Fifteen Shades of Grey: Combined Analysis of Genome-Wide SNP Data in Steppe and Mediterranean Grey Cattle Sheds New Light on the Molecular Basis of Coat Color
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cattle Pigmentation Phenotypes
2.2. Genotypic Data
2.3. Detection of FST-Outlier Markers
2.4. Gene Content of Regions Identified as under Selection and Network Analysis
3. Results
3.1. SNP Loci under Differential Selection
3.2. Gene Enrichment and Gene Regulatory Network Analysis
4. Discussion
4.1. Genes Identified as Differentially Selected in Grey vs. Non-Grey Cattle Breeds Are Mostly Involved in Pigmentation Biology
4.2. The Multi-Cohort FST-Outlier Method Is a Robust Approach for Selection Signature Detection
4.3. A Complex Molecular Architecture Underlies Coat Color and Patterning
4.4. Hair Greying: A Possible Zebuine Heritage in Taurine Cattle Breeds?
4.5. Gene Enrichment and Regulatory Network Analysis Underpin Pigmentation-Related Processes
4.6. The Grey Phenotype in Cattle May Share Similar Genetic Features with the Grey Phenotype in Horses and Human Syndromic Hypopigmentation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Espmark, Y.; Amundsen, T.; Rosenqvist, T. Animal Signals: Signalling and Signal Design in Animal Communication; Tapir Academic Press: Trondheim, Norway, 1998. [Google Scholar]
- Hoekstra, H.E. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 2006, 97, 222–234. [Google Scholar] [CrossRef] [Green Version]
- Protas, M.E.; Patel, N.H. Evolution of coloration patterns. Annu. Rev. Cell Dev. Biol. 2008, 24, 425–446. [Google Scholar] [CrossRef]
- Hubbard, J.K.; Uy, J.A.; Hauber, M.E.; Hoekstra, H.E.; Safran, R.J. Vertebrate pigmentation: From underlying genes to adaptive function. Trends Genet. 2010, 26, 231–239. [Google Scholar] [CrossRef]
- Caro, T.; Mallarino, R. Coloration in Mammals. Trends Ecol. Evol. 2020, 35, 357–366. [Google Scholar] [CrossRef]
- Rieder, S.; Taourit, S.; Mariat, D.; Langlois, B.; Guerin, G. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mamm. Genome 2001, 12, 450–455. [Google Scholar] [CrossRef]
- Steiner, C.C.; Weber, J.N.; Hoekstra, H.E. Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol. 2007, 5, e219. [Google Scholar] [CrossRef]
- Bellone, R.R. Pleiotropic effects of pigmentation genes in horses. Anim. Genet. 2010, 41, 100–110. [Google Scholar] [CrossRef]
- Fontanesi, L.; Russo, V. Molecular genetics of coat colour in pigs. Acta Agric. Slov. 2013, 4, 15–20. [Google Scholar]
- Petersen, J.L.; Mickelson, J.R.; Cothran, E.G.; Andersson, L.S.; Axelsson, J.; Bailey, E.; Bannasch, D.; Binns, M.M.; Borges, A.S.; Brama, P.; et al. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS ONE 2013, 8, e54997. [Google Scholar] [CrossRef] [Green Version]
- Kemper, K.E.; Goddard, M.E. Understanding and predicting complex traits: Knowledge from cattle. Hum. Mol. Genet. 2012, 21, R45–R51. [Google Scholar] [CrossRef] [Green Version]
- Kemper, K.E.; Visscher, P.M.; Goddard, M.E. Genetic architecture of body size in mammals. Genome Biol. 2012, 13, 244. [Google Scholar] [CrossRef] [Green Version]
- Pielberg, G.; Mikko, S.; Sandberg, K.; Andersson, L. Comparative linkage mapping of the Grey coat colour gene in horses. Anim. Genet. 2005, 36, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Rosengren Pielberg, G.; Golovko, A.; Sundstrom, E.; Curik, I.; Lennartsson, J.; Seltenhammer, M.H.; Druml, T.; Binns, M.; Fitzsimmons, C.; Lindgren, G.; et al. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat. Genet. 2008, 40, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Sundstrom, E.; Imsland, F.; Mikko, S.; Wade, C.; Sigurdsson, S.; Pielberg, G.R.; Golovko, A.; Curik, I.; Seltenhammer, M.H.; Solkner, J.; et al. Copy number expansion of the STX17 duplication in melanoma tissue from Grey horses. BMC Genom. 2012, 13, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curik, I.; Druml, T.; Seltenhammer, M.; Sundstrom, E.; Pielberg, G.R.; Andersson, L.; Solkner, J. Complex inheritance of melanoma and pigmentation of coat and skin in Grey horses. PLoS Genet. 2013, 9, e1003248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McTavish, E.J.; Decker, J.E.; Schnabel, R.D.; Taylor, J.F.; Hillis, D.M. New World cattle show ancestry from multiple independent domestication events. Proc. Natl. Acad. Sci. USA 2013, 110, E1398–E1406. [Google Scholar] [CrossRef] [Green Version]
- Decker, J.E.; McKay, S.D.; Rolf, M.M.; Kim, J.; Alcalá, A.M.; Sonstegard, T.S.; Hanotte, O.; Gotherstrom, A.; Seabury, C.M.; Praharani, L.; et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 2014, 10, e1004254. [Google Scholar] [CrossRef] [Green Version]
- Browett, S.; McHugo, G.; Richardson, I.W.; Magee, D.A.; Park, S.D.E.; Fahey, A.G.; Kearney, J.F.; Correia, C.N.; Randhawa, I.A.S.; MacHugh, D.E. Genomic Characterisation of the Indigenous Irish Kerry Cattle Breed. Front. Genet. 2018, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Barbato, M.; Hailer, F.; Upadhyay, M.; Del Corvo, M.; Colli, L.; Negrini, R.; Kim, E.S.; Crooijmans, R.; Sonstegard, T.; Ajmone-Marsan, P. Adaptive introgression from indicine cattle into white cattle breeds from Central Italy. Sci. Rep. 2020, 10, 1279. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Ben Jemaa, S.; Ciani, E.; Sottile, G.; Moscarelli, A.; Boussaha, M.; Montedoro, M.; Pilla, F.; Cassandro, M. Genome-wide detection of signatures of selection in three Valdostana cattle populations. J. Anim. Breed. Genet. 2020. [Google Scholar] [CrossRef]
- Gautier, M.; Laloe, D.; Moazami-Goudarzi, K. Insights into the genetic history of French cattle from dense SNP data on 47 worldwide breeds. PLoS ONE 2010, 5, e13038. [Google Scholar] [CrossRef] [PubMed]
- Moioli, B.; Napolitano, F.; Catillo, G. Genetic diversity between Piedmontese, Maremmana, and Podolica cattle breeds. J. Hered. 2004, 95, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Lorenzo, P.; Lancioni, H.; Ceccobelli, S.; Colli, L.; Cardinali, I.; Karsli, T.; Capodiferro, M.R.; Sahin, E.; Ferretti, L.; Marsan, P.A.; et al. Mitochondrial DNA variants of Podolian cattle breeds testify for a dual maternal origin. PLoS ONE 2018, 13, e0192567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, R.G.; La Scala, N., Jr.; Tonhati, H. Radiative properties of the skin and haircoat of cattle and other animals. Trans. ASAE 2003, 46, 913–918. [Google Scholar] [CrossRef]
- Flori, L.; Moazami-Goudarzi, K.; Alary, V.; Araba, A.; Boujenane, I.; Boushaba, N.; Casabianca, F.; Casu, S.; Ciampolini, R.; D’Acier, A.C.; et al. A genomic map of climate adaptation in Mediterranean cattle breeds. Mol. Ecol. 2019, 28, 1009–1029. [Google Scholar] [CrossRef]
- Ben Jemaa, S.; Rahal, O.; Gaouar, S.B.S.; Mastrangelo, S.; Boussaha, M.; Ciani, E. Genomic characterization of Algerian Guelmoise cattle and their genetic relationship with other North African populations inferred from SNP genotyping arrays. Livest. Sci. 2018, 217, 19–25. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Ciani, E.; Ajmone Marsan, P.; Bagnato, A.; Battaglini, L.; Bozzi, R.; Carta, A.; Catillo, G.; Cassandro, M.; Casu, S.; et al. Conservation status and historical relatedness of Italian cattle breeds. Genet. Sel. Evol. 2018, 50, 35. [Google Scholar] [CrossRef] [Green Version]
- Ramljak, J.; Bunevski, G.; Bytyqi, H.; Markovic, B.; Brka, M.; Ivankovic, A.; Kume, K.; Stojanovic, S.; Nikolov, V.; Simcic, M.; et al. Conservation of a domestic metapopulation structured into related and partly admixed strains. Mol. Ecol. 2018, 27, 1633–1650. [Google Scholar] [CrossRef]
- Yurchenko, A.; Yudin, N.; Aitnazarov, R.; Plyusnina, A.; Brukhin, V.; Soloshenko, V.; Lhasaranov, B.; Popov, R.; Paronyan, I.A.; Plemyashov, K.V.; et al. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity 2018, 120, 125–137. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Foll, M.; Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 2008, 180, 977–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Simoni Gouveia, J.J.; da Silva, M.V.G.B.; Paiva, S.R.; de Oliveira, S.M.P. Identification of selection signatures in livestock species. Genet. Mol. Biol. 2014, 37, 330–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKay, S.D.; Schnabel, R.D.; Murdoch, B.M.; Matukumalli, L.K.; Aerts, J.; Coppieters, W.; Crews, D.; Neto, E.D.; Gill, C.A.; Gao, C.; et al. Whole genome linkage disequilibrium maps in cattle. BMC Genet. 2007, 8, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naderi, S.; Moradi, M.H.; Farhadian, M.; Yin, T.; Jaeger, M.; Scheper, C.; Korkuc, P.; Brockmann, G.A.; Konig, S.; May, K. Assessing selection signatures within and between selected lines of dual-purpose black and white and German Holstein cattle. Anim. Genet. 2020, 51, 391–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiorano, A.M.; Lourenco, D.L.; Tsuruta, S.; Ospina, A.M.T.; Stafuzza, N.B.; Masuda, Y.; Filho, A.E.V.; Cyrillo, J.; Curi, R.A.; Silva, J. Assessing genetic architecture and signatures of selection of dual purpose Gir cattle populations using genomic information. PLoS ONE 2018, 13, e0200694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorbolini, S.; Gaspa, G.; Steri, R.; Dimauro, C.; Cellesi, M.; Stella, A.; Marras, G.; Marsan, P.A.; Valentini, A.; Macciotta, N.P. Use of canonical discriminant analysis to study signatures of selection in cattle. Genet. Sel. Evol. 2016, 48, 58. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Soufan, O.; Ewald, J.; Hancock, R.E.W.; Basu, N.; Xia, J. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acid Res. 2019, 47, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Fornes, O.; Castro-Mondragon, J.A.; Khan, A.; van der Lee, R.; Zhang, X.; Richmond, P.A.; Modi, B.P.; Correard, S.; Gheorghe, M.; Baranasic, D.; et al. JASPAR 2020: Update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020, 48, D87–D92. [Google Scholar] [CrossRef]
- Megdiche, S.; Mastrangelo, S.; Ben Hamouda, M.; Lenstra, J.A.; Ciani, E. A Combined Multi-Cohort Approach Reveals Novel and Known Genome-Wide Selection Signatures for Wool Traits in Merino and Merino-Derived Sheep Breeds. Front. Genet. 2019, 10, 1025. [Google Scholar] [CrossRef] [Green Version]
- Bian, Y.; Wei, G.; Song, X.; Yuan, L.; Chen, H.; Ni, T.; Lu, D. Global downregulation of pigmentation-associated genes in human premature hair graying. Exp. Ther. Med. 2019, 18, 1155–1163. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Zhang, L.; Wang, S.; Chen, F.; Gu, Y.; Hong, E.; Yu, Y.; Ni, X.; Guo, Y.; Shi, T.; et al. Whole Genome Sequencing Identifies Novel Compound Heterozygous Lysosomal Trafficking Regulator Gene Mutations Associated with Autosomal Recessive Chediak-Higashi Syndrome. Sci. Rep. 2017, 7, 41308. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.L.; Zhao, X.Q.; Zhang, B.X.; Xuan, F.; Guo, H.M.; Ma, F.T. A novel frameshift mutation of Chediak-Higashi syndrome and treatment in the accelerated phase. Braz. J. Med. Biol. Res. 2017, 50, e5727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudramurthy, P.; Lokanatha, H. Chediak-Higashi Syndrome: A Case Series from Karnataka, India. Indian J. Dermatol. 2015, 60, 524. [Google Scholar] [CrossRef] [PubMed]
- Sood, S.; Biswas, B.; Kaushal, V.; Mandal, T. Chediak-higashi syndrome in accelerated phase: A rare case report with review of literature. Indian J. Hematol. Blood Transfus. 2014, 30, 195–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patne, S.C.; Kumar, S.; Bagri, N.K.; Kumar, A.; Shukla, J. Chediak-higashi syndrome: A case report. Indian J. Hematol. Blood Transfus. 2013, 29, 80–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Runkel, F.; Bussow, H.; Seburn, K.L.; Cox, G.A.; Ward, D.M.; Kaplan, J.; Franz, T. Grey, a novel mutation in the murine Lyst gene, causes the beige phenotype by skipping of exon 25. Mamm. Genome 2006, 17, 203–210. [Google Scholar] [CrossRef]
- Westbroek, W.; Adams, D.; Huizing, M.; Koshoffer, A.; Dorward, H.; Tinloy, B.; Parkes, J.; Helip-Wooley, A.; Kleta, R.; Tsilou, E.; et al. Cellular defects in Chediak-Higashi syndrome correlate with the molecular genotype and clinical phenotype. J. Investig. Dermatol. 2007, 127, 2674–2677. [Google Scholar] [CrossRef] [Green Version]
- Mohlig, H.; Mathieu, S.; Thon, L.; Frederiksen, M.C.; Ward, D.M.; Kaplan, J.; Schutze, S.; Kabelitz, D.; Adam, D. The WD repeat protein FAN regulates lysosome size independent from abnormal downregulation/membrane recruitment of protein kinase C. Exp. Cell Res. 2007, 313, 2703–2718. [Google Scholar] [CrossRef] [Green Version]
- Adameyko, I.; Lallemend, F.; Aquino, J.B.; Pereira, J.A.; Topilko, P.; Muller, T.; Fritz, N.; Beljajeva, A.; Mochii, M.; Liste, I.; et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 2009, 139, 366–379. [Google Scholar] [CrossRef] [Green Version]
- Graham, A. Melanocyte production: Dark side of the Schwann cell. Curr. Biol. 2009, 19, R1116–R1117. [Google Scholar] [CrossRef] [Green Version]
- Cieslak, M.; Reissmann, M.; Hofreiter, M.; Ludwig, A. Colours of domestication. Biol. Rev. Camb. Philos Soc. 2011, 86, 885–899. [Google Scholar] [CrossRef] [PubMed]
- Lajoie, P.; Nabi, I.R. Lipid rafts, caveolae, and their endocytosis. Int Rev Cell Mol Biol 2010, 282, 135–163. [Google Scholar] [PubMed]
- Segawa, K.; Nagata, S. An Apoptotic ‘Eat Me’ Signal: Phosphatidylserine Exposure. Trends Cell Biol. 2015, 25, 639–650. [Google Scholar] [CrossRef]
- Kantanen, J.; Edwards, C.J.; Bradley, D.G.; Viinalass, H.; Thessler, S.; Ivanova, Z.; Kiselyova, T.; Cinkulov, M.; Popov, R.; Stojanovic, S.; et al. Maternal and paternal genealogy of Eurasian taurine cattle (Bos taurus). Heredity 2009, 103, 404–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akis, I.; Oztabak, K. Bos indicus associated alleles in Anatolian cattle breeds support zebu introgression into Near east. J. Biol. Res. 2013, 19, 131–138. [Google Scholar]
- Jones, E.R.; Fortes, G.G.; Connell, S.; Siska, V.; Eriksson, A.; Martiniano, R.; McLaughlin, R.L.; Llorente, M.G.; Cassidy, L.M.; Gamba, C.; et al. Upper palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 2015, 6, 8912–8919. [Google Scholar] [CrossRef] [Green Version]
- Haak, W.; Lazaridis, I.; Patterson, N.; Rohland, N.; Mallick, S.; Llamas, B.; Brandt, G.; Nordenfelt, S.; Harney, E.; Stewardson, K.; et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 2015, 522, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Park, S.D.E.; Magee, D.A.; Mcgettigan, P.A.; Teasdale, M.D.; Edwards, C.J.; Lohan, A.J.; Murphy, A.; Braud, M.; Donoghue, M.T.A.; Liu, Y.; et al. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol. 2015, 16, 234–248. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Cai, Y.; Chen, Q.; Li, R.; Wang, K.; Huang, Y.; Hu, S.; Huang, S.; Zhang, H.; Zheng, Z.; et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat. Commun. 2018, 9, 2337–2349. [Google Scholar] [CrossRef]
- Upadhyay, M.; Eriksson, S.; Mikko, S.; Strandberg, E.; Stalhammar, H.; Groenen, M.A.M.; Crooijmans, R.; Andersson, G.; Johansson, A.M. Genomic relatedness and diversity of Swedish native cattle breeds. Genet. Sel. Evol. 2019, 51, 56. [Google Scholar] [CrossRef] [Green Version]
- Cymbron, T.; Freeman, A.R.; Isabel Malheiro, M.; Vigne, J.D.; Bradley, D.G. Microsatellite diversity suggests different histories for Mediterranean and Northern European cattle populations. Proc. Biol. Sci. 2005, 272, 1837–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortes, M.R.; Reverter, A.; Hawken, R.J.; Bolormaa, S.; Lehnert, S.A. Candidate genes associated with testicular development, sperm quality, and hormone levels of inhibin, luteinizing hormone, and insulin-like growth factor 1 in Brahman bulls. Biol. Reprod. 2012, 87, 58. [Google Scholar] [CrossRef]
- Fortes, M.R.; Kemper, K.; Sasazaki, S.; Reverter, A.; Pryce, J.E.; Barendse, W.; Bunch, R.; McCulloch, R.; Harrison, B.; Bolormaa, S.; et al. Evidence for pleiotropism and recent selection in the PLAG1 region in Australian beef cattle. Anim. Genet. 2013, 44, 636–647. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.O.; Kizilkaya, K.; Garrick, D.J.; Fernando, R.L.; Reecy, J.M.; Weaber, R.L.; Silver, G.A.; Thomas, M.G. Heritability and Bayesian genome-wide association study of first service conception and pregnancy in Brangus heifers. J. Anim. Sci. 2013, 91, 605–612. [Google Scholar] [CrossRef]
- Utsunomiya, Y.T.; do Carmo, A.S.; Carvalheiro, R.; Neves, H.H.; Matos, M.C.; Zavarez, L.B.; Perez O’Brien, A.M.; Solkner, J.; McEwan, J.C.; Cole, J.B.; et al. Genome-wide association study for birth weight in Nellore cattle points to previously described orthologous genes affecting human and bovine height. BMC Genet. 2013, 14, 52. [Google Scholar] [CrossRef] [Green Version]
- Canovas, A.; Reverter, A.; DeAtley, K.L.; Ashley, R.L.; Colgrave, M.L.; Fortes, M.R.; Islas-Trejo, A.; Lehnert, S.; Porto-Neto, L.; Rincon, G.; et al. Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef cattle. PLoS ONE 2014, 9, e102551. [Google Scholar] [CrossRef] [Green Version]
- Utsunomiya, Y.T.; Carmo, A.S.; Neves, H.H.; Carvalheiro, R.; Matos, M.C.; Zavarez, L.B.; Ito, P.K.; Perez O’Brien, A.M.; Solkner, J.; Porto-Neto, L.R.; et al. Genome-wide mapping of loci explaining variance in scrotal circumference in Nellore cattle. PLoS ONE 2014, 9, e88561. [Google Scholar] [CrossRef] [Green Version]
- Hartati, H.; Utsunomiya, Y.T.; Sonstegard, T.S.; Garcia, J.F.; Jakaria, J.; Muladno, M. Evidence of Bos javanicus x Bos indicus hybridization and major QTLs for birth weight in Indonesian Peranakan Ongole cattle. BMC Genet. 2015, 16, 75. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.G.T.; Utsunomiya, Y.T.; Milanesi, M.; Torrecilha, R.B.P.; Carmo, A.S.; Neves, H.H.R.; Carvalheiro, R.; Marsan, P.A.; Sonstegard, T.S.; Sölkner, J.; et al. Pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle are modulators of growth. PLoS ONE 2016, 11, e0158165. [Google Scholar] [CrossRef]
- Dias, M.M.; Canovas, A.; Mantilla-Rojas, C.; Riley, D.G.; Luna-Nevarez, P.; Coleman, S.J.; Speidel, S.E.; Enns, R.M.; Islas-Trejo, A.; Medrano, J.F.; et al. SNP detection using RNA-sequences of candidate genes associated with puberty in cattle. Genet. Mol. Res. 2017, 16. [Google Scholar] [CrossRef]
- Cheruiyot, E.K.; Bett, R.C.; Amimo, J.O.; Zhang, Y.; Mrode, R.; Mujibi, F.D.N. Signatures of selection in admixed dairy cattle in Tanzania. Front Genet. 2018, 9, 607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeAtley, K.L.; Colgrave, M.L.; Canovas, A.; Wijffels, G.; Ashley, R.L.; Silver, G.A.; Rincon, G.; Medrano, J.F.; Islas-Trejo, A.; Fortes, M.R.S.; et al. Neuropeptidome of the hypothalamus and pituitary gland of indicine x taurine heifers: evidence of differential neuropeptide processing in the pituitary gland before and after puberty. J. Proteome Res. 2018, 17, 1852–1865. [Google Scholar] [CrossRef] [PubMed]
- Melo, T.P.; Fortes, M.R.S.; Bresolin, T.; Mota, L.F.M.; Albuquerque, L.G.; Carvalheiro, R. Multitrait meta-analysis identified genomic regions associated with sexual precocity in tropical beef cattle. J. Anim. Sci. 2018, 96, 4087–4099. [Google Scholar] [CrossRef] [PubMed]
- Terakado, A.P.N.; Costa, R.B.; de Camargo, G.M.F.; Irano, N.; Bresolin, T.; Takada, L.; Carvalho, C.V.D.; Oliveira, H.N.; Carvalheiro, R.; Baldi, F.; et al. Genome-wide association study for growth traits in Nellore cattle. Animal 2018, 12, 1358–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, T.P.; Fortes, M.R.S.; Fernandes Junior, G.A.; Albuquerque, L.G.; Carvalheiro, R. Multi-breed validation study unraveled genomic regions associated with puberty traits segregating across tropically adapted breeds. J. Anim. Sci. 2019, 97, 3027–3033. [Google Scholar] [CrossRef]
- Grigoletto, L.; Ferraz, J.B.S.; Oliveira, H.R.; Eler, J.P.; Bussiman, F.O.; Silva, B.C.A.; Baldi, F.; Brito, L.F. Genetic architecture of carcass and meat quality traits in Montana tropical® composite beef cattle. Front Genet. 2020, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Mota, L.; Lopes, F.B.; Júnior, G.A.F.; Rosa, G.J.M.; Magalhães, A.F.B.; Carvalheiro, R.; De Albuquerque, L.G. Genome-wide scan highlights the role of candidate genes on phenotypic plasticity for age at first calving in Nellore heifers. Sci. Rep. 2020, 10, 6481. [Google Scholar] [CrossRef] [Green Version]
- Utsunomiya, Y.T.; Milanesi, M.; Utsunomiya, A.T.H.; Torrecilha, R.B.P.; Kim, E.S.; Costa, M.S.; Aguiar, T.S.; Schroeder, S.; do Carmo, A.S.; Carvalheiro, R.; et al. A PLAG1 mutation contributed to stature recovery in modern cattle. Sci. Rep. 2017, 7, 17140. [Google Scholar] [CrossRef]
- Koufariotis, L.; Hayes, B.J.; Kelly, M.; Burns, B.M.; Lyons, R.; Stothard, P.; Chamberlain, A.J.; Moore, S. Sequencing the mosaic genome of Brahman cattle identifies historic and recent introgression including polled. Sci. Rep. 2018, 8, 17761. [Google Scholar] [CrossRef]
- Raposo, G.; Marks, M.S. Melanosomes--dark organelles enlighten endosomal membrane transport. Nat. Rev. Mol. Cell Biol. 2007, 8, 786–797. [Google Scholar] [CrossRef] [Green Version]
- Eckhart, L.; Tschachler, E.; Gruber, F. Autophagic control of skin aging. Front Cell Dev. Biol. 2019, 7, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobin, D.J. Biochemistry of human skin--our brain on the outside. Chem. Soc. Rev. 2006, 35, 52–67. [Google Scholar] [CrossRef] [PubMed]
Test Breed (GREY) | N | Reference Breed (non-GREY) N = 24 | Reference Breed (non-GREY) N = 35 | Reference Breed (non-GREY) N = 20 | Reference Breed (non-GREY) N = 33 |
---|---|---|---|---|---|
Chianina | 23 | Holstein | Limousin | Angus | Charolais |
Corsa | 32 | Holstein | Limousin | Angus | Charolais |
Croatian Podolian | 24 | Holstein | Limousin | Angus | Charolais |
Garfagnina | 23 | Holstein | Limousin | Angus | Charolais |
Gascon | 20 | Holstein | Limousin | Angus | Charolais |
Guelmoise | 24 | Holstein | Limousin | Angus | Charolais |
Hungarian Grey | 24 | Holstein | Limousin | Angus | Charolais |
Italian Podolian | 24 | Holstein | Limousin | Angus | Charolais |
Marchigiana | 22 | Holstein | Limousin | Angus | Charolais |
Maremmana | 24 | Holstein | Limousin | Angus | Charolais |
Piedmontese | 20 | Holstein | Limousin | Angus | Charolais |
Romagnola | 21 | Holstein | Limousin | Angus | Charolais |
Turkish Grey | 23 | Holstein | Limousin | Angus | Charolais |
Tyrolean Grey | 50 | Holstein | Limousin | Angus | Charolais |
Ukrainian Grey | 48 | Holstein | Limousin | Angus | Charolais |
CHR | SNP ID | No. OF SIGNIFICANT CONTRASTS | |||||||
---|---|---|---|---|---|---|---|---|---|
ANGUS | CHAROLAIS | HOLSTEIN | LIMOUSIN | OVERALL | POSITION (ARS-UCD1.2) | CONSIDERED INTERVAL | GENES | ||
2 | Hapmap49624-BTA-47893 | 0 | 0 | 0 | 15 | 15 | 6760630 | 6510630-7010630 | PMS1, ORMDL1, OSGEPL1, ANKAR, ASNSD1, SLC40A1, LOC100848294, WDR75 |
4 | Hapmap53144-ss46525999 | 0 | 0 | 15 | 0 | 15 | 76874783 | 76624783-77124783 | MYO1G, LOC112446527, PURB, MIR4657, H2AFV, PPIA, ZMIZ2, LOC112446406, OGDH, TMED4, DDX56, NPC1L1, NUDCD3, LOC104972146, CAMK2B, YKT6 |
14 | BTB-01532239 | 2 | 10 | 9 | 0 | 21 | 22781305 | 22531305-23031305 | XKR4, TRNAT-AGU |
14 | BTB-01530788 | 3 | 9 | 10 | 9 | 31 | 22867321 | 22617321-23117321 | XKR4, TRNAT-AGU, TMEM68, TGS1 |
14 | BTB-00557532 | 6 | 10 | 9 | 11 | 36 | 22986080 | 22736080-23236080 | XKR4, TRNAT-AGU, TMEM68, TGS1, LYN |
14 | Hapmap46986-BTA-34282 | 2 | 3 | 2 | 9 | 16 | 23630896 | 23380896-23880896 | CHCHD7, SDR16C5, SDR16C6, PENK, LOC112449660, IMPAD1 |
14 | Hapmap46735-BTA-86653 | 2 | 12 | 0 | 13 | 27 | 23725488 | 23475488-23975488 | SDR16C6, PENK, LOC112449660, IMPAD1 |
14 | ARS-BFGL-NGS-36089 | 1 | 5 | 0 | 10 | 16 | 24019648 | 23769648-24269648 | LOC112449660, IMPAD1 |
14 | Hapmap30932-BTC-011225 | 0 | 11 | 0 | 8 | 19 | 25082860 | 24832860-25332860 | LOC107133116, TOX, TRNAC-GCA |
14 | BTB-01280026 | 4 | 9 | 0 | 4 | 17 | 25354206 | 25104206-25604206 | TOX, TRNAC-GCA |
14 | Hapmap27934-BTC-065223 | 0 | 10 | 0 | 5 | 15 | 25472332 | 25222332-25722332 | TOX |
26 | ARS-BFGL-NGS-11271 | 2 | 0 | 13 | 0 | 15 | 23039524 | 22789524-23289524 | LDB1, PPRC1, LOC112444554, NOLC1, LOC112444524, LOC101902227, LOC785229, ELOVL3, PITX3, GBF1, NFKB2, PSD, FBXL15, CUEDC2, LOC112444535, MIR146B, MFSD13A, ACTR1A, SUFU, TRIM8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senczuk, G.; Guerra, L.; Mastrangelo, S.; Campobasso, C.; Zoubeyda, K.; Imane, M.; Marletta, D.; Kusza, S.; Karsli, T.; Gaouar, S.B.S.; et al. Fifteen Shades of Grey: Combined Analysis of Genome-Wide SNP Data in Steppe and Mediterranean Grey Cattle Sheds New Light on the Molecular Basis of Coat Color. Genes 2020, 11, 932. https://doi.org/10.3390/genes11080932
Senczuk G, Guerra L, Mastrangelo S, Campobasso C, Zoubeyda K, Imane M, Marletta D, Kusza S, Karsli T, Gaouar SBS, et al. Fifteen Shades of Grey: Combined Analysis of Genome-Wide SNP Data in Steppe and Mediterranean Grey Cattle Sheds New Light on the Molecular Basis of Coat Color. Genes. 2020; 11(8):932. https://doi.org/10.3390/genes11080932
Chicago/Turabian StyleSenczuk, Gabriele, Lorenzo Guerra, Salvatore Mastrangelo, Claudia Campobasso, Kaouadji Zoubeyda, Meghelli Imane, Donata Marletta, Szilvia Kusza, Taki Karsli, Semir Bachir Souheil Gaouar, and et al. 2020. "Fifteen Shades of Grey: Combined Analysis of Genome-Wide SNP Data in Steppe and Mediterranean Grey Cattle Sheds New Light on the Molecular Basis of Coat Color" Genes 11, no. 8: 932. https://doi.org/10.3390/genes11080932
APA StyleSenczuk, G., Guerra, L., Mastrangelo, S., Campobasso, C., Zoubeyda, K., Imane, M., Marletta, D., Kusza, S., Karsli, T., Gaouar, S. B. S., Pilla, F., Ciani, E., & The Bovita Consortium. (2020). Fifteen Shades of Grey: Combined Analysis of Genome-Wide SNP Data in Steppe and Mediterranean Grey Cattle Sheds New Light on the Molecular Basis of Coat Color. Genes, 11(8), 932. https://doi.org/10.3390/genes11080932