Single-Step Genomic Evaluations from Theory to Practice: Using SNP Chips and Sequence Data in BLUPF90
Abstract
:1. Introduction
2. Software, Methods, and Algorithms
2.1. BLUPF90 Software Suite
2.2. Genomic Relationship-Based Methods
2.3. From GBLUP to ssGBLUP
2.4. Applying ssGBLUP to a Simulated Data Using blupf90
2.5. Compatibility between Pedigree and Genomic Relationships
- INBREEDING
- pedigree
- RANDOM_TYPE
- add_an_upginb
2.6. Changing Blending, Tuning, and Scaling Parameters in blupf90
- OPTION AlphaBeta 0.90 0.10
- OPTION tunedG 4
- OPTION TauOmega 1.0 0.95
2.7. Estimating SNP Effects in ssGBLUP
- Set the diagonal matrix of SNP variance or weight as an identity, D = I
- Compute the genomic relationships: , where
- Run ssGBLUP to obtain
- Convert into SNP effects:
- Estimate SNP variance for SNP i e.g., as (i.e., quadratic weight)
- Normalize
- Iterate from 2 until changes in SNP variance are small across iterations
2.8. Using postGSf90 to Compute SNP Effects, SNP Variances, and p-Values
- OPTION saveGInverse
- OPTION saveA22Inverse
- OPTION snp_p_value
- OPTION readGInverse
- OPTION saveA22Inverse
- OPTION snp_p_value
- OPTION which_weight nonlinearA
- OPTION which_weight nonlinearA 1.05
- OPTION SNP_variance_limit 1.4775
2.9. Accounting for Sequence Variants in ssGBLUP
- OPTION maxsnp x
- OPTION saveHinv
2.10. Large-Scale Genomic Evaluations with ssGBLUP
2.11. Unknown Parent Groups (UPG) and Metafounders in ssGBLUP
- OPTION exact_upg
- OPTION TauOmegaQ2 0.0 1.0
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Downloading and Executing Programs from the BLUPF90 Software Suite
- (a)
- Follow the link to the official web site of the Animal Breeding and Genetics Group at the University of Georgia to access the binaries: http://nce.ads.uga.edu/html/projects/programs/;
- (b)
- Select the desired operation system (Linux, OSX Mac, or Windows);
- (c)
- Download the desired program and store it in folder. Add this folder to a PATH or copy the programs to the same folder where the data files for analysis are stored;
- (d)
- Open a Terminal or Command Prompt window;
- (e)
- Type the name of the program to run it (i.e., blupf90 for Linux and Mac or blupf90.exe for Windows);
- (f)
- The program will ask for the name of the parameter file. Type the name of the parameter file and hit the ENTER key;
- (g)
- Wait for the program to finish and check the output in the screen.
- blupf90 parameter_file.par|tee out.log
Appendix A.2. Downloading a Toy Dataset
Appendix B
Renumbering the Data with renumf90:
Keyword | Possible Value | Description |
---|---|---|
DATAFILE | characters | Name of the data file to be used (should be space-delimited file) |
TRAITS | integer | Position of traits in the data file |
FIELDS_PASSED TO OUTPUT | integer | Columns to pass to the new data file without renumbering |
WEIGHT(S) | integer | Position of weight column in the data file. Weights for the residual variance |
RESIDUAL_VARIANCE | real | Residual (co)variances in matrix form |
EFFECT | integer | Description of the effects in the model. Each effect should be described with a keyword: EFFECT |
Keyword | Position | Type | Data Type |
---|---|---|---|
EFFECT | integer | cross | alpha or numer |
cov |
Keyword | Description/Possible Values |
---|---|
NESTED | Covariables can be nested in cross-classified effects |
RANDOM | Declaration of random effects; can be diagonal (non-correlated) or animal (correlated) |
OPTIONAL | Used to create permanent environmental (PE), maternal (MAT), and maternal permanent environmental (MPE) |
FILE | Name of the raw pedigree file (for RANDOM animal) |
FILE_POS | Positions of animal, sire, dam, surrogate dam, year of birth in the pedigree file |
SNP_FILE | Name of SNP marker file (if genomic information is available) |
PED_DEPTH | Number of generations to trace the pedigree back for animals with phenotypes and/or genotypes. If 0, all animals in the pedigree file are passed to the new pedigree file. If no input, the default value is 3 |
UPG_TYPE | ‘yob’ = based on year of birth ‘in_pedigrees’ = the value of a missing parent should be −x, where x is UPG number that this missing parent should be allocated to |
INBREEDING | To consider inbreeding for ‘pedigree’ = calculated from pedigree ‘file_with_inb.txt’ to provide a file with two columns: animal ID and inbreeding coefficient |
(CO)VARIANCES | (Co)variance components for general random effects in matrix form |
(CO)VARIANCES_PE | (Co)variance components for permanent environmental effect in matrix form |
(CO)VARIANCES_MPE | (Co)variance components for maternal permanent environmental effect in matrix form |
OPTION | Any extra option that the BLUPF90 family of programs can take. To see other options, check the online manual |
- renumf90 parameter1.par | tee out.log
- (1)
- renf90.dat—is the renumbered phenotype file and contains three columns: phenotype, renumbered sex code, and renumbered animal ID;
- (2)
- renadd02.ped—is the renumbered pedigree file and contains 10 columns:
- (i)
- renumbered animal ID (from 1);
- (ii)
- renumbered sire ID (of parent 1 ID);
- (iii)
- renumbered dam ID (or parent 2 ID);
- (iv)
- Three minus number of known parents (or inbreeding code if keyword INBREEDING is used);
- (v)
- known or estimated year of birth (0 if not provided);
- (vi)
- number of known parents (if animal has genotype, it is 10 + number of know parents);
- (vii)
- number of records;
- (viii)
- number of progeny as parent 1;
- (ix)
- number of progeny as parent 2;
- (x)
- original animal id.
- (3)
- renf90.tables—is a file with correspondence table between the original code for fixed effects and the renumbered value. It is organized into three columns: code, number of observations, and renumbered value.
- (4)
- renf90.inb—contains the animal original ID and the inbreeding coefficient.
- (5)
- genotypes.txt_XrefID—is a cross-reference file with renumbered ID and original ID. This file is created to avoid editing the SNP file, which is usually big and requires a lot of memory. By default, the name of this file is a concatenation of the name of SNP file and the suffix “XrefID”, which means cross-reference ID.
- (6)
- renf90.par—is the new parameter file that can be used for all other programs from the BLUPF90 family. This is how renf90.par looks like for the simulated data:
Keyword | Description/possible values |
---|---|
DATAFILE | Name of the file with phenotypes (space-delimited file) |
NUMBER_OF_TRAITS | Number of traits to be analyzed |
NUMBER_OF_EFFECTS | Number of effects in the model (does not account for the residual effect) |
OBSERVATION(S) | Column number for the phenotype(s) in the data file |
WEIGHT(S) | Column number for weights in the data file (leave a blank space if no weight) |
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED] | Description of each effect in the model. Includes: column number for the effect in the data file, number of levels for the effect, and type of effect (cross or cov). If a covariable effect is nested, the column number of the effect in which the covariable is nested will be displayed |
RANDOM_RESIDUAL_VALUE | Residual variance (or covariance if two or more traits) |
RANDOM_GROUP | Sequential effect number for a random effect (the order that the effect is shown in the EFFECTS section) |
RANDOM_TYPE | Type of random effect: diagonal, add_sire, add_an_upg, add_an_upginb, par_domin, or user_file. If inbreeding is used, RANDOM_TYPE is add_an_upginb. |
FILE | Pedigree file or other file associated with the random effect; blank if no file or if RANDOM_TYPE is diagonal |
(CO)VARIANCES | Variance for the random effect (or covariance if twos or more traits; a covariance matrix is also required when additive genetic direct and maternal are used) |
OPTION SNP_file | Need to be followed by the name of the SNP marker file. This option is used to run ssGBLUP. Without it, genomic information is not used |
OPTION map_file | Need to be followed by the name of the SNP map file when available |
OPTION | Any extra option that the BLUPF90 family of programs can take. To see other options, check the online manual |
Appendix C
Quality Control of Genomic Data with preGSf90:
- preGSf90 renf90.par | tee preGSout.log
- OPTION SNP_file genotypes.txt_clean
- OPTION map_file gen_map.txt_clean
- OPTION no_quality_control
Appendix D
Iterative Weighted ssGBLUP with blupf90 and postGSf90:
References
- Soller, M.; Beckmann, J.S. Genetic polymorphism in varietal identification and genetic improvement. Theor. Appl. Genet. 1983, 67, 25–33. [Google Scholar] [CrossRef] [PubMed]
- The International SNP Map Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001, 409, 928–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stonecking, M. From the evolutionary past. Nature 2001, 409, 821–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schork, N.J.; Fallin, D.; Lanchbury, S. Single nucleotide polymorphisms and the future of genetic epidemiology. Clin. Genet. 2000, 58, 250–264. [Google Scholar] [CrossRef] [Green Version]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar]
- Fernando, R.L.; Grossman, M. Marker-assisted selection using best linear unbiased prediction. Genet. Sel. Evol. 1989, 21, 467–477. [Google Scholar] [CrossRef]
- Lande, R.; Thompson, R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 1990, 124, 743–756. [Google Scholar]
- Haley, C.S.; Vischer, P.M. Strategies to utilize marker-quantitative trait loci associations. J. Dairy Sci. 1998, 81, 85–97. [Google Scholar] [CrossRef] [Green Version]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [Green Version]
- Legarra, A.; Chistensen, O.F.; Aguilar, I.; Misztal, I. Single step, a general approach for genomic selection. Livest. Prod. Sci. 2014, 166, 54–65. [Google Scholar] [CrossRef]
- Wiggans, G.R.; Cooper, T.A.; VanRaden, P.M.; Cole, J.B. Technical note: Adjustment of traditional cow evaluations to improve accuracy of genomic predictions. J. Dairy Sci. 2011, 94, 6188–6193. [Google Scholar] [CrossRef] [PubMed]
- Wiggans, G.R.; VanRaden, P.M.; Cooper, T.A. Technical note: Adjustment of all cow evaluations for yield traits to be comparable with bull evaluations. J. Dairy Sci. 2012, 95, 3444–3447. [Google Scholar] [CrossRef]
- Patry, C.; Ducrocq, V. Evidence of biases in genetic evaluations due to genomic preselection in dairy cattle. J. Dairy Sci. 2011, 94, 1011–1020. [Google Scholar] [CrossRef]
- Misztal, I.; Legarra, A.; Aguilar, I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 2009, 92, 4648–4655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legarra, A.; Aguilar, I.; Misztal, I. A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 2009, 92, 4656–4663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, I.; Misztal, I.; Johnson, D.L.; Legarra, A.; Tsuruta, S.; Lawlor, T.J. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 2010, 93, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Christensen, O.F.; Lund, M.S. Genomic prediction when some animals are not genotyped. Genet. Sel. Evol. 2010, 42, 2. [Google Scholar] [CrossRef] [Green Version]
- Lourenco, D.A.L.; Tsuruta, S.; Fragomeni, B.O.; Masuda, Y.; Aguilar, I.; Legarra, A. Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus. J. Anim. Sci. 2015, 93, 2653–2662. [Google Scholar] [CrossRef] [Green Version]
- Forni, S.; Aguilar, I.; Misztal, I. Different genomic relationship matrices for single-step analysis using phenotypic, pedigree, and genomic information. Genet. Sel. Evol. 2011, 43, 1. [Google Scholar] [CrossRef] [Green Version]
- Lourenco, D.A.L.; Tsuruta, S.; Fragomeni, B.O.; Chen, C.Y.; Herring, W.O.; Misztal, I. Crossbreed evaluations in single-step genomic best linear unbiased predictor using adjusted realized relationship matrices. J. Anim. Sci. 2016, 94, 909–919. [Google Scholar] [CrossRef]
- Chen, C.Y.; Misztal, I.; Aguilar, I.; Tsuruta, S.; Meuwissen, T.H.E.; Aggrey, S.E. Genome-wide marker-assisted selection combining all pedigree phenotypic information with genotypic data in one step: An example using broiler chickens. J. Anim. Sci. 2011, 89, 23–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lourenco, D.A.L.; Fragomeni, B.O.; Tsuruta, S.; Aguilar, I.; Zumbach, B.; Hawken, R.J. Accuracy of estimated breeding values with genomic information on males, females, or both: An example in broiler chicken. Genet. Sel. Evol. 2015, 47, 56. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Wu, G.; Liu, A.; Sun, C.; Han, W.; Li, G. Genomic prediction in a nuclear population of layers using single-step models. Poult. Sci. 2018, 97, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Rupp, R.; Mucha, S.; Larroque, H.; McEwan, J.; Conington, J. Genomic application in sheep and goat breeding. Anim. Front. 2016, 6, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.J.; Swan, A.A.; Boerner, V.; Li, L.; Gurman, P.M.; McMillan, A.J. Single-Step Genetic Evaluations in the Australian Sheep Industry. In Proceedings of the 11th World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 11–16 February 2018. [Google Scholar]
- Garcia, A.L.S.; Bosworth, B.; Waldbieser, G.; Misztal, I.; Tsuruta, S.; Lourenco, D.A.L. Development of genomic predictions for harvest weight and carcass weight in channel catfish. Genet. Sel. Evol. 2018, 50, 66. [Google Scholar] [CrossRef] [Green Version]
- Gilmour, A.R.; Gorgel, B.J.; Cullis, B.R.; Thompson, R. ASReml User Guide Release 2.0; VSN International: Hemel Hempstead, UK, 2006. [Google Scholar]
- Meyer, K. WOMBAT—A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). J. Zhejiang Univ. Sci. B 2007, 8, 815–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lidauer, M.; Matilainen, K.; Mantysaari, E.; Pitkanen, T.; Taskinen, M.; Stranden, I. Technical Reference Guide for MiX99 Solver; Natural Resources Institute Finland: Jokioinen, Finland, 2015. [Google Scholar]
- Madsen, P.; Jensen, J.; Labouriau, R.; Christensen, O.F.; Sahana, G. DMU—A Package for Analyzing Multivariate Mixed Models in quantitative Genetics and Genomics. In Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014. [Google Scholar]
- Lee, S.H.; Van der Werf, J.H. MTG2: An efficient algorithm for multivariate linear mixed model analysis based on genomic information. Bioinformatics 2016, 32, 1420–1422. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, I.; Tsuruta, S.; Masuda, Y.; Lourenco, D.A.L.; Legarra, A.; Misztal, I. BLUPF90 suite of programs for animal breeding with focus on genomics. In Proceedings of the 11th World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 11–16 February 2018. [Google Scholar]
- Legarra, A.; Lourenco, D.A.L.; Vitezica, Z. Bases for Genomic Predictions. 2018. Available online: http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=gsip.pdf (accessed on 30 March 2020).
- Leutenegger, A.-L.; Prum, B.; Génin, E.; Verny, C.; Lemainque, A.; Clerget-Darpoux, F. Estimation of the inbreeding coefficient through use of genomic data. Am. J. Hum. Genet. 2003, 73, 516–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, N.; van Duijn, C.M.; Aulchenko, Y.S. A genomic background based method for association analysis in related individuals. PLoS ONE 2007, 2, e1274. [Google Scholar] [CrossRef] [Green Version]
- Guarini, A.R.; Lourenco, D.A.L.; Brito, L.F.; Sargolzaei, M.; Baes, C.F.; Miglior, F. Comparison of genomic predictions for lowly heritable traits using multi-step and single-step genomic best linear unbiased predictor in Holstein cattle. J. Dairy Sci. 2019, 101, 8076–8086. [Google Scholar] [CrossRef]
- Meyer, K.; Tier, B.; Swan, A. Estimates of genetic trend for single-step genomic evaluations. Genet. Sel. Evol. 2018, 50, 39. [Google Scholar] [CrossRef] [Green Version]
- Gengler, N.; Mayeres, P.; Szydlowski, M. A simple method to approximate gene content in large pedigree populations: Application to the myostatin gene in dual-purpose Belgian Blue cattle. Animal 2007, 1, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, H.D.; Thompson, R. Recovery of inter-block information when block sizes are unequal. Biometrika 1971, 58, 545–554. [Google Scholar] [CrossRef]
- Baloche, G.; Legarra, A.; Salle, G.; Larroque, H.; Astruc, J.M.; Robert-Granie, C. Assessment of accuracy of genomic prediction for French Lacaune dairy sheep. J. Dairy Sci. 2014, 97, 1107–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, O.F.; Madsen, P.; Nielsen, B.; Ostersen, T.; Su, G. Single-step methods for genomic evaluation in pigs. Animal 2012, 6, 1565–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, K.A.; Cassady, J.P.; Huang, Y.; Maltecca, C. Effectiveness of genomic prediction on milk flow traits in dairy cattle. Genet. Sel. Evol. 2012, 44, 24. [Google Scholar] [CrossRef] [Green Version]
- Lourenco, D.A.L.; Misztal, I.; Tsuruta, S.; Aguilar, I.; Ezra, E.; Ron, M. Methods for genomic evaluation of a relatively small genotyped dairy population and effect of genotyped cow information in multiparity analyses. J. Dairy Sci. 2014, 97, 1742–1752. [Google Scholar] [CrossRef] [Green Version]
- Tsuruta, S.; Misztal, I.; Lawlor, T.J. Short communication: Genomic evaluations of final score for US Holsteins benefit from the inclusion of genotypes on cows. J. Dairy Sci. 2013, 96, 3332–3335. [Google Scholar] [CrossRef] [Green Version]
- Sargolzaei, M.; Schenkel, F.S. QMSim: A large-scale genome simulator for livestock. Bioinformatics 2009, 25, 680–681. [Google Scholar] [CrossRef] [Green Version]
- Tsuruta, S.; Misztal, I.; Stranden, I. Use of the preconditioned conjugate gradient algorithm as a generic solver for mixed-model equations in animal breeding applications. J. Anim. Sci. 2001, 79, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Vitezica, Z.G.; Aguilar, I.; Misztal, I.; Legarra, A. Bias in genomic predictions for populations under selection. Genet. Res. (Camb.) 2011, 93, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.L.; Garrick, D.J.; Fernando, R.L. The Accuracy and Bias of Single-Step Genomic Prediction for Populations Under Selection. G3 2017, 7, 2685–2694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, C.R. A simple method for computing the inverse of a relationship matrix used in prediction of breeding values. Biometrics 1976, 32, 69–83. [Google Scholar] [CrossRef]
- Quaas, R.L. Additive genetic model with groups and relationships. J. Dairy Sci. 1988, 71, 1338–1345. [Google Scholar] [CrossRef]
- Golden, B.L.; Brinks, J.S.; Bourdon, R.M. A performance programmed method for computing inbreeding coefficients from large data sets for use in mixed-model analyses. J. Anim. Sci. 1991, 69, 3564–3573. [Google Scholar] [CrossRef] [PubMed]
- Mehrabani-Yeganeh, H.; Gibson, J.P.; Schaeffer, L.R. Including coefficients of inbreeding in BLUP evaluation and its effect on response to selection. J. Anim. Breed. Genet. 2000, 117, 145–151. [Google Scholar] [CrossRef]
- Colleau, J.J. An indirect approach to the extensive calculation of relationship coefcients. Genet. Sel. Evol. 2002, 34, 409–421. [Google Scholar] [CrossRef] [Green Version]
- Tsuruta, S.; Misztal, I.; Aguilar, I.; Lawlor, T.J. Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins. J. Dairy Sci. 2011, 94, 4198–4204. [Google Scholar] [CrossRef] [Green Version]
- Misztal, I.; Bradford, H.L.; Lourenco, D.A.L.; Tsuruta, S.; Masuda, Y.; Legarra, A. Studies on Inflation of GEBV in Single-Step GBLUP for Type. Interbull Bull. 2017, 51, 38–42. [Google Scholar]
- Chen, C.Y.; Misztal, I.; Aguilar, I.; Legarra, A.; Muir, W.M. Effect of different genomic relationship matrices on accuracy and scale. J. Anim. Sci. 2011, 89, 2673–2679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Misztal, I.; Aguilar, I.; Legarra, A.; Muir, W.M. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet. Res. 2012, 94, 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Cheng, H.; Garrick, D.; Golden, B.; Dekkers, J.; Park, K. Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle. Genet. Sel. Evol. 2017, 49, 2. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, D.A.L.; Fragomeni, B.O.; Bradford, H.L.; Menezes, I.R.; Ferraz, J.B.S.; Tsuruta, S. Implications of SNP weighting on single-step genomic predictions for different reference population sizes. J. Anim. Breed. Genet. 2017, 134, 463–471. [Google Scholar] [CrossRef]
- Fragomeni, B.O.; Lourenco, D.A.L.; Legarra, A.; VanRaden, P.M.; Misztal, I. Alternative SNP weighting for single-step genomic best linear unbiased predictor evaluation of stature in US Holsteins in the presence of selected sequence variants. J. Dairy Sci. 2019, 102, 10012–10019. [Google Scholar] [CrossRef]
- Tiezzi, F.; Maltecca, C. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix. Genet. Sel. Evol. 2015, 47, 24. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, I.; Legarra, A.; Cardoso, F.; Masuda, Y.; Lourenco, D.; Misztal, I. Frequentist p-values for large-scale single step genome-wide association, with an application to birth weight in American Angus. Genet. Sel. Evol. 2019, 51, 28. [Google Scholar] [CrossRef] [Green Version]
- Bernal-Rubio, Y.L.; Gualdron-Duarte, J.L.; Bates, R.O.; Ernst, C.W.; Nonneman, D.; Rohrer, G.A. Meta-analysis of genome-wide association from genomic prediction models. Anim. Genet. 2015, 47, 36–48. [Google Scholar] [CrossRef]
- Gualdron-Duarte, J.L.; Cantet, R.J.C.; Bates, R.O.; Ernest, C.W.; Raney, N.E.; Steibel, J.P. Rapid screening for phenotype-genotype associations by linear transformations of genomic evaluations. BMC Bioinform. 2014, 15, 246. [Google Scholar] [CrossRef] [Green Version]
- VanRaden, P.M.; O’Connell, J.R.; Wiggans, G.R.; Weigel, K.A. Genomic evaluations with many more genotypes. Genet. Sel. Evol. 2011, 43, 10. [Google Scholar] [CrossRef] [Green Version]
- Meuwissen, T.H.E.; Hayes, B.; Goddard, M. Genomic selection: A paradigm shift in animal breeding. Anim. Front. 2016, 6, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Fragomeni, B.O.; Lourenco, D.A.L.; Masuda, Y.; Misztal, I. Incorporation of Causative Quantitative Trait Nucleotides in Single-step GBLUP. Genet. Sel. Evol. 2017, 49, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VanRaden, P.M.; Tooker, M.E.; O’Connell, J.R.; Cole, J.B.; Bickhart, D.M. Selecting sequence variants to improve genomic predictions for dairy cattle. Genet. Sel. Evol. 2017, 49, 32. [Google Scholar] [CrossRef] [Green Version]
- Daetwyler, H.D.; Pong-wong, R.; Villanueva, B.; Woolliams, J.A. The impact of genetic architecture on genome-wide evaluation methods. Genetics 2010, 185, 1021–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaman, E.; Cheng, H.; Firat, M.Z.; Garrick, D.J.; Fernando, R.L. Un upper bound for accuracy of prediction using GBLUP. PLoS ONE 2016, 11, e0161054. [Google Scholar] [CrossRef]
- Pocrnic, I.; Lourenco, D.; Masuda, Y.; Misztal, I. Accuracy of genomic BLUP when considering a genomic relationship matrix based on number of largest eigenvalues—A simulation study. Genet. Sel. Evol. 2019, 51, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gualdron-Duarte, J.L.; Gori, A.S.; Hubin, X.; Lourenco, D.; Charlier, C.; Misztal, I. Application of the Adaptive MultiBLUP strategy for genomic predictions in Belgian Blue Beef cattle. BMC Genom. 2020. under review. [Google Scholar]
- Brondum, R.F.; Su, G.; Janss, L.; Sahana, G.; Guldbrandtsen, B.; Boichard, D. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction. J. Dairy Sci. 2015, 98, 4107–4116. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Lund, M.S.; Boichard, D.; Karaman, E.; Fritz, S.; Aamand, G.P. Improvement of genomic prediction by integrating additional single nucleotide polymorphisms selected from imputed whole genome sequencing data. Heredity 2020, 124, 37–49. [Google Scholar] [CrossRef]
- Aguilar, I.; Legarra, A.; Tsuruta, S.; Misztal, I. Genetic evaluation using unsymmetric single step genomic methodology with large number of genotypes. Interbull Bull. 2013, 47, 222–225. [Google Scholar]
- Aguilar, I.; Misztal, I.; Legarra, A.; Tsuruta, S. Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation. J. Anim. Breed. Genet. 2011, 128, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Wiggans, G.R. Current status of genomic evaluation for U.S. dairy cattle. In Proceedings of the China Emerging Markets Program Seminar, Holstein, Austrilia, 11–12 March 2013. [Google Scholar]
- Misztal, I.; Legarra, A.; Aguilar, I. Using recursion to compute the inverse of the genomic relationship matrix. J. Dairy Sci. 2014, 97, 3943–3952. [Google Scholar] [CrossRef]
- Misztal, I. Inexpensive computation of the inverse of the genomic relationship matrix in populations with small effective population size. Genetics 2016, 202, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Fragomeni, B.O.; Lourenco, D.A.L.; Tsuruta, S.; Masuda, Y.; Aguilar, I.; Legarra, A. Hot topic: Use of genomic recursions in single-step genomic best linear unbiased predictor (BLUP) with a large number of genotypes. J. Dairy Sci. 2015, 98, 4090–4094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, Y.; Misztal, I.; Tsuruta, S.; Legarra, A.; Aguilar, I.; Lourenco, D.A.L. Implementation of genomic recursions in single-step genomic best linear unbiased predictor for US Holsteins with a large number of genotyped animals. J. Dairy Sci. 2016, 99, 1968–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostersen, T.; Christensen, O.F.; Madsen, P.; Henryon, M. Sparse single-step method for genomic evaluation in pigs. Genet. Sel. Evol. 2016, 48, 48. [Google Scholar] [CrossRef] [Green Version]
- Pocrnic, I.; Lourenco, D.A.L.; Chen, C.Y.; Herring, W.O.; Misztal, I. Crossbred evaluations using single-step genomic BLUP and algorithm for proven and young with different sources of data. J. Anim. sci. 2019, 97, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Pocrnic, I.; Lourenco, D.A.L.; Masuda, Y.; Legarra, A.; Misztal, I. The dimensionality of genomic information and its effect on genomic prediction. Genetics 2016, 203, 573–581. [Google Scholar] [CrossRef]
- Pocrnic, I.; Lourenco, D.A.L.; Masuda, Y.; Misztal, I. Dimensionality of genomic information and performance of the Algorithm for Proven and Young for different livestock species. Genet. Sel. Evol. 2016, 48, 82. [Google Scholar] [CrossRef] [Green Version]
- Stranden, I.; Mantysaari, E.A. Comparison of some equivalent equations to solve single-step GBLUP. In Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014. [Google Scholar]
- Masuda, Y.; Misztal, I.; Legarra, A.; Tsuruta, S.; Lourenco, D.A.L.; Fragomeni, B.O. Technical note: Avoiding the direct inversion of the numerator relationship matrix for genotyped animals in single-step genomic BLUP solved with preconditioned conjugate gradient. J. Anim. Sci. 2017, 95, 49–52. [Google Scholar]
- Tsuruta, S.; Lawlor, T.J.; Lourenco, D.A.L.; Misztal, I. Bias in genomic predictions by mating practices for linear type traits in a large-scale genomic evaluation. J. Dairy Sci 2020. under review. [Google Scholar]
- Quaas, R.L.; Pollak, E.J. Modified equations for sire models with groups. J. Dairy Sci. 1981, 64, 1868–1872. [Google Scholar] [CrossRef]
- Westell, R.A.; Quaas, R.L.; Vleck, L.D.V. Genetic Groups in an Animal Model. J. Dairy Sci. 1988, 71, 1310–1318. [Google Scholar] [CrossRef]
- Tsuruta, S.; Misztal, I.; Lourenco, D.A.L.; Lawlor, T.J. Assigning unknown parent groups to reduce bias in genomic evaluations of final score in US Holsteins. J. Dairy Sci. 2014, 97, 5814–5821. [Google Scholar] [CrossRef] [PubMed]
- Misztal, I.; Vitezica, Z.G.; Legarra, A.; Aguilar, I.; Swan, A.A. Unknown-parent groups in single-step genomic evaluation. J. Anim. Breed. Genet. 2013, 130, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Matilainen, K.; Koivula, M.; Strandeen, I.; Aamand, G.P.; Mantysaari, E.A. Managing genetic groups in single-step genomic evaluations applied on female fertility traits in Nordic Red dairy cattle. Interbull Bull. 2016, 50, 71–75. [Google Scholar]
- Masuda, Y.; Misztal, I.; VanRaden, P.M.; Lawlor, T.J. Differing genetic trend estimates from traditional and genomic evaluations of genotyped animals as evidence of preselection bias in US Holsteins. J. Dairy Sci. 2018, 101, 5194–5206. [Google Scholar] [CrossRef] [Green Version]
- Tsuruta, S.; Lourenco, D.A.L.; Masuda, Y.; Misztal, I.; Lawlor, T.J. Controlling bias in genomic breeding values for young genotyped bulls. J. Dairy Sci. 2019, 102, 9956–9970. [Google Scholar] [CrossRef]
- Kennedy, B.W. CR Henderson: The unfinished legacy. J. Dairy Sci. 1991, 74, 4067–4081. [Google Scholar] [CrossRef]
- VanRaden, P.M. Accounting for inbreeding and crossbreeding in genetic evaluation of large populations. J. Dairy Sci. 1992, 75, 3136–3144. [Google Scholar] [CrossRef]
- Legarra, A.; Christensen, O.F.; Vitezica, Z.G.; Aguilar, I.; Misztal, I. Ancestral relationships using metafounders: Finite ancestral populations and across population relationships. Genetics 2015, 200, 455–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, O.F. Compatibility of pedigree-based and marker-based relationship matrices for single-step genetic evaluation. Genet. Sel. Evol. 2012, 44, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Baccino, C.A.A.L.; Christensen, O.F.; Misztal, I.; Pocrnic, I.; Vitezica, Z.G. Metafounders are related to Fst fixation indices and reduce bias in single-step genomic evaluations. Genet. Sel. Evol. 2017, 49, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lourenco, D.; Legarra, A.; Tsuruta, S.; Masuda, Y.; Aguilar, I.; Misztal, I. Single-Step Genomic Evaluations from Theory to Practice: Using SNP Chips and Sequence Data in BLUPF90. Genes 2020, 11, 790. https://doi.org/10.3390/genes11070790
Lourenco D, Legarra A, Tsuruta S, Masuda Y, Aguilar I, Misztal I. Single-Step Genomic Evaluations from Theory to Practice: Using SNP Chips and Sequence Data in BLUPF90. Genes. 2020; 11(7):790. https://doi.org/10.3390/genes11070790
Chicago/Turabian StyleLourenco, Daniela, Andres Legarra, Shogo Tsuruta, Yutaka Masuda, Ignacio Aguilar, and Ignacy Misztal. 2020. "Single-Step Genomic Evaluations from Theory to Practice: Using SNP Chips and Sequence Data in BLUPF90" Genes 11, no. 7: 790. https://doi.org/10.3390/genes11070790
APA StyleLourenco, D., Legarra, A., Tsuruta, S., Masuda, Y., Aguilar, I., & Misztal, I. (2020). Single-Step Genomic Evaluations from Theory to Practice: Using SNP Chips and Sequence Data in BLUPF90. Genes, 11(7), 790. https://doi.org/10.3390/genes11070790