CYP4F2 and VKORC1 Polymorphisms Amplify the Risk of Carotid Plaque Formation
Abstract
:1. Introduction
2. Patients and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Siltari, A.; Vapaatalo, H. Vascular Calcification, Vitamin K and Warfarin Therapy-Possible or Plausible Connection? Basic Clin. Pharmacol. Toxicol. 2018, 122, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Ohsaki, Y.; Shirakawa, H.; Miura, A.; Giriwono, P.E.; Sato, S.; Ohashi, A.; Iribe, M.; Goto, T.; Komai, M. Vitamin K suppresses the lipopolysaccharide-induced expression of inflammatory cytokines in cultured macrophage-like cells via the inhibition of the activation of nuclear factor κB through the repression of IKKα/β phosphorylation. J. Nutr. Biochem. 2010, 21, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Kalampogias, A.; Siasos, G.; Oikonomou, E.; Tsalamandris, S.; Mourouzis, K.; Tsigkou, V.; Vavuranakis, M.; Zografos, T.; Deftereos, S.; Stefanadis, C.; et al. Basic Mechanisms in Atherosclerosis: The Role of Calcium. MC 2016, 12, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Akbari, S.; Rasouli-Ghahroudi, A.A. Vitamin K and Bone Metabolism: A Review of the Latest Evidence in Preclinical Studies. BioMed Res. Int. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Luo, G.; Ducy, P.; McKee, M.D.; Pinero, G.J.; Loyer, E.; Behringer, R.R.; Karsenty, G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997, 386, 78–81. [Google Scholar] [CrossRef]
- El Asmar, M.; Naoum, J.; Arbid, E. Vitamin K Dependent Proteins and the Role of Vitamin K2 in the Modulation of Vascular Calcification: A Review. Oman Med. J. 2014, 29, 172–177. [Google Scholar] [CrossRef]
- Zhang, Y.-T.; Tang, Z.-Y. Research progress of warfarin-Associated vascular calcification and its possible therapy. J. Cardiovasc. Pharmacol. 2014, 63, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Theuwissen, E.; Smit, E.; Vermeer, C. The Role of Vitamin K in Soft-Tissue Calcification. Adv. Nutr. 2012, 3, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Garcia, A.A.; Reitsma, P.H. VKORC1 and the Vitamin K Cycle. In Vitamins & Hormones; Elsevier: Amsterdam, The Netherlands, 2008; Volume 78, pp. 23–33. ISBN 978-0-12-374113-4. [Google Scholar]
- Shukla, A.; Jain, A.; Kahalekar, V.; Bendkhale, S.; Gogtay, N.; Thatte, U.; Bhatia, S. Mutations in CYP2C9 and/or VKORC1 haplotype are associated with higher bleeding complications in patients with Budd-Chiari syndrome on warfarin. Hepatol. Int. 2019, 13, 214–221. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Zhang, Y.; Yang, Y.; Sun, L.; Hu, S.; Chen, J.; Zhang, C.; Zheng, Y.; Zhen, Y.; et al. VKORC1 haplotypes are associated with arterial vascular diseases (stroke, coronary heart disease, and aortic dissection). Circulation 2006, 113, 1615–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AL-Eitan, L.; Almasri, A.; Khasawneh, R. Impact of CYP2C9 and VKORC1 Polymorphisms on Warfarin Sensitivity and Responsiveness in Jordanian Cardiovascular Patients during the Initiation Therapy. Genes 2018, 9, 578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, M.G.; Rieder, M.J.; Nakano, M.; Hsia, C.K.; Rettie, A.E. CYP4F2 Is a Vitamin K1 Oxidase: An Explanation for Altered Warfarin Dose in Carriers of the V433M Variant. Mol. Pharmacol. 2009, 75, 1337–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivashchenko, D.; Rusin, I.; Sychev, D.; Grachev, A. The Frequency of CYP2C9, VKORC1, and CYP4F2 Polymorphisms in Russian patients with high thrombotic risk. Medicina 2013, 49, 81. [Google Scholar] [CrossRef] [Green Version]
- Roco, A.; Nieto, E.; Suárez, M.; Rojo, M.; Bertoglia, M.P.; Verón, G.; Tamayo, F.; Arredondo, A.; Cruz, D.; Muñoz, J.; et al. A Pharmacogenetically Guided Acenocoumarol Dosing Algorithm for Chilean Patients: A Discovery Cohort Study. Front. Pharmacol. 2020, 11, 325. [Google Scholar] [CrossRef] [PubMed]
- Rojo, M.; Roco, A.M.; Suarez, M.; Lavanderos, M.A.; Verón, G.; Bertoglia, M.P.; Arredondo, A.; Nieto, E.; Rubilar, J.C.; Tamayo, F.; et al. Functionally Significant Coumarin-Related Variant Alleles and Time to Therapeutic Range in Chilean Cardiovascular Patients. Clin. Appl. Thromb. Hemost. 2020, 26. [Google Scholar] [CrossRef]
- Takeuchi, M.; Kobayashi, T.; Biss, T.; Kamali, F.; Vear, S.I.; Ho, R.H.; Bajolle, F.; Loriot, M.-A.; Shaw, K.; Carleton, B.C.; et al. CYP2C9, VKORC1, and CYP4F2 polymorphisms and pediatric warfarin maintenance dose: A systematic review and meta-analysis. Pharm. J. 2020, 20, 306–319. [Google Scholar] [CrossRef]
- Sogabe, N.; Tsugawa, N.; Maruyama, R.; Kamao, M.; Kinoshita, H.; Okano, T.; Hosoi, T.; Goseki-Sone, M. Nutritional Effects of γ-Glutamyl Carboxylase Gene Polymorphism on the Correlation between the Vitamin K Status and γ-Carboxylation of Osteocalcin in Young Males. J. Nutr. Sci. Vitaminol. 2007, 53, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Dihingia, A.; Ozah, D.; Borah, T.; Kalita, J.; Manna, P. γ-glutamyl-carboxylated Gas6 mediates positive role of vitamin K on lowering hyperglycemia in type 2 diabetes. Ann. N. Y. Acad. Sci. 2020, 1462, 104–117. [Google Scholar] [CrossRef]
- Azuma, K.; Inoue, S. Multiple Modes of Vitamin K Actions in Aging-Related Musculoskeletal Disorders. IJMS 2019, 20, 2844. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, M.; Mangano, M.; Galassi, A.; Ciceri, P.; Messa, P.; Nigwekar, S. Vitamin K in Chronic Kidney Disease. Nutrients 2019, 11, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vilder, E.; Debacker, J.; Vanakker, O. GGCX-Associated Phenotypes: An Overview in Search of Genotype-Phenotype Correlations. IJMS 2017, 18, 240. [Google Scholar] [CrossRef] [PubMed]
- Pop, T.R.; Vesa, Ş.C.; Trifa, A.P.; Crişan, S.; Buzoianu, A.D. An acenocoumarol dose algorithm based on a South-Eastern European population. Eur. J. Clin. Pharmacol. 2013, 69, 1901–1907. [Google Scholar] [CrossRef]
- Buzoianu, A.D.; Militaru, F.C.; Vesa, Ş.C.; Trifa, A.P.; Crişan, S. The impact of the CYP2C9 and VKORC1 polymorphisms on acenocoumarol dose requirements in a Romanian population. Blood Cells Mol. Dis. 2013, 50, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Groza, I.; Matei, D.; Tanţău, M.; Trifa, A.P.; Crişan, S.; Vesa, Ş.C.; Bocşan, C.; Buzoianu, A.D.; Acalovschi, M. VKORC1-1639 G>A Polymorphism and the Risk of Non-Variceal Upper Gastrointestinal Bleeding. JGLD 2017, 26, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Azarara, M.; Afrasibirad, A.; Farzamikia, N.; Alijani, A.; Sakhinia, E. The effect of GGCX and CYP4F2 gene polymorphisms in genotype-guided dosing of warfarin in patients with a history of cardiac surgery. J. Pharm. Investig. 2017, 47, 349–355. [Google Scholar] [CrossRef]
- Casadei, A.; Floreani, M.; Catalini, R.; Serra, C.; Assanti, A.P.; Conci, P. Sonographic characteristics of carotid artery plaques: Implications for follow-up planning? J. Ultrasound 2012, 15, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Hosseinkhani, Z.; Sadeghalvad, M.; Norooznezhad, F.; Khodarahmi, R.; Fazilati, M.; Mahnam, A.; Fattahi, A.; Mansouri, K. The effect of CYP2C9*2, CYP2C9*3, and VKORC1-1639 G>A polymorphism in patients under warfarin therapy in city of Kermanshah. Res. Pharma Sci. 2018, 13, 377. [Google Scholar] [CrossRef]
- Fodor, D.; Bondor, C.; Albu, A.; Popp, R.; Pop, I.V.; Poanta, L. Relationship between VKORC1 single nucleotide polymorphism 1173C>T, bone mineral density & carotid intima-media thickness. Indian J. Med. Res. 2013, 137, 734–741. [Google Scholar]
- Conforto, A.B.; Leite, C.d.C.; Nomura, C.H.; Bor-Seng-Shu, E.; Santos, R.D. Is there a consistent association between coronary heart disease and ischemic stroke caused by intracranial atherosclerosis? Arq. Neuro-Psiquiatr. 2013, 71, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Hodzic, E. Potential Anti-inflammatory Treatment of Ischaemic Hearth Disease. Med. Arch 2018, 72, 94. [Google Scholar] [CrossRef] [PubMed]
- Schurgers, L.J.; Joosen, I.A.; Laufer, E.M.; Chatrou, M.L.L.; Herfs, M.; Winkens, M.H.M.; Westenfeld, R.; Veulemans, V.; Krueger, T.; Shanahan, C.M.; et al. Vitamin K-Antagonists Accelerate Atherosclerotic Calcification and Induce a Vulnerable Plaque Phenotype. PLoS ONE 2012, 7, e43229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herisson, F.; Heymann, M.-F.; Chétiveaux, M.; Charrier, C.; Battaglia, S.; Pilet, P.; Rouillon, T.; Krempf, M.; Lemarchand, P.; Heymann, D.; et al. Carotid and femoral atherosclerotic plaques show different morphology. Atherosclerosis 2011, 216, 348–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubovyk, Y.I.; Harbuzova, V.Y.; Ataman, A.V. G-1639A but Not C1173T VKORC1 Gene Polymorphism Is Related to Ischemic Stroke and Its Various Risk Factors in Ukrainian Population. BioMed Res. Int. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Value (Percent) | |
---|---|---|
Age (years) | 68 (55, 74) | |
Age | ≥65 | 41 (53.95%) |
<65 | 35 (46.05%) | |
Gender | Male | 36 (47.37%) |
Female | 40 (52.63%) | |
Area | Urban | 43 (56.58%) |
Rural | 33 (43.42%) | |
Ischemic heart disease | Yes | 12 (15.79%) |
No | 64 (84.21%) | |
Arterial hypertension | Yes | 51 (67.11%) |
No | 25 (32.89%) | |
Atrial fibrillation | Yes | 16 (21.05%) |
No | 60 (78.95%) | |
Heart failure | Yes | 19 (25.00%) |
No | 57 (75.00%) | |
Diabetes mellitus | Yes | 23 (30.26%) |
No | 53 (69.74%) | |
Obesity | Yes | 24 (31.58%) |
No | 52 (68.42%) | |
Dyslipidemia | Yes | 61 (80.26%) |
No | 15 (19.74%) | |
Anticoagulant use | Yes | 59 (77.63%) |
No | 17 (22.37%) | |
VKORC1 (G-1639A) polymorphism | w/w | 28 (36.84%) |
m/w | 36 (47.37%) | |
m/m | 12 (15.79%) | |
CYP4F2 (1347 C>T) polymorphism | w/w | 37 (48.68%) |
m/w | 33 (43.42%) | |
m/m | 6 (7.89%) | |
GGCX (12970 C>G) polymorphism | w/w | 67 (88.16%) |
m/w | 9 (11.84%) | |
m/m | 0 (0.00%) | |
Carotidian plaque at 5 years | Yes | 15 (19.74%) |
No | 61 (80.26%) | |
Femoral plaque at 5 years | Yes | 14 (18.42%) |
No | 62 (81.58%) | |
Smoking | Yes | 12 (15.79%) |
No | 64 (84.21%) |
Variable | Carotidian Plaque | Femoral Plaque | Any Plaque | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95% Lower CI | 95% Upper CI | p | OR | 95% Lower CI | 95% Upper CI | p | OR | 95% Lower CI | 95% Upper CI | p | |
Age ≥ 65 years | 0.695 | 0.218 | 2.171 | 0.529 | 0.579 | 0.172 | 1.860 | 0.359 | 0.546 | 0.199 | 1.460 | 0.23 |
Male gender | 0.689 | 0.208 | 2.147 | 0.525 | 1.138 | 0.35 | 3.700 | 0.827 | 0.799 | 0.293 | 2.133 | 0.655 |
Urban area | 0.849 | 0.271 | 2.705 | 0.778 | 1.029 | 0.32 | 3.458 | 0.962 | 0.997 | 0.372 | 2.719 | 0.995 |
Ischemic heart disease | 9.800 | 2.563 | 41.082 | 0.00106 | 1.606 | 0.319 | 6.461 | 0.525 | 4.200 | 1.182 | 16.025 | 0.0279 |
Arterial hypertension | 1.444 | 0.433 | 5.711 | 0.568 | 2.02 | 0.558 | 9.610 | 0.319 | 1.583 | 0.552 | 5.000 | 0.407 |
Atrial fibrillation | 0.516 | 0.075 | 2.178 | 0.419 | 1.028 | 0.21 | 3.898 | 0.97 | 0.719 | 0.182 | 2.380 | 0.607 |
Heart failure | 0.398 | 0.058 | 1.647 | 0.256 | 0.784 | 0.162 | 2.903 | 0.733 | 0.533 | 0.137 | 1.711 | 0.318 |
Diabetes mellitus | 0.804 | 0.202 | 2.699 | 0.735 | 0.905 | 0.226 | 3.094 | 0.879 | 1.012 | 0.335 | 2.880 | 0.983 |
Obesity | 3.214 | 1.003 | 10.607 | 0.0493 | 2.647 | 0.798 | 8.870 | 0.108 | 3.727 | 1.329 | 10.819 | 0.0132 |
Dyslipidemia | 0.605 | 0.169 | 2.496 | 0.455 | 3.792 | 0.662 | 71.862 | 0.218 | 1.244 | 0.371 | 4.942 | 0.735 |
Anticoagulant use | 0.49 | 0.144 | 1.810 | 0.261 | 4.522 | 0.799 | 85.385 | 0.161 | 0.742 | 0.241 | 2.445 | 0.609 |
VKORC1 (G-1639A) polymorphism | 2.778 | 0.785 | 13.111 | 0.142 | 0.733 | 0.226 | 2.480 | 0.606 | 1.500 | 0.54 | 4.470 | 0.447 |
CYP4F2 (1347 C>T) polymorphism | 0.566 | 0.171 | 1.762 | 0.331 | 7.778 | 1.914 | 52.748 | 0.0109 | 1.742 | 0.651 | 4.849 | 0.275 |
GGCX (12970 C>G) polymorphism | 0.473 | 0.024 | 2.905 | 0.497 | NA | NA | NA | NA | 0.256 | 0.013 | 1.521 | 0.212 |
β blocker | 1.023 | 0.255 | 3.488 | 0.973 | 1.150 | 0.284 | 3.992 | 0.832 | 0.983 | 0.305 | 2.916 | 0.976 |
ACE inhibitor or ARB | 1.181 | 0.378 | 3.759 | 0.773 | 1.000 | 0.308 | 3.248 | 1.000 | 0.883 | 0.328 | 2.359 | 0.803 |
Calcium channel blocker | 2.462 | 0.714 | 8.172 | 0.142 | 1.905 | 0.516 | 6.503 | 0.310 | 2.036 | 0.675 | 6.044 | 0.199 |
Thiazide diuretic | 0.952 | 0.268 | 3.059 | 0.936 | 1.085 | 0.301 | 3.565 | 0.896 | 1.037 | 0.359 | 2.869 | 0.945 |
Other antihypertensive medication | 2.192 | 0.283 | 12.554 | 0.393 | 0.877 | 0.0438 | 6.075 | 0.908 | 1.167 | 0.153 | 6.467 | 0.864 |
Hypolipemiant medication | 1.102 | 0.346 | 3.448 | 0.867 | 0.911 | 0.271 | 2.928 | 0.876 | 1.196 | 0.444 | 3.211 | 0.721 |
Insulin | 4.833 | 0.811 | 29.047 | 0.072 | 0.877 | 0.044 | 6.075 | 0.908 | 2.500 | 0.431 | 14.526 | 0.286 |
Oral antidiabetic medication | 1.653 | 0.401 | 5.926 | 0.455 | 1.136 | 0.231 | 4.355 | 0.860 | 1.725 | 0.511 | 5.553 | 0.363 |
Smoking | 2.409 | 0.564 | 9.200 | 0.207 | 1.606 | 0.319 | 6.461 | 0.525 | 2.765 | 0.770 | 10.017 | 0.114 |
Variable | Carotidian Plaque | Any Plaque | ||||||
---|---|---|---|---|---|---|---|---|
OR | 95% Lower CI | 95% Upper CI | p | OR | 95% Lower CI | 95% Upper CI | p | |
Ischemic heart disease | 11.883 | 2.847 | 58.525 | 0.00106 | 4.749 | 1.246 | 19.740 | 0.0245 |
Obesity | 4.114 | 1.109 | 17.347 | 0.0391 | 4.076 | 1.388 | 12.654 | 0.0119 |
Variable 1 | Variable 2 | Carotidian Plaque | Femoral Plaque | Any Plaque | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95% Lower CI | 95% Upper CI | p | OR | 95% Lower CI | 95% Upper CI | p | OR | 95% Lower CI | 95% Upper CI | p | ||
Ischemic heart disease | CYP4F2 | 21.818 | 2.901 | 449.243 | 0.00815 | 8.181 | 1.225 | 67.878 | 0.0302 | 10.947 | 1.504 | 221.534 | 0.0374 |
Ischemic heart disease | VKORC1 | 12.889 | 2.889 | 70.509 | 0.00126 | 1.210 | 0.180 | 6.274 | 0.755 | 5.882 | 1.395 | 30.368 | 0.0199 |
Ischemic heart disease | CYP4F2 or VKORC1 | 16.917 | 3.904 | 92.243 | 0.000323 | 2.143 | 0.414 | 9.123 | 0.319 | 7.292 | 1.804 | 37.034 | 0.00786 |
Femoral plaque | CYP4F2 | 2.409 | 0.564 | 9.200 | 0.207 | NA | NA | NA | NA | NA | NA | NA | NA |
Femoral plaque | VKORC1 | 5.182 | 1.083 | 25.148 | 0.0349 | NA | NA | NA | NA | NA | NA | NA | NA |
Femoral plaque | CYP4F2 or VKORC1 | 3.313 | 0.857 | 12.217 | 0.072 | NA | NA | NA | NA | NA | NA | NA | NA |
Obesity | CYP4F2 | 2.101 | 0.499 | 7.818 | 0.279 | 5.893 | 1.561 | 22.693 | 0.00838 | 5.120 | 1.489 | 19.280 | 0.011 |
Obesity | VKORC1 | 2.550 | 0.678 | 8.971 | 0.148 | 1.136 | 0.231 | 4.355 | 0.860 | 2.461 | 0.754 | 7.979 | 0.129 |
Obesity | CYP4F2 or VKORC1 | 3.231 | 0.973 | 10.736 | 0.052 | 2.571 | 0.739 | 8.701 | 0.127 | 4.481 | 1.529 | 13.719 | 0.00688 |
Anticoagulant use | CYP4F2 | 0.589 | 0.167 | 1.867 | 0.382 | 6.667 | 1.855 | 31.838 | 0.00699 | 1.662 | 0.620 | 4.518 | 0.312 |
Anticoagulant use | VKORC1 | 0.966 | 0.303 | 3.016 | 0.952 | 1.138 | 0.350 | 3.700 | 0.827 | 0.799 | 0.293 | 2.133 | 0.655 |
Anticoagulant use | CYP4F2 or VKORC1 | 0.846 | 0.268 | 2.817 | 0.777 | 4.333 | 1.063 | 29.387 | 0.069 | 1.500 | 0.540 | 4.470 | 0.447 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vesa, S.C.; Vlaicu, S.I.; Vacaras, V.; Crisan, S.; Sabin, O.; Pasca, S.; Trifa, A.P.; Rusz-Fogarasi, T.; Sava, M.; Buzoianu, A.D. CYP4F2 and VKORC1 Polymorphisms Amplify the Risk of Carotid Plaque Formation. Genes 2020, 11, 822. https://doi.org/10.3390/genes11070822
Vesa SC, Vlaicu SI, Vacaras V, Crisan S, Sabin O, Pasca S, Trifa AP, Rusz-Fogarasi T, Sava M, Buzoianu AD. CYP4F2 and VKORC1 Polymorphisms Amplify the Risk of Carotid Plaque Formation. Genes. 2020; 11(7):822. https://doi.org/10.3390/genes11070822
Chicago/Turabian StyleVesa, Stefan Cristian, Sonia Irina Vlaicu, Vitalie Vacaras, Sorin Crisan, Octavia Sabin, Sergiu Pasca, Adrian Pavel Trifa, Tamas Rusz-Fogarasi, Madalina Sava, and Anca Dana Buzoianu. 2020. "CYP4F2 and VKORC1 Polymorphisms Amplify the Risk of Carotid Plaque Formation" Genes 11, no. 7: 822. https://doi.org/10.3390/genes11070822
APA StyleVesa, S. C., Vlaicu, S. I., Vacaras, V., Crisan, S., Sabin, O., Pasca, S., Trifa, A. P., Rusz-Fogarasi, T., Sava, M., & Buzoianu, A. D. (2020). CYP4F2 and VKORC1 Polymorphisms Amplify the Risk of Carotid Plaque Formation. Genes, 11(7), 822. https://doi.org/10.3390/genes11070822