Effects of CYP1A2 and ADORA2A Genotypes on the Ergogenic Response to Caffeine in Professional Handball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Exercise Protocol
2.4. Countermovement Jump (CMJ)
2.5. Sprint Test (0–30 m)
2.6. Modified Agility t-Test
2.7. Isometric Handgrip Strength
2.8. Ball Throwing
2.9. Simulated Handball Match-Play
2.10. Side Effects Questionnaire
2.11. Genetic Testing
2.12. Statistical Analysis
3. Results
3.1. CYP1A2
3.2. ADORA2A
3.3. Prevalence of Side Effects
4. Discussion
4.1. CYP1A2
4.2. ADORA2A
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Del Coso, J.; Munoz, G.; Munoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar-Navarro, M.; Munoz, G.; Salinero, J.J.; Munoz-Guerra, J.; Fernandez-Alvarez, M.; Plata, M.D.M.; Del Coso, J. Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients 2019, 11, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickering, C.; Kiely, J. Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual Variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sports Med. 2018, 48, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. The Effect of acute caffeine ingestion on endurance performance: A systematic review and meta-analysis. Sports Med. 2018, 48, 1913–1928. [Google Scholar] [CrossRef] [PubMed]
- Salinero, J.J.; Lara, B.; Del Coso, J. Effects of acute ingestion of caffeine on team sports performance: A systematic review and meta-analysis. Res. Sports Med. 2019, 27, 238–256. [Google Scholar] [CrossRef] [PubMed]
- Perez-Lopez, A.; Salinero, J.J.; Abian-Vicen, J.; Valades, D.; Lara, B.; Hernandez, C.; Areces, F.; Gonzalez, C.; Del Coso, J. Caffeinated energy drinks improve volleyball performance in elite female players. Med. Sci. Sports Exerc. 2015, 47, 850–856. [Google Scholar] [CrossRef]
- Del Coso, J.; Munoz-Fernandez, V.E.; Munoz, G.; Fernandez-Elias, V.E.; Ortega, J.F.; Hamouti, N.; Barbero, J.C.; Munoz-Guerra, J. Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS ONE 2012, 7, e31380. [Google Scholar] [CrossRef]
- Munoz, A.; Lopez-Samanes, A.; Perez-Lopez, A.; Aguilar-Navarro, M.; Moreno-Heredero, B.; Rivilla-Garcia, J.; Gonzalez-Frutos, P.; Pino-Ortega, J.; Morencos, E.; Del Coso, J. Effects of caffeine ingestion on physical performance in elite women handball players: A randomized, controlled study. Int. J. Sports Physiol. Perform. 2020, 1–8. [Google Scholar] [CrossRef]
- Russell, M.; Reynolds, N.A.; Crewther, B.T.; Cook, C.J.; Kilduff, L.P. Physiological and performance effects of caffeine gum consumed during a simulated half-time by professional academy rugby union players. J. Strength Cond. Res. 2020, 34, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Puente, C.; Abian-Vicen, J.; Del Coso, J.; Lara, B.; Salinero, J.J. The CYP1A2-163C>A polymorphism does not alter the effects of caffeine on basketball performance. PLoS ONE 2018, 13, e0195943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, N.T.; Trilk, J.L.; Singhal, A.; O’Connor, P.J.; Cureton, K.J. Ergogenic effects of low doses of caffeine on cycling performance. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 328–342. [Google Scholar] [CrossRef] [PubMed]
- Lara, B.; Ruiz-Vicente, D.; Areces, F.; Abian-Vicen, J.; Salinero, J.J.; Gonzalez-Millan, C.; Gallo-Salazar, C.; Del Coso, J. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers. Br. J. Nutr. 2015, 114, 908–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jodra, P.; Lago-Rodriguez, A.; Sanchez-Oliver, A.J.; Lopez-Samanes, A.; Perez-Lopez, A.; Veiga-Herreros, P.; San Juan, A.F.; Dominguez, R. Effects of caffeine supplementation on physical performance and mood dimensions in elite and trained-recreational athletes. J. Int. Soc. Sports Nutr. 2020, 17, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mielgo-Ayuso, J.; Marques-Jimenez, D.; Refoyo, I.; Del Coso, J.; Leon-Guereno, P.; Calleja-Gonzalez, J. Effect of caffeine supplementation on sports performance based on differences between sexes: A systematic review. Nutrients 2019, 11, 2313. [Google Scholar] [CrossRef] [Green Version]
- Kamimori, G.H.; Karyekar, C.S.; Otterstetter, R.; Cox, D.S.; Balkin, T.J.; Belenky, G.L.; Eddington, N.D. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int. J. Pharm. 2002, 234, 159–167. [Google Scholar] [CrossRef]
- Pasman, W.J.; Van Baak, M.A.; Jeukendrup, A.E.; De Haan, A. The effect of different dosages of caffeine on endurance performance time. Int. J. Sports Med. 1995, 16, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Graham, T.E.; Spriet, L.L. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J. Appl. Physiol. 1995, 78, 867–874. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. What should we do about habitual caffeine use in Athletes? Sports Med. 2019, 49, 833–842. [Google Scholar] [CrossRef] [Green Version]
- Mora-Rodriguez, R.; Garcia Pallares, J.; Lopez-Samanes, A.; Ortega, J.F.; Fernandez-Elias, V.E. Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men. PLoS ONE 2012, 7, e33807. [Google Scholar] [CrossRef] [Green Version]
- Mora-Rodriguez, R.; Pallares, J.G.; Lopez-Gullon, J.M.; Lopez-Samanes, A.; Fernandez-Elias, V.E.; Ortega, J.F. Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. J. Sci. Med. Sport 2015, 18, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.; Corey, P.; Vescovi, J.; El-Sohemy, A. Caffeine, CYP1A2 genotype, and endurance performance in Athletes. Med. Sci. Sports Exerc. 2018, 50, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Salinero, J.J.; Lara, B.; Ruiz-Vicente, D.; Areces, F.; Puente-Torres, C.; Gallo-Salazar, C.; Pascual, T.; Del Coso, J. CYP1A2 genotype variations do not modify the benefits and drawbacks of caffeine during exercise: A pilot study. Nutrients 2017, 9, 269. [Google Scholar] [CrossRef] [PubMed]
- Carswell, A.T.; Howland, K.; Martinez-Gonzalez, B.; Baron, P.; Davison, G. The effect of caffeine on cognitive performance is influenced by CYP1A2 but not ADORA2A genotype, yet neither genotype affects exercise performance in healthy adults. Eur. J. Appl. Physiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Lara, B.; Ruiz-Moreno, C.; Salinero, J.J. Challenging the myth of non-response to the ergogenic effects of caffeine ingestion on exercise performance. Nutrients 2019, 11, 732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, L.; Gonzalez, F.J.; Kalow, W.; Tang, B.K. Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics 1992, 2, 73–77. [Google Scholar] [CrossRef]
- Sachse, C.; Brockmoller, J.; Bauer, S.; Roots, I. Functional significance of a C-->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br. J. Clin. Pharmacol. 1999, 47, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Nehlig, A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol. Rev. 2018, 70, 384–411. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, R. The effect of CYP1A2 genotype on the ergogenic properties of caffeine during resistance exercise: A randomized, double-blind, placebo-controlled, crossover study. Ir. J. Med Sci. 2019, 188, 337–345. [Google Scholar] [CrossRef]
- Pataky, M.W.; Womack, C.J.; Saunders, M.J.; Goffe, J.L.; D’Lugos, A.C.; El-Sohemy, A.; Luden, N.D. Caffeine and 3-km cycling performance: Effects of mouth rinsing, genotype, and time of day. Scand. J. Med. Sci. Sports 2016, 26, 613–619. [Google Scholar] [CrossRef]
- Grgic, J.; Pickering, C.; Bishop, D.J.; Schoenfeld, B.J.; Mikulic, P.; Pedisic, Z. CYP1A2 genotype and acute effects of caffeine on resistance exercise, jumping, and sprinting performance. J. Int. Soc. Sports Nutr. 2020, 17, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spineli, H.; Pinto, M.P.; Dos Santos, B.P.; Lima-Silva, A.E.; Bertuzzi, R.; Gitai, D.L.G.; De Araujo, G.G. Caffeine improves various aspects of athletic performance in adolescents independent of their 163 C>A CYP1A2 genotypes. Scand. J. Med. Sci. Sports 2020. [Google Scholar] [CrossRef] [PubMed]
- Algrain, H.; Thomas, R.; Carrillo, A.; Ryan, E.; Kim, C.; Lettanll, R.; Ryan, E. The effects of a polymorphism in the cytochrome P450 CYP1A2 gene on performance enhacement with caffeine in recreational cyclist. J. Caffeine Res. 2015, 6, 34–39. [Google Scholar] [CrossRef]
- Davenport, A.D.; Jameson, T.S.O.; Kilroe, S.P.; Monteyne, A.J.; Pavis, G.F.; Wall, B.T.; Dirks, M.L.; Alamdari, N.; Mikus, C.R.; Stephens, F.B. A randomised, placebo-controlled, crossover study investigating the optimal timing of a caffeine-containing supplement for exercise performance. Sports Med. Open 2020, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Giersch, G.; Boyett, J.; Hargens, T.; Luden, N.; Saunders, M.; Daley, H.; Hughey, C.; El-Sohemy, A.; Womack, C.J. The effect of the CYP1A2-163C>A polymorphism on caffeine metabolism and subsequent cycling performance. J. Caffeine Res. 2018, 8, 65–70. [Google Scholar] [CrossRef]
- Klein, C.; Clawson, A.; Saunders, M.; Flohr, M.; Dunham, W.; Hancock, M.; Womack, C. The effect of caffeine on performance in collegiate tennis players. J. Caffeine Res. 2012, 3, 15–22. [Google Scholar] [CrossRef]
- Davis, J.K.; Green, J.M. Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sports Med. 2009, 39, 813–832. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Yang, J.; Wang, Y. Low, but not high, dose caffeine is a readily available probe for adenosine actions. Mol. Asp. Med. 2017, 55, 20–25. [Google Scholar] [CrossRef]
- Loy, B.; O´Connor, P.; Lindheimer, M.; Covert, S. Caffeine is ergogenic for adenosine A2A receptor gene (ADORA2) T allele homozygotes. A pilot study. J. Caffeine Res. 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Grgic, J.; Pickering, C.; Bishop, D.J.; Del Coso, J.; Schoenfeld, B.J.; Tinsley, G.M.; Pedisic, Z. ADOR2A C Allele Carriers Exhibit Ergogenic Responses to Caffeine Supplementation. Nutrients 2020, 12, 741. [Google Scholar] [CrossRef] [Green Version]
- Skinner, T.L.; Desbrow, B.; Arapova, J.; Schaumberg, M.A.; Osborne, J.; Grant, G.D.; Anoopkumar-Dukie, S.; Leveritt, M.D. Women Experience the same ergogenic response to caffeine as men. Med. Sci. Sports Exerc. 2019, 51, 1195–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, N.D.; Kirwan, N.A.; Richardson, D.L. Coffee ingestion improves 5 km cycling performance in men and women by a similar magnitude. Nutrients 2019, 11, 2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara, B.; Gutierrez Hellin, J.; Ruiz-Moreno, C.; Romero-Moraleda, B.; Del Coso, J. Acute caffeine intake increases performance in the 15-s Wingate test during the menstrual cycle. Br. J. Clin. Pharmacol. 2020, 86, 745–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Moraleda, B.; Del Coso, J.; Gutierrez-Hellin, J.; Lara, B. The Effect of caffeine on the velocity of half-squat exercise during the menstrual cycle: A randomized controlled trial. Nutrients 2019, 11, 2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filip, A.; Wilk, M.; Krzysztofik, M.; Del Coso, J. Inconsistency in the ergogenic effect of caffeine in athletes who regularly consume caffeine: Is it due to the disparity in the criteria that defines habitual caffeine intake? Nutrients 2020, 12, 1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bühler, E.; Lachenmeier, D.; Schlegel, K.; Winkler, G. Development of a tool to assess the caffeine intake among teenagers and young adults. Ernahr. Umsch. 2013, 2013, 4. [Google Scholar]
- Salinero, J.J.; Lara, B.; Abian-Vicen, J.; Gonzalez-Millan, C.; Areces, F.; Gallo-Salazar, C.; Ruiz-Vicente, D.; Del Coso, J. The use of energy drinks in sport: Perceived ergogenicity and side effects in male and female athletes. Br. J. Nutr. 2014, 112, 1494–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Del Coso, J.; Perez-Lopez, A.; Abian-Vicen, J.; Salinero, J.J.; Lara, B.; Valades, D. Enhancing physical performance in male volleyball players with a caffeine-containing energy drink. Int. J. Sports Physiol. Perform. 2014, 9, 1013–1018. [Google Scholar] [CrossRef]
- Michalsik, L.B.; Aagaard, P. Physical demands in elite team handball: Comparisons between male and female players. J. Sports Med. Phys. Fit. 2015, 55, 878–891. [Google Scholar]
- Sassi, R.H.; Dardouri, W.; Yahmed, M.H.; Gmada, N.; Mahfoudhi, M.E.; Gharbi, Z. Relative and absolute reliability of a modified agility T-test and its relationship with vertical jump and straight sprint. J. Strength Cond. Res. 2009, 23, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Samanes, A.; Moreno-Perez, D.; Mate-Munoz, J.L.; Dominguez, R.; Pallares, J.G.; Mora-Rodriguez, R.; Ortega, J.F. Circadian rhythm effect on physical tennis performance in trained male players. J. Sports Sci. 2017, 35, 2121–2128. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.; Pfusterschmied, J.; Von Duvillard, S.P.; Muller, E. Performance and kinematics of various throwing techniques in team-handball. J. Sports Sci. Med. 2011, 10, 73–80. [Google Scholar] [PubMed]
- Ferragut, C.; Vila, H.; Abraldes, J.A.; Manchado, C. Influence of physical aspects and throwing velocity in opposition situations in top-elite and elite female handball players. J. Hum. Kinet. 2018, 63, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastida-Castillo, A.; Gomez-Carmona, C.D.; De La Cruz Sanchez, E.; Pino-Ortega, J. Comparing accuracy between global positioning systems and ultra-wideband-based position tracking systems used for tactical analyses in soccer. Eur. J. Sport Sci. 2019, 19, 1157–1165. [Google Scholar] [CrossRef]
- Bastida Castillo, A.; Gomez Carmona, C.D.; De la Cruz Sanchez, E.; Pino Ortega, J. Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time-motion analyses in soccer. Eur. J. Sport Sci. 2018, 18, 450–457. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Bellia, V.; Foresi, A.; Bianco, S.; Grassi, V.; Olivieri, D.; Bensi, G.; Volonte, M.; Group, B.I.S. Efficacy and safety of oxitropium bromide, theophylline and their combination in COPD patients: A double-blind, randomized, multicentre study (BREATH Trial). Respir. Med. 2002, 96, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Pinilla, E.; Onatibia-Astibia, A.; Franco, R. The relevance of theobromine for the beneficial effects of cocoa consumption. Front. Pharmacol. 2015, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Lara, B.; Ruiz-Moreno, C.; Salinero, J.J.; Del Coso, J. Time course of tolerance to the performance benefits of caffeine. PLoS ONE 2019, 14, e0210275. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Moreno, C.; Lara, B.; Salinero, J.J.; Brito de Souza, D.; Ordovas, J.M.; Del Coso, J. Time course of tolerance to adverse effects associated with the ingestion of a moderate dose of caffeine. Eur. J. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, M.; Penas-Ruiz, C.; Terry, C.; Russell, M. Effects of carbohydrate-hydration strategies on glucose metabolism, sprint performance and hydration during a soccer match simulation in recreational players. J. Sci. Med. Sport 2014, 17, 239–243. [Google Scholar] [CrossRef] [PubMed]
CYP1A2 | ADORA2A | ||||||
---|---|---|---|---|---|---|---|
Genotype | Number (Frequency) | Genotype | Number (Frequency) | ||||
AA | 14 (45.2) | AA | 14 (45.2) | TT | 6 (19.4) | TT | 6 (19.4) |
CA | 15 (48.4) | C-allele | 17 (54.8) | CT | 16 (51.6) | C-allele | 25 (80.6) |
CC | 2 (6.4) | CC | 9 (29.0) |
Variable (Units) | CYP1A2 Genotype | Placebo | Caffeine | % Change | ES [95%CI] | Interaction |
---|---|---|---|---|---|---|
CMJ (cm) | AA | 32.91 ± 3.52 | 34.02 ± 4.44 | 3.4 | 0.28 [0.08, 0.48] | 0.903 |
C-allele | 31.88 ± 9.22 | 33.25 ± 9.18 | 4.3 | 0.15 [0.01, 0.31] | ||
SV (s) | AA | 4.75 ± 0.41 | 4.46 ± 0.27 | −5.0 | −0.84 [−1.04, −0.63] | 0.140 |
C-allele | 4.77 ± 0.43 | 4.70 ± 0.49 | −1.5 | −0.15 [−0.32, −0.01] | ||
MATT (s) | AA | 5.69 ± 0.38 | 5.70 ± 0.24 | 0.1 | 0.03 [−0.17, 0.23] | 0.451 |
C-allele | 5.92 ± 0.65 | 5.89 ± 0.55 | −0.5 | −0.05 [−0.21, 0.11] | ||
IHS (kg) | AA | 48.21 ± 14.51 | 48.24 ± 13.14 | 0.1 | 0.00 [−0.20, 0.20] | 0.069 |
C-allele | 42.52 ± 9.46 | 44.88 ± 11.03 | 5.5 | 0.23 [0.07, 0.39] | ||
BT7M (km/h) | AA | 83.62 ± 9.66 | 86.85 ± 9.49 | 3.9 | 0.34 [0.14, 0.54] | 0.037 * |
C-allele | 81.94 ± 9.15 | 81.75 ± 7.99 | −0.2 | −0.02 [−0.19, 0.14] | ||
BT7M + GK (km/h) | AA | 82.15 ± 8.53 | 85.46 ± 8.24 | 4.0 | 0.39 [0.19, 0.59] | 0.061 |
C-allele | 81.81 ± 7.27 | 80.31 ± 5.90 | −1.8 | −0.23 [−0.39, −0.06] | ||
BT9M (km/h) | AA | 82.31 ± 8.79 | 85.62 ± 7.52 | 4.0 | 0.40 [0.20, 0.60] | 0.207 |
C-allele | 82.75 ± 6.87 | 84.31 ± 7.35 | 1.9 | 0.22 [0.06, 0.38] | ||
BT9M + GK (km/h) | AA | 82.77 ± 8.11 | 86.46 ± 7.49 | 4.5 | 0.47 [0.27, 0.67] | 0.147 |
C-allele | 84.50 ± 6.95 | 84.88 ± 6.93 | 0.4 | 0.05 [−0.11, 0.22] |
Variable (Units) | CYP1A2 Genotype | Placebo | Caffeine | % Change | ES [95%CI] | Interaction |
---|---|---|---|---|---|---|
ACC (number/min) | AA | 18.89 ± 1.28 | 18.79 ± 0.94 | −0.5 | −0.09 [−0.29, 0.11] | 0.090 |
C-allele | 18.64 ± 1.64 | 19.40 ± 1.28 | 4.1 | 0.52 [0.35, 0.68] | ||
DEC (number/min) | AA | 19.09 ± 1.13 | 18.46 ± 1.07 | −3.3 | −0.57 [−0.77, −0.37] | 0.344 |
C-allele | 18.92 ± 1.58 | 18.93 ± 1.66 | 0.1 | 0.01 [−0.16, 0.17] | ||
BI (number/min) | AA | 20.57 ± 13.37 | 21.64 ± 13.65 | 5.2 | 0.08 [−0.12, 0.28] | 0.307 |
C-allele | 26.58 ± 9.14 | 30.05 ± 12.65 | 13.1 | 0.31 [0.15, 0.48] |
Variable (Units) | ADORA2A Genotype | Placebo | Caffeine | % Change | ES [95%CI] | Interaction |
---|---|---|---|---|---|---|
CMJ (cm) | TT | 32.70 ± 8.8 | 33.45 ± 8.5 | 2.3 | 0.09 [−0.38, 0.55] | 0.602 |
C-allele | 33.10 ± 7.7 | 34.24 ± 7.7 | 3.4 | 0.15 [0.04, 0.26] | ||
SV (s) | TT | 4.75 ± 0.44 | 4.68 ± 0.45 | 1.4 | −0.16 [−0.62, 0.31] | 0.866 |
C-allele | 4.73 ± 0.40 | 4.59 ± 0.42 | 3.0 | −0.34 [−0.45, −0.23] | ||
MATT (s) | TT | 6.05 ± 0.65 | 6.06 ± 0.59 | −0.1 | 0.02 [−0.45, 0.48] | 0.600 |
C-allele | 5.76 ± 0.52 | 5.74 ± 0.39 | 0.3 | −0.04 [−0.15, 0.07] | ||
IHS (kg) | TT | 40.67 ± 10.17 | 43.70 ± 12.38 | 7.5 | 0.27 [−0.20, 0.73] | 0.575 |
C-allele | 46.86 ± 12.65 | 47.30 ± 11.81 | 0.9 | 0.04 [−0.07, 0.15] | ||
BT7M (km/h) | TT | 79.20 ± 9.47 | 77.80 ± 3.63 | −1.8 | −0.20 [−0.66, 0.27] | 0.879 |
C-allele | 83.88 ± 9.34 | 85.20 ± 9.01 | 1.6 | 0.14 [0.03, 0.25] | ||
BT7M + GK (km/h) | TT | 78.80 ± 6.91 | 77.40 ± 1.52 | −1.8 | −0.28 [−0.74, 0.18] | 0.151 |
C-allele | 82.88 ± 7.79 | 83.44 ± 7.63 | 0.7 | 0.07 [−0.04, 0.18] | ||
BT9M (km/h) | TT | 79.60 ± 4.22 | 79.80 ± 4.66 | 0.3 | 0.04 [−0.42, 0.51] | 0.255 |
C-allele | 83.32 ± 7.97 | 85.88 ± 7.25 | 3.1 | 0.34 [0.22, 0.45] | ||
BT9M + GK (km/h) | TT | 78.40 ± 3.65 | 80.40 ± 4.16 | 2.6 | 0.51 [0.04, 0.98] | 0.443 |
C-allele | 84.80 ± 7.39 | 86.48 ± 7.07 | 2.0 | 0.23 [0.12, 0.34] |
Variable (Units) | ADORA2A Genotype | Placebo | Caffeine | % Change | ES [95%CI] | Interaction |
---|---|---|---|---|---|---|
ACC (number/min) | TT | 18.25 ± 2.97 | 19.91 ± 1.81 | 9.1 | 0.67 [0.20, 1.15] | 0.409 |
C-allele | 18.87 ± 1.07 | 18.94 ± 0.90 | 0.4 | 0.07 [−0.04, 0.18] | ||
DEC (number/min) | TT | 18.97 ± 2.60 | 18.96 ± 2.69 | −0.1 | 0.00 [−0.47, 0.46] | 0.810 |
C-allele | 19.00 ± 0.98 | 18.66 ± 1.00 | −1.8 | −0.34 [−0.46, −0.23] | ||
BI (number/min) | TT | 24.93 ± 11.62 | 30.16 ± 16.08 | 21.0 | 0.37 [−0.09, 0.84] | 0.753 |
C-allele | 23.61 ± 11.65 | 25.31 ± 13.10 | 7.2 | 0.14 [0.03, 0.25] |
YP1A2 Genotype | ADORA2A Genotype | ||||||
---|---|---|---|---|---|---|---|
Variable (Frequency) | Placebo | Caffeine | p | Variable | Placebo | Caffeine | p |
Insomnia | 22.6 | 48.4 | |||||
AA | 21.4 | 28.6 | 0.023 * | TT | 16.7 | 33.3 | 0.174 |
C-allele | 23.5 | 64.7 | C-allele | 20.0 | 56.0 | ||
Increased urine production | 25.8 | 45.2 | |||||
AA | 14.3 | 35.7 | 0.732 | TT | 16.7 | 83.3 | <0.001 * |
C-allele | 35.3 | 52.9 | C-allele | 28.0 | 36.0 | ||
Gastrointestinal problems | 9.7 | 29.2 | |||||
AA | 14.3 | 35.7 | 0.193 | TT | 0 | 33.3 | 0.218 |
C-allele | 5.9 | 11.8 | C-allele | 12.0 | 20.0 | ||
Increased activeness | 29.2 | 16.1 | |||||
AA | 14.3 | 14.3 | 0.739 | TT | 0 | 50.0 | 0.016 * |
C-allele | 35.6 | 19.8 | C-allele | 36.1 | 8.2 | ||
Headache | 16.1 | 25.8 | |||||
AA | 7.1 | 28.6 | 0.363 | TT | 33.3 | 16.7 | 0.108 |
C-allele | 23.5 | 23.5 | C-allele | 12.0 | 28.0 | ||
Irritability | 29.2 | 29.2 | |||||
AA | 28.6 | 21.4 | 0.636 | TT | 16.7 | 33.3 | 0.558 |
C-allele | 17.6 | 23.5 | C-allele | 24.0 | 28.0 | ||
Muscular pain | 29.0 | 35.5 | |||||
AA | 14.3 | 35.7 | 0.251 | TT | 66.7 | 50.0 | 0.094 |
C-allele | 41.2 | 35.3 | C-allele | 20.0 | 32.0 | ||
Tachycardia/palpitations | 12.9 | 35.5 | |||||
AA | 14.3 | 42.9 | 0.632 | TT | 33.3 | 33.3 | 0.282 |
C-allele | 11.8 | 29.4 | C-allele | 12.0 | 36.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, A.; López-Samanes, Á.; Aguilar-Navarro, M.; Varillas-Delgado, D.; Rivilla-García, J.; Moreno-Pérez, V.; Del Coso, J. Effects of CYP1A2 and ADORA2A Genotypes on the Ergogenic Response to Caffeine in Professional Handball Players. Genes 2020, 11, 933. https://doi.org/10.3390/genes11080933
Muñoz A, López-Samanes Á, Aguilar-Navarro M, Varillas-Delgado D, Rivilla-García J, Moreno-Pérez V, Del Coso J. Effects of CYP1A2 and ADORA2A Genotypes on the Ergogenic Response to Caffeine in Professional Handball Players. Genes. 2020; 11(8):933. https://doi.org/10.3390/genes11080933
Chicago/Turabian StyleMuñoz, Alejandro, Álvaro López-Samanes, Millán Aguilar-Navarro, David Varillas-Delgado, Jesús Rivilla-García, Víctor Moreno-Pérez, and Juan Del Coso. 2020. "Effects of CYP1A2 and ADORA2A Genotypes on the Ergogenic Response to Caffeine in Professional Handball Players" Genes 11, no. 8: 933. https://doi.org/10.3390/genes11080933
APA StyleMuñoz, A., López-Samanes, Á., Aguilar-Navarro, M., Varillas-Delgado, D., Rivilla-García, J., Moreno-Pérez, V., & Del Coso, J. (2020). Effects of CYP1A2 and ADORA2A Genotypes on the Ergogenic Response to Caffeine in Professional Handball Players. Genes, 11(8), 933. https://doi.org/10.3390/genes11080933