Clinical Significance of Non-Invasive Prenatal Screening for Trisomy 7: Cohort Study and Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Genome-Wide NIPS
2.3. Invasive Diagnostic Testing and Clinical Follow-Up
2.4. Summary of Published Data
3. Results
3.1. Characteristics of Pregnancies Positive for Trisomy 7 by NIPS
3.2. Confirmatory Diagnostic Testing and Clinical Follow-Up
3.3. Published Data Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nussbaum, R.L.; McInnes, R.R.; Willard, H.F. Thompson & Thompson Genetics in Medicine, 7th ed.; Elsevier: Philadelphia, PA, USA, 2007. [Google Scholar]
- Gardner, R.J.M.; Sutherland, G.R.; Shaffer, L.G. Chromosome Abnormalities and Genetic Counseling, 4th ed.; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Wang, H.; Dong, Z.; Zhang, R.; Chau, M.H.K.; Yang, Z.; Tsang, K.Y.C.; Wong, H.K.; Gui, B.; Meng, Z.; Xiao, K.; et al. Low-pass genome sequencing versus chromosomal microarray analysis: Implementation in prenatal diagnosis. Genet. Med. 2020, 22, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Choy, K.W.; Wang, H.; Shi, M.; Chen, J.; Yang, Z.; Zhang, R.; Yan, H.; Wang, Y.; Chen, S.; Chau, M.H.K.; et al. Prenatal Diagnosis of Fetuses With Increased Nuchal Translucency by Genome Sequencing Analysis. Front. Genet. 2019, 10, 761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akolekar, R.; Beta, J.; Picciarelli, G.; Ogilvie, C.; D’Antonio, F. Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2015, 45, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Vossaert, L.; Wang, Q.; Salman, R.; Zhuo, X.; Qu, C.; Henke, D.; Seubert, R.; Chow, J.; U’Ren, L.; Enright, B.; et al. Reliable detection of subchromosomal deletions and duplications using cell-based noninvasive prenatal testing. Prenat. Diagn. 2018, 38, 1069–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vossaert, L.; Wang, Q.; Salman, R.; McCombs, A.K.; Patel, V.; Qu, C.; Mancini, M.A.; Edwards, D.P.; Malovannaya, A.; Liu, P.; et al. Validation Studies for Single Circulating Trophoblast Genetic Testing as a Form of Noninvasive Prenatal Diagnosis. Am. J. Hum. Genet. 2019, 105, 1262–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taglauer, E.S.; Wilkins-Haug, L.; Bianchi, D.W. Review: Cell-free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta 2014, 35, S64–S68. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Lu, S.; Pu, D.; Zhang, H.; Yang, L.; Zeng, P.; Su, F.; Chen, Z.; Guo, M.; Gu, Y.; et al. Detection of fetal trisomy and single gene disease by massively parallel sequencing of extracellular vesicle DNA in maternal plasma: A proof-of-concept validation. BMC Med. Genom. 2019, 12, 151. [Google Scholar] [CrossRef]
- Benn, P.; Malvestiti, F.; Grimi, B.; Maggi, F.; Simoni, G.; Grati, F.R. Rare autosomal trisomies: Comparison of detection through cell-free DNA analysis and direct chromosome preparation of chorionic villus samples. Ultrasound Obstet. Gynecol. 2019, 54, 458–467. [Google Scholar] [CrossRef] [Green Version]
- van der Meij, K.R.M.; Sistermans, E.A.; Macville, M.V.E.; Stevens, S.J.C.; Bax, C.J.; Bekker, M.N.; Bilardo, C.M.; Boon, E.M.J.; Boter, M.; Diderich, K.E.M.; et al. TRIDENT-2: National Implementation of Genome-wide Non-invasive Prenatal Testing as a First-Tier Screening Test in the Netherlands. Am. J. Hum. Genet. 2019, 105, 1091–1101. [Google Scholar] [CrossRef]
- de Wergifosse, S.; Bevilacqua, E.; Mezela, I.; El Haddad, S.; Gounongbe, C.; de Marchin, J.; Maggi, V.; Conotte, S.; Badr, D.A.; Fils, J.F.; et al. Cell-free DNA analysis in maternal blood: Comparing genome-wide versus targeted approach as a first-line screening test. J. Matern Fetal Neonatal Med. 2019. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.; Cram, D.S.; Tan, H.; Linpeng, S.; Liu, Y.; Sun, H.; Zhang, Y.; Tian, F.; Zhu, H.; Xu, M.; et al. Clinical utility of noninvasive prenatal screening for expanded chromosome disease syndromes. Genet. Med. 2019, 21, 1998–2006. [Google Scholar] [CrossRef] [PubMed]
- Kalousek, D.K.; Langlois, S.; Robinson, W.P.; Telenius, A.; Bernard, L.; Barrett, I.J.; Howard-Peebles, P.N.; Wilson, R.D. Trisomy 7 CVS mosaicism: Pregnancy outcome, placental and DNA analysis in 14 cases. Am. J. Med. Genet. 1996, 65, 348–352. [Google Scholar] [CrossRef]
- Font-Montgomery, E.; Stone, K.M.; Weaver, D.D.; Vance, G.H.; Das, S.; Thurston, V.C. Clinical outcome and follow-up of the first reported case of Russell-Silver syndrome with the unique combination of maternal uniparental heterodisomy 7 and mosaic trisomy 7. Birth Defects Res. A Clin. Mol. Teratol. 2005, 73, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Malvestiti, F.; Agrati, C.; Grimi, B.; Pompilii, E.; Izzi, C.; Martinoni, L.; Gaetani, E.; Liuti, M.R.; Trotta, A.; Maggi, F.; et al. Interpreting mosaicism in chorionic villi: Results of a monocentric series of 1001 mosaics in chorionic villi with follow-up amniocentesis. Prenat. Diagn. 2015, 35, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Yang, J.; Hou, Y.; Guo, F.; Peng, H.; Wang, D.; Du, Q.; Yin, A. The significance of trisomy 7 mosaicism in noninvasive prenatal screening. Hum. Genom. 2019, 13, 18. [Google Scholar] [CrossRef] [PubMed]
- Pertile, M.D.; Halks-Miller, M.; Flowers, N.; Barbacioru, C.; Kinnings, S.L.; Vavrek, D.; Seltzer, W.K.; Bianchi, D.W. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease. Sci. Transl. Med. 2017, 9, aan1240. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, F.; Bono, S.; Pizzuti, F.; Duca, S.; Polverari, A.; Faieta, M.; Baldi, M.; Diano, L.; Spinella, F. The clinical utility of genome-wide non invasive prenatal screening. Prenat. Diagn. 2017, 37, 593–601. [Google Scholar] [CrossRef]
- Chau, M.H.K.; Lam, Y.M.D.; Zhu, X.; Kwok, Y.K.Y.; Ting, Y.H.; Chan, W.P.; Shi, M.; Cheung, W.H.; Lau, T.K.; Ville, Y.; et al. The utility of genome-wide cell-free DNA screening in the prenatal diagnosis of Pallister-Killian syndrome. Prenat. Diagn. 2020, 40, 1005–1012. [Google Scholar] [CrossRef]
- Yu, S.C.; Jiang, P.; Chan, K.C.; Faas, B.H.; Choy, K.W.; Leung, W.C.; Leung, T.Y.; Lo, Y.M.; Chiu, R.W. Combined Count- and Size-Based Analysis of Maternal Plasma DNA for Noninvasive Prenatal Detection of Fetal Subchromosomal Aberrations Facilitates Elucidation of the Fetal and/or Maternal Origin of the Aberrations. Clin. Chem. 2017, 63, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Brady, P.; Brison, N.; Van Den Bogaert, K.; de Ravel, T.; Peeters, H.; Van Esch, H.; Devriendt, K.; Legius, E.; Vermeesch, J.R. Clinical implementation of NIPT—Technical and biological challenges. Clin. Genet. 2016, 89, 523–530. [Google Scholar] [CrossRef]
- Ehrich, M.; Tynan, J.; Mazloom, A.; Almasri, E.; McCullough, R.; Boomer, T.; Grosu, D.; Chibuk, J. Genome-wide cfDNA screening: Clinical laboratory experience with the first 10,000 cases. Genet. Med. 2017, 19, 1332–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pescia, G.; Guex, N.; Iseli, C.; Brennan, L.; Osteras, M.; Xenarios, I.; Farinelli, L.; Conrad, B. Cell-free DNA testing of an extended range of chromosomal anomalies: Clinical experience with 6388 consecutive cases. Genet. Med. 2017, 19, 169–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, F.; Bonifacio, M.; Sandow, R.; Ellis, K.; Smet, M.E.; McLennan, A. Rare autosomal trisomies: Important and not so rare. Prenat. Diagn. 2018, 38, 765–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Opstal, D.; van Maarle, M.C.; Lichtenbelt, K.; Weiss, M.M.; Schuring-Blom, H.; Bhola, S.L.; Hoffer, M.J.V.; Huijsdens-van Amsterdam, K.; Macville, M.V.; Kooper, A.J.A.; et al. Origin and clinical relevance of chromosomal aberrations other than the common trisomies detected by genome-wide NIPS: Results of the TRIDENT study. Genet. Med. 2018, 20, 480–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, J.; Li, R.; Zhang, Y.; Jing, X.; Yu, Q.; Li, F.; Li, Y.; Zhang, L.; Yi, C.; Li, J.; et al. Pregnancy outcome of autosomal aneuploidies other than common trisomies detected by noninvasive prenatal testing in routine clinical practice. Prenat. Diagn. 2018, 38, 849–857. [Google Scholar] [CrossRef]
- Chatron, N.; Till, M.; Abel, C.; Bardel, C.; Ramond, F.; Sanlaville, D.; Schluth-Bolard, C. Detection of rare autosomal trisomies through non-invasive prenatal testing: Benefits for pregnancy management. Ultrasound Obstet. Gynecol. 2019, 53, 129–130. [Google Scholar] [CrossRef]
- Grati, F.R.; Ferreira, J.; Benn, P.; Izzi, C.; Verdi, F.; Vercellotti, E.; Dalpiaz, C.; D’Ajello, P.; Filippi, E.; Volpe, N.; et al. Outcomes in pregnancies with a confined placental mosaicism and implications for prenatal screening using cell-free DNA. Genet. Med. 2020, 22, 309–316. [Google Scholar] [CrossRef]
- Bianchi, D.W. Should we ‘open the kimono’ to release the results of rare autosomal aneuploidies following noninvasive prenatal whole genome sequencing? Prenat. Diagn. 2017, 37, 123–125. [Google Scholar] [CrossRef]
- Oepkes, D.; Page-Christiaens, G.C.; Bax, C.J.; Bekker, M.N.; Bilardo, C.M.; Boon, E.M.; Schuring-Blom, G.H.; Coumans, A.B.; Faas, B.H.; Galjaard, R.H.; et al. Trial by Dutch laboratories for evaluation of non-invasive prenatal testing. Part I-clinical impact. Prenat. Diagn. 2016, 36, 1083–1090. [Google Scholar] [CrossRef]
- Birko, S.; Ravitsky, V.; Dupras, C.; Le Clerc-Blain, J.; Lemoine, M.E.; Affdal, A.O.; Haidar, H.; Laberge, A.M. The value of non-invasive prenatal testing: Preferences of Canadian pregnant women, their partners, and health professionals regarding NIPT use and access. BMC Pregnancy Childbirth 2019, 19, 22. [Google Scholar] [CrossRef]
- Gregg, A.R.; Skotko, B.G.; Benkendorf, J.L.; Monaghan, K.G.; Bajaj, K.; Best, R.G.; Klugman, S.; Watson, M.S. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: A position statement of the American College of Medical Genetics and Genomics. Genet. Med. 2016, 18, 1056–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benn, P.; Borrell, A.; Chiu, R.W.; Cuckle, H.; Dugoff, L.; Faas, B.; Gross, S.; Huang, T.; Johnson, J.; Maymon, R.; et al. Position statement from the Chromosome Abnormality Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis. Prenat. Diagn. 2015, 35, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, M.; Wang, H.; Guo, Y.; Chau, M.H.K.; Yan, H.; Cao, Y.; Kwok, Y.K.Y.; Chen, J.; Hui, A.S.Y.; et al. Clinical utility of expanded noninvasive prenatal screening and chromosomal microarray analysis in high risk pregnancies. Ultrasound Obstet. Gynecol. 2020. [Google Scholar] [CrossRef] [PubMed]
Cohort 1 (n = 23) | Cohort 2 (n = 16) | Cohort 1 vs. Cohort 2 (p Value) | |
---|---|---|---|
Maternal age (years) | |||
Median (range) | 32 (23–48) | 30 (23–40) | 0.217 |
Mean ± SD | 33.1 ± 6.3 | 30.9 ± 4.7 | |
Maternal BMI (kg/m2) | |||
Median (range) | 20.15 (16.61–27.04) | 23.04 (18.13–26.17) | <0.05 |
Mean ± SD | 20.90 ± 2.59 | 22.6 ± 2.5 | |
GA at sampling (weeks) | |||
Median (range) | 14.3 (10–37.4) | 18.4 (12–32.3) | <0.05 |
Mean ± SD | 15.6 ± 5.6 | 19.3 ± 4.6 | |
NIPT result | |||
Fetal fraction (%) | |||
Median (range) | 15.91 (5.4–30.79) | 15.1 (10–34.6) | 0.899 |
Mean ± SD | 15.99 ± 5.55 | 17.24 ± 7.21 | |
Count-based Z score | |||
Median (range) | 23.9 (9.25–53.8) | 6.7 (3.08–21.79) | <0.05 |
Mean ± SD | 24.2 ± 10.9 | 8.8 ± 5.7 | |
Size-based Z score | |||
Median (range) | 14.1 (5.27–36.6) | NA | |
Mean ± SD | 16.2 ± 7.7 | NA |
Cohort | Sample No. | Specimen Type | Karyotyping | CMA | UPD7 Study | Pregnancy Outcome |
---|---|---|---|---|---|---|
1 | 15H01341 | AF | 46,XX | Normal | Negative | NA |
15H04940 | AF | 47,XX,+7 [9]/46,XX[21] | arr[GRCh37]7p22.3q36.3(203558-158928217) × 2~3 | Negative | TOP, no gross anomaly, vitals stable | |
Placenta | 47,XX,+7 | NA | NA | |||
15H05302 | AF | 46,XX | NA | NA | NLB | |
Placenta | 46,XX | NA | ||||
15H05415 | AF | 46,XY | arr[GRCh37]2p11.2p11.1(89488303-91803693) × 3 pat, 11p13(31532618-31723695) × 1 mat | Negative | NLB | |
16H02801 | AF | 46,XY | Normal | Negative | NLB | |
16H03054 | AF | 46,XX | Normal | Negative | NLB | |
16H12580 | AF | 46,XY | NA | Negative | NA | |
16H14290 | AF | 46,XX | Normal | Negative | NA | |
17H03630 | AF | 46,XY | Normal | Negative | Preterm birth, LBW | |
17H04911 | AF | 46,XY | Normal | Negative | NLB | |
Placenta | 46,XY | NA | ||||
17H08559 | AF | 46,XX | Normal | Negative | NLB | |
17H11388 | AF | 46,XY | NA | Negative | NA | |
18H11643 | AF | 46,XX | Normal | NA | NA | |
18H15500 | AF | 46,XX | NA | NA | NA | |
2 | P18ZD0463 | AF | NA | Normal | NA | NLB |
P190143 | AF | NA | Normal | NA | NLB | |
P190179 | AF | NA | Normal | NA | NLB | |
P190403 | AF | NA | Normal | NA | NLB | |
P19E0424 | AF | NA | Normal | NA | NLB | |
P19E1600 | AF | NA | Normal | NA | NLB | |
P19E2037 | AF | NA | Normal | NA | NLB | |
P192187 | AF | NA | Normal | NA | NLB | |
P192113 | AF | NA | Normal | NA | NLB | |
P19E2978 | AF | NA | Normal | NA | NLB | |
P19E3421 | AF | NA | Normal | NA | NLB | |
P194278 | AF | NA | Normal | NA | NLB | |
P194963 | AF | NA | Normal | NA | VSD, NLB | |
P19A0044 | AF | NA | Normal | NA | NLB |
Study | Trisomy 7 (n) | Total Cases (n) | Prevalence (%) | Invasive Confirmation | Clinical Follow-Up | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Confirmed * | Not Confirmed # | CPM7 | UPD7 | n | USG Anomaly | TOP | IUGR, or PB, LBW | LB | ||||
Brady, P. (2016) [22] | 3 | 4000 | 0.075 | 0 | 2 | - | - | - | - | - | - | - |
Enrich, M. (2017) [23] | 11 | 10,272 | 0.11 | - | - | - | - | - | - | - | - | - |
Fiorentino, F. (2017) [19] | 4 | 12,114 | 0.033 | 1 | 3 | - | - | 4 | - | - | 0 | 4 |
Pertile, M.D. (2017) [18] | 67 | 89,817 | 0.075 | 1 | 1 | 1 | Negative (n = 1) | 6 | - | - | 1 | 5 |
Pescia, G. (2017) [24] | 16 | 6388 | 0.25 | 0 | 6 | - | Negative (n = 6) | - | - | - | - | |
Scott, F. (2018) [25] | 6 | 23,388 | 0.026 | 0 | 5 | 1 | - | 6 | 1 | 1 | 2 | 5 |
Van Opstal, D. (2018) [26] | 6 | 2527 | 0.24 | 0 | 6 | 3 | Negative (n = 3) | 6 | 1 | - | 1 | 6 |
Wan, J. (2018) [27] | 18 | 15,362 | 0.12 | 1 | 10 ∆ | - | - | 7 | - | - | - | 7 |
Chatron, N. (2019) [28] | 1 | 1617 | 0.062 | 0 | 1 | - | - | 1 | - | - | - | 1 |
Liang, D. (2019) [13] | 13 | 94,085 | 0.014 | - | - | - | - | - | - | - | - | - |
van der Meij, K.R.M. (2019) [11] | 32 | 73,239 | 0.044 | 0 | 32 | - | - | - | - | - | - | - |
de Wergifosse, S. (2019) [12] | 2 | 3373 | 0.059 | 0 | 2 | - | - | 2 | - | - | 1 | 2 |
Qi, Y. [17] | 29 | 31,250 | 0.093 | 0 | 19 $ | 8 | - | 29 | - | - | 6 | 23 |
Cohort 1 (CUHK) | 23 | 39,134 | 0.059 | 1 | 13 | 1 | Negative (n = 11) | 8 | - | 1 | 1 | 6 |
Cohort 2 (ZZU) | 16 | 31,307 | 0.051 | 0 | 14 | - | - | 16 | 1 | - | - | 16 |
Total | 247 | 437,873 | 0.056 | 4 | 114 | 14 | Negative (n = 21) | 85 | 3 | 2 | 12 | 75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Lam, D.Y.M.; Chau, M.H.K.; Xue, S.; Dai, P.; Zhao, G.; Cao, Y.; Cheung, S.W.H.; Kwok, Y.K.Y.; Choy, K.W.; et al. Clinical Significance of Non-Invasive Prenatal Screening for Trisomy 7: Cohort Study and Literature Review. Genes 2021, 12, 11. https://doi.org/10.3390/genes12010011
Zhu X, Lam DYM, Chau MHK, Xue S, Dai P, Zhao G, Cao Y, Cheung SWH, Kwok YKY, Choy KW, et al. Clinical Significance of Non-Invasive Prenatal Screening for Trisomy 7: Cohort Study and Literature Review. Genes. 2021; 12(1):11. https://doi.org/10.3390/genes12010011
Chicago/Turabian StyleZhu, Xiaofan, Doris Yuk Man Lam, Matthew Hoi Kin Chau, Shuwen Xue, Peng Dai, Ganye Zhao, Ye Cao, Sunny Wai Hung Cheung, Yvonne Ka Yin Kwok, Kwong Wai Choy, and et al. 2021. "Clinical Significance of Non-Invasive Prenatal Screening for Trisomy 7: Cohort Study and Literature Review" Genes 12, no. 1: 11. https://doi.org/10.3390/genes12010011
APA StyleZhu, X., Lam, D. Y. M., Chau, M. H. K., Xue, S., Dai, P., Zhao, G., Cao, Y., Cheung, S. W. H., Kwok, Y. K. Y., Choy, K. W., Kong, X., & Leung, T. Y. (2021). Clinical Significance of Non-Invasive Prenatal Screening for Trisomy 7: Cohort Study and Literature Review. Genes, 12(1), 11. https://doi.org/10.3390/genes12010011