Transcriptional Profiling of Normal, Stenotic, and Regurgitant Human Aortic Valves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Normal Control and Diseased Valves
2.2. RNA Extraction and Sequencing
2.3. RNA Sequencing Analysis
2.4. Quantitative Polymerase Chain Reaction
2.5. Computational Modeling
2.6. Statistical Analysis
3. Results
3.1. Baseline Patient Characteristics
3.2. Results of RNA Sequencing and Quantitative Polymerase Chain Reaction
3.3. Gene Ontology and KEGG Analysis
3.4. Protein-Protein Interaction Network Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; das Sandeep, R.; et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e526–e528. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.; Falk, V.; Bax, J.J.; de Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Muñoz, D.R.; et al. ESC Scientific Document Group 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef]
- Yadgir, S.; Johnson, C.O.; Aboyans, V.; Adebayo, O.M.; Adedoyin, R.A.; Afarideh, M.; Alahdab, F.; Alashi, A.; Alipour, V.; Arabloo, J.; et al. Global Burden of Disease Study 2017 Nonrheumatic Valve Disease Collaborators Global, Regional, and National Burden of Calcific Aortic Valve and Degenerative Mitral Valve Diseases, 1990–2017. Circulation 2020, 141, 1670–1680. [Google Scholar] [CrossRef] [PubMed]
- Nkomo, V.T.; Gardin, J.M.; Skelton, T.N.; Gottdiener, J.S.; Scott, C.G.; Enriquez-Sarano, M. Burden of valvular heart diseases: A population-based study. Lancet 2006, 368, 1005–1011. [Google Scholar] [CrossRef]
- Carabello, B.A. Introduction to aortic stenosis. Circ. Res. 2013, 113, 179–185. [Google Scholar] [CrossRef]
- Gould, S.T.; Srigunapalan, S.; Simmons, C.A.; Anseth, K.S. Hemodynamic and cellular response feedback in calcific aortic valve disease. Circ. Res. 2013, 113, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Towler, D.A. Molecular and cellular aspects of calcific aortic valve disease. Circ. Res. 2013, 113, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.; Braunwald, E. Aortic Stenosis. Circulation 1968, 38, V61–V67. [Google Scholar] [CrossRef]
- Goldstone, A.B.; Chiu, P.; Baiocchi, M.; Lingala, B.; Patrick, W.L.; Fischbein, M.P.; Woo, Y.J. Mechanical or Biologic Prostheses for Aortic-Valve and Mitral-Valve Replacement. N. Engl. J. Med. 2017, 377, 1847–1857. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. PARTNER 3 Investigators; the PARTNER 3 Investigators Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Akinseye, O.A.; Pathak, A.; Ibebuogu, U.N. Aortic valve regurgitation: A comprehensive review. Curr. Probl. Cardiol. 2018, 43, 315–334. [Google Scholar] [CrossRef] [PubMed]
- Bekeredjian, R.; Grayburn, P.A. Valvular heart disease: Aortic regurgitation. Circulation 2005, 112, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Guauque-Olarte, S.; Droit, A.; Tremblay-Marchand, J.; Gaudreault, N.; Kalavrouziotis, D.; Dagenais, F.; Seidman, J.G.; Body, S.C.; Pibarot, P.; Mathieu, P.; et al. RNA expression profile of calcified bicuspid, tricuspid, and normal human aortic valves by RNA sequencing. Physiol. Genom. 2016, 48, 749–761. [Google Scholar] [CrossRef] [Green Version]
- Padang, R.; Bagnall, R.D.; Tsoutsman, T.; Bannon, P.G.; Semsarian, C. Comparative transcriptome profiling in human bicuspid aortic valve disease using RNA sequencing. Physiol. Genom. 2015, 47, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, Y.; Gu, W.; Ni, B.; Sun, H.; Yu, T.; Gu, W.; Chen, L.; Shao, Y. Comparative transcriptome analysis reveals substantial tissue specificity in human aortic valve. Evol. Bioinform. 2016, 12, EBO–S37594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossé, Y.; Miqdad, A.; Fournier, D.; Pépin, A.; Pibarot, P.; Mathieu, P. Refining molecular pathways leading to calcific aortic valve stenosis by studying gene expression profile of normal and calcified stenotic human aortic valves. Circ. Cardiovasc. Genet. 2009, 2, 489–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [Green Version]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafari, M.; Ansari-Pour, N. Why, when and how to adjust your P values? Cell J. 2019, 20, 604–607. [Google Scholar] [PubMed]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, W316–W322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS: A J. Integr. Boil. 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef] [Green Version]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Koyasu, S.; Kobayashi, M.; Goto, Y.; Hiraoka, M.; Harada, H. Regulatory mechanisms of hypoxia-inducible factor 1 activity: Two decades of knowledge. Cancer Sci. 2018, 109, 560–571. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.E.; Arany, Z.; Livingston, D.M.; Bunn, H.F. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J. Biol. Chem. 1996, 271, 32253–32259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kallio, P.J.; Pongratz, I.; Gradin, K.; McGuire, J.; Poellinger, L. Activation of hypoxia-inducible factor 1alpha: Posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proc. Natl. Acad. Sci. USA 1997, 94, 5667–5672. [Google Scholar] [CrossRef] [Green Version]
- Kerr, J.M.; Fisher, L.W.; Termine, J.D.; Wang, M.G.; McBride, O.W.; Young, M.F. The human bone sialoprotein gene (IBSP): Genomic localization and characterization. Genomics 1993, 17, 408–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponzetti, M.; Capulli, M.; Angelucci, A.; Ventura, L.; Monache, S.D.; Mercurio, C.; Calgani, A.; Sanità, P.; Teti, A.; Rucci, N. Non-conventional role of haemoglobin beta in breast malignancy. Br. J. Cancer 2017, 117, 994–1006. [Google Scholar] [CrossRef] [Green Version]
- Byron, A.; Humphries, J.D.; Humphries, M.J. Defining the extracellular matrix using proteomics. Int. J. Exp. Pathol. 2013, 94, 75–92. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.M.; Miller, J.D.; Heistad, D.D. Fibrocalcific aortic valve disease: Opportunity to understand disease mechanisms using mouse models. Circ. Res. 2013, 113, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Niu, H.; Kang, X.; Ban, T.; Hong, H.; Ai, J. Long-Term Administration of Neuropeptide Y in the Subcutaneous Infusion Results in Cardiac Dysfunction and Hypertrophy in Rats. Cell Physiol. Biochem. 2015, 37, 94–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, T.; Shibasaki, F. Hypoxia-inducible factor as an angiogenic master switch. Front. Pediatr. 2015, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Homberg, M.; Ramms, L.; Schwarz, N.; Dreissen, G.; Leube, R.E.; Merkel, R.; Hoffmann, B.; Magin, T.M. Distinct impact of two keratin mutations causing epidermolysis bullosa simplex on keratinocyte adhesion and stiffness. J. Investig. Dermatol. 2015, 135, 2437–2445. [Google Scholar] [CrossRef] [Green Version]
- Freeman, R.V.; Otto, C.M. Spectrum of calcific aortic valve disease: Pathogenesis, disease progression, and treatment strategies. Circulation 2005, 111, 3316–3326. [Google Scholar] [CrossRef] [Green Version]
- Çabuk, G.; Guray, U.; Kafes, H.; Guray, Y.; Cabuk, A.K.; Bayir, P.T.; Asarcikli, L.D. Aortic valve sclerosis is associated with lower serum adiponectin levels. J. Cardiovasc. Med. 2015, 16, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Kihara, S.; Arita, Y.; Maeda, K.; Kuriyama, H.; Okamoto, Y.; Hotta, K.; Nishida, M.; Takahashi, M.; Nakamura, T.; et al. Novel modulator for endothelial adhesion molecules: Adipocyte-derived plasma protein adiponectin. Circulation 1999, 100, 2473–2476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, J.; Arora, R. The role of adiponectin in obesity, diabetes, and cardiovascular disease. J. Cardiometabolic Syndr. 2009, 4, 44–49. [Google Scholar] [CrossRef] [PubMed]
Group | Age (Years) | Sex | BMI (kg/m2) | Aortic Valve | Other Medical History | LVEF |
---|---|---|---|---|---|---|
AS-1 | 71 | F | 24.7 | Severe AS | Bicuspid aortic valve, coronary disease, hypertension | 56.0% |
AS-2 | 74 | F | 33.0 | Severe AS | Hypertension | 60.0% |
AS-3 | 79 | M | 29.8 | Severe AS | Coronary disease, diabetes, hypertension, sick sinus syndrome | 59.0% |
AS-4 | 73 | M | 25.7 | Severe AS | Heart failure, moderate mitral valve regurgitation, severe tricuspid valve regurgitation, hypertension, atrial fibrillation | 26.0% |
AS-5 | 72 | F | 33.2 | Severe AS | Prior coronary bypass surgery, diabetes, hypertension, atrial fibrillation | 62.5% |
AI-1 | 71 | M | 30.9 | Moderate AI | Coronary disease, hypertension, atrial fibrillation | 57.0% |
AI-2 | 63 | M | 35.3 | Severe AI | A 5.3 cm dilated aortic root, heart failure, coronary disease, hypertension, atrial fibrillation | 34.0% |
AI-3 | 79 | M | 24.1 | Severe AI | Heart failure, severe mitral and tricuspid valve regurgitation, coronary disease, hypertension | 56.0% |
AI-4 | 77 | M | 29.0 | Severe AI | Hypertension, atrial fibrillation | 56.0% |
AI-5 | 55 | F | 23.0 | Moderate AI | Radiation-induced heart disease, severe mitral valve regurgitation, coronary disease | 62.0% |
NC-1 | 56 | F | 22.0 | Normal | Ruptured internal carotid artery aneurysm, diabetes, hypertension | 75.0% |
NC-2 | 17 | F | 21.6 | Normal | Anoxic brain injury | 62.0% |
NC-3 | 31 | M | 36.0 | Normal | Anoxic brain injury, diabetes, hypertension, intravenous drug use | 65.0% |
NC-4 | 21 | F | 25.0 | Normal | Tonsillar herniation after drug overdose | 48.0% |
NC-5 | 61 | F | 20.4 | Normal | Intracranial hemorrhage | 67.0% |
AS vs. NC | AI vs. NC | AS vs. AI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RNA-seq | qPCR | RNA-seq | qPCR | RNA-seq | qPCR | ||||||||
Gene | FC | p-Adj | FC | p-Value | FC | p-Adj | FC | p-Value | FC | p-Adj | FC | p-Value | |
ALDH1L1 | Aldehyde Dehydrogenase 1 Family Member L1 | −12.15 | 4.61 × 10−49 | −10.59 | 4.72 × 10−8 | −7.00 | 3.415 × 10−27 | −7.88 | 2.84 × 10−6 | −1.31 | 2.98 × 10−1 | −1.34 | 2.9 × 10−2 |
APCDD1L | Adenomatosis Polyposis Coli Down-Regulated 1 Protein-Like | 17.31 | 5.65 × 10−80 | 9.41 | 1.65 × 10−7 | 5.81 | 4.626 × 10−20 | 5.36 | 1.98 × 10−5 | 2.01 | 2.82 × 10−4 | 1.76 | 1.4 × 10−2 |
CDH6 | Cadherin 6 | 10.18 | 5.66 × 10−34 | 7.26 | 2.36 × 10−8 | 5.36 | 3.201 × 10−38 | 6.37 | 5.67 × 10−6 | 1.76 | 2 × 10−3 | 1.14 | 6.70 × 10−1 |
COL10A1 | Collagen Type X Alpha 1 Chain | 37.65 | 1.56 × 10−40 | 25.03 | 1.13 × 10−3 | 6.56 | 2.168 × 10−16 | 9.35 | 1 × 10−2 | 3.56 | 1.46 × 10−12 | 2.68 | 2 × 10−3 |
COL11A1 | Collagen Type XI Alpha 1 Chain | 23.01 | 4.42 × 10−59 | 34.48 | 2.36 × 10−8 | −1.22 | 5.46 × 10−1 | 3.75 | 2.4 × 10−1 | 12.18 | 4.30 × 10−30 | 9.20 | 3.28 × 10−6 |
EPHB1 | Ephrin Type-B Receptor 1 | −6.01 | 2.24 × 10−32 | −2.94 | 8.28 × 10−5 | −5.99 | 4.948 × 10−31 | −4.57 | 1.13 × 10−5 | 1.14 | 6.92 × 10−1 | 1.56 | 1.3 × 10−2 |
GPX3 | Glutathione Peroxidase 3 | −6.49 | 1.37 × 10−35 | −6.12 | 9.45 × 10−8 | −6.23 | 5.968 × 10−56 | −5.35 | 2.84 × 10−6 | 1.00 | 9.90 × 10−1 | −1.14 | 1.69 × 10−1 |
H19 | H19 Imprinted Maternally Expressed Transcript | 12.63 | 4.72 × 10−41 | 7.42 | 2.83 × 10−7 | 1.10 | 8.06 × 10−1 | 3.97 | 3 × 10−1 | 6.08 | 1.41 × 10−15 | 1.87 | 2 × 10−3 |
HBB | Hemoglobin Subunit Beta | 27.27 | 6.07 × 10−31 | 102.27 | 1.65 × 10−7 | 4.97 | 1.456 × 10−11 | 15.09 | 5.398 × 10−5 | 3.48 | 1.19 × 10−10 | 6.78 | 3 × 10−3 |
HIF1A | Hypoxia Inducible Factor 1 Subunit Alpha | 1.66 | 1.00 × 10−4 | 2.44 | 4.61 × 10−6 | 1.05 | 7.51 × 10−1 | 1.73 | 1.2 × 10−1 | 1.54 | 3 × 10−3 | 1.41 | 4.4 × 10−2 |
HIF3A | Hypoxia Inducible Factor 3 Subunit Alpha | −17.22 | 3.90 × 10−77 | −11.58 | 3.66 × 10−8 | −8.61 | 2.574 × 10−35 | −8.74 | 2.84 × 10−6 | −1.44 | 1.66 × 10−1 | −1.32 | 1.58 × 10−1 |
IBSP | Integrin Binding Sialoprotein | 32.09 | 3.23 × 10−19 | 176.57 | 3.76 × 10−5 | 2.74 | 2.51 × 10−4 | 25.19 | 1.39 × 10−2 | 8.85 | 6.01 × 10−20 | 7.01 | 9.19 × 10−4 |
KCNJ6 | Potassium Voltage-Gated Channel Subfamily J Member 6 | 11.61 | 7.62 × 10−10 | 23.18 | 9.52 × 10−3 | −1.04 | NA | 6.36 | 2 × 10−1 | 4.72 | 1.74 × 10−9 | 3.65 | 3.0 × 10−2 |
KCNT1 | Potassium Sodium-Activated Channel Subfamily T Member 1 | −4.91 | 2.14 × 10−8 | −2.40 | 9.39 × 10−3 | −7.32 | 6.56 × 10−23 | −3.94 | 2 × 10−3 | 1.53 | 2.19 × 10−1 | 1.64 | 8.5 × 10−2 |
KRT14 | Keratin 14 | 38.09 | 7.93 × 10−24 | 31.05 | 2.66 × 10−7 | 6.10 | 1.57 × 10−12 | 24.01 | 5.67 × 10−6 | 2.19 | 1 × 10−3 | 1.29 | 2.98 × 10−1 |
NPY | Neuropeptide Y | −3.14 | 1.7 × 10−2 | −6.37 | 9.03 × 10−6 | 1.26 | 5.28 × 10−1 | −1.61 | 2 × 10−1 | −3.41 | 4.10 × 10−6 | −3.97 | 7 × 10−3 |
PLEKHS1 | Pleckstrin Homology Domain Containing S1 | 60.77 | 8.91 × 10−52 | 14.72 | 2.00 × 10−7 | 2.14 | 7 × 10−3 | 4.10 | 1.3 × 10−2 | 7.11 | 1.62 × 10−18 | 3.59 | 1.79 × 10−5 |
PRND | Prion Like Protein Doppel | 77.29 | 9.16 × 10−44 | 4.66 | 3.37 × 10−3 | 1.35 | 1.70 × 10−1 | 2.99 | 8.7 × 10−1 | 1.30 | 4.86 × 10−1 | 1.56 | 1.0 × 10−1 |
PRSS35 | Serine Protease 35 | 13.41 | 1.00 × 10−35 | 7.88 | 1.65 × 10−7 | 5.48 | 2.991 × 10−15 | 7.34 | 2.84 × 10−6 | 1.49 | 2.02 × 10−1 | 1.07 | 7.92 × 10−1 |
SPP1 | Secreted Phosphoprotein 1 | 17.49 | 1.67 × 10−23 | 8.49 | 4.65 × 10−5 | 1.90 | 1.2 × 10−2 | 1.51 | 2.5 × 10−1 | 5.81 | 5.22 × 10−15 | 5.61 | 7.54 × 10−4 |
TDO2 | Tryptophan 2,3-Dioxygenase | 24.73 | 3.80 × 10−19 | 27.71 | 6.43 × 10−7 | 2.12 | 7 × 10−3 | 8.37 | 4 × 10−3 | 3.44 | 3.10 × 10−6 | 3.31 | 2 × 10−3 |
ATP5F1 | ATP Synthase Peripheral Stalk-Membrane Subunit B | −1.03 | 7.43 × 10−1 | 1.20 | 2.98 × 10−1 | −1.05 | 5.21 × 10−1 | 1.07 | 1.7 × 10−1 | 1.01 | 9.11 × 10−1 | 1.13 | 8.55 × 10−1 |
CYC1 | Cytochrome C1 | 1.00 | 9.97 × 10−1 | 1.09 | 7.37 × 10−1 | −1.05 | 6.20 × 10−1 | −1.13 | 2.2 × 10−1 | 1.05 | 8.32 × 10−1 | 1.24 | 4.27 × 10−1 |
RPL32 | Ribosomal Protein L32 | 1.07 | 7.61 × 10−1 | 1.15 | 8.87 × 10−1 | 1.00 | 9.75 × 10−1 | −1.30 | 2.5 × 10−1 | 1.05 | 8.48 × 10−1 | 1.49 | 3.28 × 10−1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greene, C.L.; Jaatinen, K.J.; Wang, H.; Koyano, T.K.; Bilbao, M.S.; Woo, Y.J. Transcriptional Profiling of Normal, Stenotic, and Regurgitant Human Aortic Valves. Genes 2020, 11, 789. https://doi.org/10.3390/genes11070789
Greene CL, Jaatinen KJ, Wang H, Koyano TK, Bilbao MS, Woo YJ. Transcriptional Profiling of Normal, Stenotic, and Regurgitant Human Aortic Valves. Genes. 2020; 11(7):789. https://doi.org/10.3390/genes11070789
Chicago/Turabian StyleGreene, Christina L., Kevin J. Jaatinen, Hanjay Wang, Tiffany K. Koyano, Mary S. Bilbao, and Y. Joseph Woo. 2020. "Transcriptional Profiling of Normal, Stenotic, and Regurgitant Human Aortic Valves" Genes 11, no. 7: 789. https://doi.org/10.3390/genes11070789
APA StyleGreene, C. L., Jaatinen, K. J., Wang, H., Koyano, T. K., Bilbao, M. S., & Woo, Y. J. (2020). Transcriptional Profiling of Normal, Stenotic, and Regurgitant Human Aortic Valves. Genes, 11(7), 789. https://doi.org/10.3390/genes11070789