Genetic Variants of the PLCXD3 Gene Are Associated with Risk of Metabolic Syndrome in the Emirati Population
Abstract
:1. Introduction
2. Materials
2.1. Study Population
2.2. Genotyping Analysis
2.3. Statistical Analyses
3. Results
3.1. Association of rs319013 and rs9292806 across GWAS Datasets with T2D and Related Traits
3.2. Prediction the Effect of rs319013 and rs9292806 on the Function of PLCXD3
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PLCXD3 | phosphatidylinositol-specific phospholipase C X domain |
HbA1c | glycated hemoglobin |
T2D | Type 2 diabetes |
MetS | metabolic syndrome |
MAF | minor allele frequency |
BMI | body mass index |
LDL | low-density lipoprotein |
HDL | high-density lipoprotein |
TG | triglycerides |
CJD | sporadic Creutzfeldt-Jakob disease |
SNP | single-nucleotide polymorphism |
SBP | ystolic blood pressure |
DBP | diastolic blood pressure |
References
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, B.C.-C.; Hwang, L.-C.; Huang, W.-H. Positive Association of Metabolic Syndrome with a Single Nucleotide Polymorphism of Syndecan-3 (rs2282440) in the Taiwanese Population. Int. J. Endocrinol. 2018, 2018, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkharfy, K.M.; Al-Daghri, N.M.; Al-Attas, O.S.; Alokail, M.S.; Mohammed, A.K.; Vinodson, B.; Clerici, M.; Kazmi, U.; Hussain, T.; Draz, H.M. Variants of endothelial nitric oxide synthase gene are associated with components of metabolic syndrome in an Arab population. Endocr. J. 2012, 59, 253–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy Scott, M.; Cleeman James, I.; Daniels Stephen, R.; Donato Karen, A.; Eckel Robert, H.; Franklin Barry, A.; Gordon David, J.; Krauss Ronald, M.; Savage Peter, J.; Smith Sidney, C.; et al. Diagnosis and Management of the Metabolic Syndrome. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Samson, S.L.; Garber, A.J. Metabolic Syndrome. Endocrinol. Metab. Clin. N. Am. 2014, 43, 1–23. [Google Scholar] [CrossRef]
- Malik, M.; Razig, S.A. The prevalence of the metabolic syndrome among the multiethnic population of the United Arab Emirates: A report of a national survey. Metab. Syndr. Relat. Disord. 2008, 6, 177–186. [Google Scholar] [CrossRef]
- Malik, M.; Bakir, A.; Saab, B.A.; Roglic, G.; King, H. Glucose intolerance and associated factors in the multi-ethnic population of the United Arab Emirates: Results of a national survey. Diabetes Res. Clin. Pract. 2005, 69, 188–195. [Google Scholar] [CrossRef]
- Ferguson, J.F.; Phillips, C.M.; Tierney, A.C.; Pérez-Martínez, P.; Defoort, C.; Helal, O.; Lairon, D.; Planells, R.; Shaw, D.I.; Lovegrove, J.A. Gene-nutrient interactions in the metabolic syndrome: Single nucleotide polymorphisms in ADIPOQ and ADIPOR1 interact with plasma saturated fatty acids to modulate insulin resistance. Am. J. Clin. Nutr. 2009, 91, 794–801. [Google Scholar] [CrossRef] [Green Version]
- Aljaibeji, H.S.; Mohammed, A.K.; Dhaiban, S.; Elemam, N.M.; Sulaiman, N.; Salehi, A.; Taneera, J. Reduced expression of PLCXD3 associates with disruption of glucose sensing and insulin signalling in pancreatic β-cells. Front. Endocrinol. 2019, 10, 735. [Google Scholar] [CrossRef] [Green Version]
- Taneera, J.; Fadista, J.; Ahlqvist, E.; Atac, D.; Ottosson-Laakso, E.; Wollheim, C.B.; Groop, L. Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia. Hum. Mol. Genet. 2014, 24, 1945–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulaiman, N.; Albadawi, S.; Abusnana, S.; Fikri, M.; Madani, A.; Mairghani, M.; Alawadi, F.; Zimmet, P.; Shaw, J. Novel approach to systematic random sampling in population surveys: Lessons from the United Arab Emirates National Diabetes Study (UAEDIAB). J. Diabetes 2015, 7, 642–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulaiman, N.; Elbadawi, S.; Hussein, A.; Abusnana, S.; Madani, A.; Mairghani, M.; Alawadi, F.; Sulaiman, A.; Zimmet, P.; Huse, O.; et al. Prevalence of overweight and obesity in United Arab Emirates Expatriates: The UAE National Diabetes and Lifestyle Study. Diabetol. Metab. Syndr. 2017, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, N.; Mahmoud, I.; Hussein, A.; Elbadawi, S.; Abusnana, S.; Zimmet, P.; Shaw, J. Diabetes risk score in the United Arab Emirates: A screening tool for the early detection of type 2 diabetes mellitus. BMJ Open Diabetes Res. Care 2018, 6, e000489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dastani, Z.; Hivert, M.F.; Timpson, N.; Perry, J.R.; Yuan, X.; Scott, R.A.; Henneman, P.; Heid, I.M.; Kizer, J.R.; Lyytikainen, L.P.; et al. Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: A multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet. 2012, 8, e1002607. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Kanai, M.; Akiyama, M.; Takahashi, A.; Matoba, N.; Momozawa, Y.; Ikeda, M.; Iwata, N.; Ikegawa, S.; Hirata, M.; Matsuda, K.; et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 2018, 50, 390–400. [Google Scholar] [CrossRef] [Green Version]
- Hebert, H.L.; Shepherd, B.; Milburn, K.; Veluchamy, A.; Meng, W.; Carr, F.; Donnelly, L.A.; Tavendale, R.; Leese, G.; Colhoun, H.M.; et al. Cohort Profile: Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS). Int. J. Epidemiol. 2018, 47, 380–381j. [Google Scholar] [CrossRef] [Green Version]
- Flannick, J.; Fuchsberger, C.; Mahajan, A.; Teslovich, T.M.; Agarwala, V.; Gaulton, K.J.; Caulkins, L.; Koesterer, R.; Ma, C.; Moutsianas, L.; et al. Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Sci. Data 2017, 4, 170179. [Google Scholar] [CrossRef] [Green Version]
- van der Heijden, A.A.; Rauh, S.P.; Dekker, J.M.; Beulens, J.W.; Elders, P.; M’t Hart, L.M.; Rutters, F.; van Leeuwen, N.; Nijpels, G. The Hoorn Diabetes Care System (DCS) cohort. A prospective cohort of persons with type 2 diabetes treated in primary care in the Netherlands. BMJ Open 2017, 7, e015599. [Google Scholar] [CrossRef]
- van Zuydam, N.R.; Ahlqvist, E.; Sandholm, N.; Deshmukh, H.; Rayner, N.W.; Abdalla, M.; Ladenvall, C.; Ziemek, D.; Fauman, E.; Robertson, N.R.; et al. A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes. Diabetes 2018, 67, 1414–1427. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, E.; Leong, A.; Liu, C.T.; Hivert, M.F.; Strawbridge, R.J.; Podmore, C.; Li, M.; Yao, J.; Sim, X.; Hong, J.; et al. Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. PLoS Med. 2017, 14, e1002383. [Google Scholar] [CrossRef] [Green Version]
- Yengo, L.; Sidorenko, J.; Kemper, K.E.; Zheng, Z.; Wood, A.R.; Weedon, M.N.; Frayling, T.M.; Hirschhorn, J.; Yang, J.; Visscher, P.M. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum. Mol. Genet. 2018, 27, 3641–3649. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Taliun, D.; Thurner, M.; Robertson, N.R.; Torres, J.M.; Rayner, N.W.; Payne, A.J.; Steinthorsdottir, V.; Scott, R.A.; Grarup, N.; et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 2018, 50, 1505–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendl, J.; Musil, M.; Štourač, J.; Zendulka, J.; Damborský, J.; Brezovský, J. PredictSNP2: A unified platform for accurately evaluating SNP effects by exploiting the different characteristics of variants in distinct genomic regions. PLoS Comput. Biol. 2016, 12, e1004962. [Google Scholar] [CrossRef]
- Nsiah, K.; Shang, V.O.; Boateng, K.A.; Mensah, F.O. Prevalence of metabolic syndrome in type 2 diabetes mellitus patients. Int. J. Appl. Basic Med. Res. 2015, 5, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperling, L.S.; Mechanick, J.I.; Neeland, I.J.; Herrick, C.J.; Despres, J.P.; Ndumele, C.E.; Vijayaraghavan, K.; Handelsman, Y.; Puckrein, G.A.; Araneta, M.R.; et al. The CardioMetabolic Health Alliance: Working Toward a New Care Model for the Metabolic Syndrome. J. Am. Coll. Cardiol. 2015, 66, 1050–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tune, J.D.; Goodwill, A.G.; Sassoon, D.J.; Mather, K.J. Cardiovascular consequences of metabolic syndrome. Transl. Res. 2017, 183, 57–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, P.; Srivastava, R.K.; Jain, D. Association of Lifestyle Risk Factors with Metabolic Syndrome Components: A Cross-sectional Study in Eastern India. Int. J. Prev. Med. 2018, 9, 6. [Google Scholar] [CrossRef]
- Barroso, I.; McCarthy, M.I. The Genetic Basis of Metabolic Disease. Cell 2019, 177, 146–161. [Google Scholar] [CrossRef] [Green Version]
- Fenwick, P.H.; Jeejeebhoy, K.; Dhaliwal, R.; Royall, D.; Brauer, P.; Tremblay, A.; Klein, D.; Mutch, D.M. Lifestyle genomics and the metabolic syndrome: A review of genetic variants that influence response to diet and exercise interventions. Crit. Rev. Food Sci. Nutr. 2019, 59, 2028–2039. [Google Scholar] [CrossRef] [PubMed]
- Gaulton, K.J.; Ferreira, T.; Lee, Y.; Raimondo, A.; Magi, R.; Reschen, M.E.; Mahajan, A.; Locke, A.; Rayner, N.W.; Robertson, N.; et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat. Genet. 2015, 47, 1415–1425. [Google Scholar] [CrossRef] [PubMed]
- Wessel, J.; Chu, A.Y.; Willems, S.M.; Wang, S.; Yaghootkar, H.; Brody, J.A.; Dauriz, M.; Hivert, M.F.; Raghavan, S.; Lipovich, L.; et al. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat. Commun. 2015, 6, 5897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Ong, R.T.; Tay, W.T.; Sim, X.; Ali, M.; Xu, H.; Suo, C.; Liu, J.; Chia, K.S.; Vithana, E.; et al. A study assessing the association of glycated hemoglobin A1C (HbA1C) associated variants with HbA1C, chronic kidney disease and diabetic retinopathy in populations of Asian ancestry. PLoS ONE 2013, 8, e79767. [Google Scholar] [CrossRef] [PubMed]
- Sim, X.; Ong, R.T.; Suo, C.; Tay, W.T.; Liu, J.; Ng, D.P.; Boehnke, M.; Chia, K.S.; Wong, T.Y.; Seielstad, M.; et al. Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from Southeast Asia. PLoS Genet. 2011, 7, e1001363. [Google Scholar] [CrossRef]
- Bishop, M.T.; Sanchez-Juan, P.; Knight, R.S. Splice site SNPs of phospholipase PLCXD3 are significantly associated with variant and sporadic Creutzfeldt-Jakob disease. BMC Med. Genet. 2013, 14, 91. [Google Scholar] [CrossRef] [Green Version]
- Jamain, S.; Cichon, S.; Etain, B.; Mühleisen, T.W.; Georgi, A.; Zidane, N.; Chevallier, L.; Deshommes, J.; Nicolas, A.; Henrion, A. Common and rare variant analysis in early-onset bipolar disorder vulnerability. PLoS ONE 2014, 9, e104326. [Google Scholar] [CrossRef] [Green Version]
- Fischl, A.M.; Heron, P.M.; Stromberg, A.J.; McClintock, T.S. Activity-dependent genes in mouse olfactory sensory neurons. Chem. Senses 2014, 39, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Balendra, R.; Uphill, J.; Collinson, C.; Druyeh, R.; Adamson, G.; Hummerich, H.; Zerr, I.; Gambetti, P.; Collinge, J.; Mead, S. Variants of PLCXD3 are not associated with variant or sporadic Creutzfeldt-Jakob disease in a large international study. BMC Med. Genet. 2016, 17, 28. [Google Scholar] [CrossRef] [Green Version]
- Barclay, S.F.; Rand, C.M.; Borch, L.A.; Nguyen, L.; Gray, P.A.; Gibson, W.T.; Wilson, R.J.; Gordon, P.M.; Aung, Z.; Berry-Kravis, E.M.; et al. Rapid-Onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD): Exome sequencing of trios, monozygotic twins and tumours. Orphanet J. Rare Dis. 2015, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Suh, P.-G.; Park, J.-I.; Manzoli, L.; Cocco, L.; Peak, J.C.; Katan, M.; Fukami, K.; Kataoka, T.; Yun, S.; Ryu, S.H. Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep. 2008, 41, 415–434. [Google Scholar] [CrossRef] [PubMed]
- Gellatly, S.A.; Kalujnaia, S.; Cramb, G. Cloning, tissue distribution and sub-cellular localisation of phospholipase C X-domain containing protein (PLCXD) isoforms. Biochem. Biophys. Res. Commun. 2012, 424, 651–656. [Google Scholar] [CrossRef] [PubMed]
Parameters | Control (n = 256) | T2DM (n = 306) | p Value |
---|---|---|---|
N (M/F) | 119/137 | 120/186 | |
Age (Years) | 43.3 ± 12.7 | 54.4 ± 10.8 | <0.0001 |
BMI (kg/m2) | 28.8 ± 5.2 | 31.2 ± 5.8 | <0.0001 |
Waist circumference | 96.4 ± 12.9 | 103.5± 12.6 | 0.001 |
SBP (mmHg) | 125.3 ± 17.9 | 132.1 ± 16.2 | <0.0001 |
DBP (mmHg) | 77.6 ± 10.7 | 77.7 ± 10.3 | 0.89 |
Glucose (mmol/L) | 5.35 ± 0.66 | 10.0 ± 3.48 | <0.0001 |
HbA1c (%) | 5.44 ± 0.48 | 8.47 ± 1.51 | <0.0001 |
Total Cholesterol (mmol/L) | 5.0 ± 0.94 | 4.6 ± 1.36 | <0.0001 |
HDL-Cholesterol (mmol/L) | 1.39 ± 0.45 | 1.24 ± 0.36 | <0.0001 |
LDL-Cholesterol (mmol/L) | 3.20± 0.82 | 2.78 ± 1.06 | <0.0001 |
Triglycerides (mmol/L) # | 1.1 (0.81–1.57) | 1.36 (1.05–1.92) | <0.0001 |
Parameters | Non-MetS (n = 341) | MetS (n = 215) | p Value |
---|---|---|---|
N (M/F) | 161/180 | 74/141 | |
Age (Years) | 46.5 ± 13.7 | 53.8 ± 10.1 | <0.0001 |
BMI (kg/m2) | 26.9 ± 4.0 | 34.9 ± 4.3 | <0.0001 |
Waist circumference | 93.5 ± 11.9 | 109.2 ± 8.8 | <0.0001 |
SBP (mmHg) | 125.2 ± 16.6 | 132.7 ± 16.7 | <0.0001 |
DBP (mmHg) | 76.3 ± 10.7 | 80.0 ± 9.6 | <0.0001 |
Glucose (mmol/L) | 7.0 ± 3.02 | 8.1 ± 3.55 | <0.0001 |
HbA1c | 6.62 ± 1.82 | 7.79 ± 1.79 | <0.0001 |
Total Cholesterol (mmol/L) | 4.84 ± 1.22 | 4.67 ± 1.17 | 0.15 |
HDL-Cholesterol (mmol/L) | 1.37 ± 0.44 | 1.22 ± 0.34 | <0.0001 |
LDL-Cholesterol (mmol/L) | 3.01± 1.02 | 2.90 ± 0.93 | 0.08 |
Triglycerides (mmol/L) # | 1.12 (0.84–1.68) | 1.41 (1.06–2.14) | 0.001 |
Control N (%) | T2DM N (%) | Chi2 p Value | Non-MetS N (%) | MetS N (%) | Chi2 p Value | |
---|---|---|---|---|---|---|
rs9292806 | ||||||
GG | 125 (49.0) | 169 (56.1) | 0.21 | 188 (55.5) | 104 (49.3) | 0.002 |
CG | 99 (38.8) | 97 (32.2) | 124 (36.6) | 69 (32.7) | ||
CC | 31 (12.2) | 35 (11.6) | 27 (8) | 38 (18.0) | ||
rs319013 | ||||||
TT | 124 (49.2) | 171 (57.0) | 0.18 | 187 (56.0) | 106 (50.0) | 0.015 |
GT | 97 (38.5) | 98 (32.7) | 120 (35.9) | 72 (34.0) | ||
GG | 31 (12.3) | 31 (10.3) | 27 (8.1) | 34 (16.0) |
T2D OR (95 % CI) | p Value | T2D Adj OR (95 % CI) | Adj p Value | MetS OR (95 % CI) | p Value | MetS Adj OR (95 % CI) | Adj p Value | |
---|---|---|---|---|---|---|---|---|
rs9292806 | ||||||||
GG | 1 | - | 1 | - | 1 | - | 1 | - |
CG | 0.72 (0.50–1.10) | 0.08 | 0.67 (0.43–1.03) | 0.07 | 1.01 (0.69–1.47) | 0.97 | 1.03 (0.69–1.55) | 0.85 |
CC | 0.83 (0.49–1.42) | 0.51 | 0.80 (0.42–1.49) | 0.47 | 2.54 (1.47–4.40) | 0.001 | 2.92 (1.61–5.30) | <0.001 |
rs319013 | ||||||||
TT | 1 | - | 1 | - | 1 | - | 1 | - |
GT | 0.73 (0.51–1.05) | 0.10 | 0.66 (0.36–1.02) | 0.07 | 1.06 (0.72–1.54) | 0.77 | 1.08 (0.72–1.63) | 0.67 |
GG | 0.72 (0.42–1.25) | 0.25 | 0.69 (0.36–1.33) | 0.28 | 2.22 (1.27–3.88) | 0.005 | 2.62 (1.42–4.83) | 0.002 |
rs9292806 | rs319013 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | GG (125) | CG (99) | CC (29) | p Value | p adj | TT (124) | GT (97) | GG (29) | p Value | p adj |
Age (Years) | 43.5 ± 13.2 | 42.6 ± 12.3 | 44.8 ± 12.2 | 0.72 | - | 43.1 ± 13.5 | 42.8 ± 12.1 | 44.8 ± 12.3 | 0.75 | - |
BMI (kg/m2) | 28.9 ± 5.7 | 28.4 ± 4.6 | 29.7 ± 4.7 | 0.51 | 0.57 | 28.9 ± 5.7 | 28.3 ± 4.6 | 29.5 ± 4.7 | 0.44 | - |
Waist Circumference | 97.2 ± 12.4 | 93.1 ± 14.2 | 102.8 ± 7.3 b | 0.03 | 0.16 | 97.1 ± 12.4 | 93.0 ± 14.1 | 102.7 ± 7.3 b | 0.03 | 0.16 |
SBP (mmHg) | 123.0 ± 16.0 | 126.0 ± 18.2 | 133.1 ± 21.9 a | 0.02 | 0.20 | 122.5 ± 17.9 | 126.2 ± 18.3 | 133.5 ± 22.2 a | 0.01 | 0.16 |
DBP (mmHg) | 76.1 ± 9.8 | 78.7 ± 11.4 | 80.3 ± 11.2 | 0.07 | 0.19 | 76.2 ± 9.8 | 78.6 ± 11.7 | 79.9 ± 11.2 | 0.12 | 0.34 |
Glucose (mmol/L) | 5.29 ± 0.58 | 5.30 ± 0.63 | 5.75 ± 0.85 a,b | 0.006 | 0.003 | 5.30 ± 0.58 | 5.42 ± 0.64 | 5.72 ± 0.87 a,b | 0.013 | 0.009 |
HbA1c (%) | 5.40 ± 0.43 | 5.42 ± 0.45 | 5.75 ± 0.67 a,b | 0.002 | 0.004 | 5.40 ± 0.43 | 5.41 ± 0.46 a | 5.76 ± 0.67 a,b | 0.001 | 0.003 |
Total Chol (mmol/L) | 4.91 ± 0.90 | 5.0 ± 0.94 | 5.31 ± 1.06 | 0.16 | 0.20 | 4.92 ± 0.90 | 4.98 ± 0.94 | 5.31 ± 1.06 | 0.17 | 0.22 |
HDL-Chol (mmol/L) | 1.50 ± 0.51 | 1.34 ± 0.35 a | 1.12 ± 0.34 a,b | 0.001 | 0.02 | 1.49 ± 0.51 | 1.34 ± 0.35 a | 1.15 ± 0.37 a,b | 0.002 | 0.03 |
LDL-Chol (mmol/L) | 3.12 ± 0.76 | 3.23 ± 0.85 | 3.45 ± 0.92 | 0.17 | 0.29 | 3.13 ± 0.76 | 3.24 ± 0.85 | 3.42 ± 0.95 | 0.25 | 0.37 |
Triglycerides (mmol/L) # | 1.29 ± 0.84 | 1.25 ± 0.70 | 1.98 ± 1.41 a,b | 0.02 | 0.32 | 1.30 ± 0.84 | 1.26 ± 0.71 | 1.90 ± 1.44 | 0.10 | 0.73 |
Haplotypes. | Haplotype Count | Haplotype Frequencies | OR (95 % CI) | p Value | ||
---|---|---|---|---|---|---|
Control | T2DM | Control | T2DM | |||
TG | 175 | 222 | 0.68 | 0.73 | 1 | |
GC | 81 | 84 | 0.32 | 0.27 | 0.82 (0.56–1.18) | 0.28 |
Non-MetS | MetS | Non-MetS | MetS | |||
TG | 252 | 142 | 0.74 | 0.66 | 1 | - |
GC | 89 | 73 | 0.26 | 0.34 | 1.46 (1.01–2.14) | 0.047 |
Trait | Dataset | p-Value | Direction of Effect | Odds Ratio | MA Frequency | Effect | Samples | References |
---|---|---|---|---|---|---|---|---|
BMI | BioBank Japan GWAS, males | 0.00663 | ↓ | −0.0132 | 85894 | [17] | ||
Creatinine | GoDartsAffymetrix GWAS | 0.044 | ↓ | 0.379 | −0.0546 | 2917 | [18] | |
Diastolic blood pressure | 13K exome sequence analysis | 0.0186 | ↓ | −0.0326 | 12954 | [19] | ||
eGFR-creat (serum creatinine) | Hoorn DCS 2018 | 0.029 | ↓ | 0.37 | −0.0551 | 3414 | [20] | |
eGFR-creat (serum creatinine) | SUMMIT Diabetic Kidney Disease GWAS | 0.041 | ↓ | −0.82 | 40340 | [21] | ||
HbA1c | MAGIC HbA1c GWAS: Europeans | 0.0425 | 123665 | [22] | ||||
Height | GIANT UK Biobank GWAS | 0.0015 | ← | 0.0047 | 79564 | [23] | ||
LDL cholesterol | BioBank Japan GWAS | 0.0455 | ← | 0.0105 | 191764 | [17] | ||
Pericardial adipose tissue volume | VATGen GWAS | 0.012 | ← | 18332 | [22] | |||
Triglycerides | BioBank Japan GWAS | 0.0485 | ← | 0.0085 | 191764 | [17] | ||
Type 2 diabetes | AMP T2D-GENES T2D exome sequence analysis | 0.00642 | ↓ | 0.954 | 49147 | [19] |
Trait | Dataset | p-Value | Direction of Effect | Odds Ratio | MA Frequency | Effect | Samples | References |
---|---|---|---|---|---|---|---|---|
Adiponectin | ADIPOGen GWAS | 0.0425 | ← | 0.0333 | 0.00976 | 45891 | [15] | |
BMI | BioBankJapan GWAS, males | 0.00898 | ↓ | 0.433 | −0.0131 | 85894 | [17] | |
eGFR-creat (serum creatinine) | Hoorn DCS 2018 | 0.028 | ↓ | 0.361 | −0.0573 | 3414 | [20] | |
eGFR-creat (serum creatinine) | SUMMIT Diabetic Kidney Disease GWAS | 0.035 | ↓ | 0.38 | −0.86 | 4034 | [21] | |
Height | GIANT UK Biobank GWAS | 0.0062 | ← | 0.0041 | 795640 | [23] | ||
Pericardial adipose tissue volume | VATGen GWAS | 0.016 | ← | 18332 | [22] | |||
Triglycerides | BioBank Japan GWAS | 0.0369 | ← | 0.43 | 0.00962 | 191764 | [17] | |
Type 2 diabetes | UK Biobank T2D GWAS (DIAMANTE-Europeans 2018) | 0.032 | ↓ | 0.977 | 0.4 | 442817 | [24] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljaibeji, H.; Mohammed, A.K.; Alkayyali, S.; Hachim, M.Y.; Hasswan, H.; El-Huneidi, W.; Taneera, J.; Sulaiman, N. Genetic Variants of the PLCXD3 Gene Are Associated with Risk of Metabolic Syndrome in the Emirati Population. Genes 2020, 11, 665. https://doi.org/10.3390/genes11060665
Aljaibeji H, Mohammed AK, Alkayyali S, Hachim MY, Hasswan H, El-Huneidi W, Taneera J, Sulaiman N. Genetic Variants of the PLCXD3 Gene Are Associated with Risk of Metabolic Syndrome in the Emirati Population. Genes. 2020; 11(6):665. https://doi.org/10.3390/genes11060665
Chicago/Turabian StyleAljaibeji, Hayat, Abdul Khader Mohammed, Sami Alkayyali, Mahmood Yaseen Hachim, Hind Hasswan, Waseem El-Huneidi, Jalal Taneera, and Nabil Sulaiman. 2020. "Genetic Variants of the PLCXD3 Gene Are Associated with Risk of Metabolic Syndrome in the Emirati Population" Genes 11, no. 6: 665. https://doi.org/10.3390/genes11060665
APA StyleAljaibeji, H., Mohammed, A. K., Alkayyali, S., Hachim, M. Y., Hasswan, H., El-Huneidi, W., Taneera, J., & Sulaiman, N. (2020). Genetic Variants of the PLCXD3 Gene Are Associated with Risk of Metabolic Syndrome in the Emirati Population. Genes, 11(6), 665. https://doi.org/10.3390/genes11060665