonoid Accumulation in Dalbergia odorifera T. Chen, an Endangered Tree That Produces Chinese Rosewood" Genes 11, no. 5: 478. https://doi.org/10.3390/genes11050478
APA StyleSun, Y., Gao, M., Kang, S., Yang, C., Meng, H., Yang, Y., Zhao, X., Gao, Z., Xu, Y., Jin, Y., Zhao, X., Zhang, Z., & Han, J. (2020). Molecular Mechanism Underlying Mechanical Wounding-Induced Flavonoid Accumulation in Dalbergia odorifera T. Chen, an Endangered Tree That Produces Chinese Rosewood. Genes, 11(5), 478. https://doi.org/10.3390/genes11050478