Effects of Supplement of Marichromatium gracile YL28 on Water Quality and Microbial Structures in Shrimp Mariculture Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Strains and Suspensions
2.2. The Sample Treatment, Experimental Design and Management
2.3. Physicochemical Parameters Analyses
2.4. DNA Extraction and Sequencing
2.5. qPCR Analysis
2.6. DNA Sequence Analysis
2.7. Sequence Data Availability
3. Results
3.1. The Nitrogen Removal in Aquatic Ecosystems by YL28
3.2. Effects of YL28 on Bacterial α- and β-Diversity
3.3. Effects of YL28 Addition on the Bacterial Community Compositions
3.4. The Relationships among Physicochemical Parameters, Samples and Bacterial Community
3.5. The Effects of YL28 on the Abundance of AOB, AOA and the Functional Genes Involved in Nitrogen Metabolisms
3.6. Microbiota Function Prediction
4. Discussion
4.1. Contaminants Removed by YL28 in Aquatic Ecosystems
4.2. The Microbial Community Structure in Response to YL28
4.3. The Inhibitory Effect on Growth of Possible Pathogens
4.4. The Influence of YL28 on Nitrogen Metabolism-Related Genes
4.5. Altered Metabolic Category in Mariculture Ecosystem by YL28
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekasari, J.; Azhar, M.H.; Surawidjaja, E.H.; Nuryati, S.; De Schryver, P.; Bossier, P. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish. Shellfish Immunol. 2014, 41, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Small, G.; Cotner, J.; Finlay, J.; Stark, R.; Sterner, R. Nitrogen transformations at the sediment-water interface across redox gradients in the Laurentian Great Lakes. Hydrobiologia 2014, 731, 95–108. [Google Scholar] [CrossRef]
- Wang, A.; Ran, C.; Wang, Y.; Zhang, Z.; Ding, Q.; Yang, Y.; Olsen, R.E.; Ringø, E.; Bindelle, J.; Zhou, Z. Use of probiotics in aquaculture of China—A review of the past decade. Fish. Shellfish Immunol. 2019, 86, 734–755. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, X.W.; Song, B.; Deng, Q.; Liang, L.; Fu, J.; Zheng, Y.; Wang, D. Effects of Bacillus preparations on immunity and antioxidant activities in grass carp (Ctenopharyngodon idellus). Fish. Physiol. Biochem. 2012, 38, 1585–1592. [Google Scholar]
- Ma, Y.; Sun, F.; Zhang, C.; Bao, P.; Cao, S.; Zhang, M. Effects of Pseudoalteromonas sp. BC228 on digestive enzyme activity and immune response of juvenile sea cucumber (Apostichopus japonicus). J. Ocean. Univ. China 2014, 13, 1061–1066. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Q. Effect of probiotics on white shrimp (Penaeus vannamei) growth performance and immune response. Mar. Biol. Res. 2010, 6, 327–332. [Google Scholar] [CrossRef]
- Zhang, X.; Shu, M.; Wang, Y.; Fu, L.; Li, W.; Deng, B.; Shen, W. Effect of photosynthetic bacteria on water quality and microbiota in grass carp culture. World J. Microbiol. Biotechnol. 2014, 30, 2523–2531. [Google Scholar] [CrossRef]
- Chiu, K.H.; Liu, W.S. Dietary administration of the extract of Rhodobacter sphaeroides WL-APD911 enhances the growth performance and innate immune responses of seawater red tilapia (Oreochromis mossambicus× Oreochromis niloticus). Aquaculture 2014, 418, 32–38. [Google Scholar] [CrossRef]
- Shiung, I.; Chang, M.J.; Chang, Y.; Yeh, S.; Chang, S.; Ying, C. Photosynthetic purple sulfur bacterium marichromatium purpuratum rua2 induces changes in water quality parameters, the occurrence of sulfonamide resistance gene and microbial community structure of marine aquaculture. Aquaculture 2018, 493, 68–78. [Google Scholar] [CrossRef]
- Zhao, J.; Fu, Y.; Zhao, C.; Yang, S.; Qu, Y.; Jiao, N. Identification and characterization of a purple sulfur bacterium from mangrove with rhodopin as predominant carotenoid. Acta Microbiol. Sin. 2011, 51, 1318–1325. [Google Scholar]
- Jiang, P.; Zhao, C.; Jia, Y.; Yang, S.P. Inorganic nitrogen removal by a marine purple sulfur bacterium capable of growth on nitrite as sole nitrogen source. J. Microbiol. China 2014, 41, 824–831. [Google Scholar]
- Zhang, X.B.; Zhou, G.J.; Zhu, B.T.; Zhao, C.G.; Yang, S.P. Effect of light and oxygen on the removal of inorganic nitrogen by Marichromatium gracile YL28. J. Microbiol. China 2019, 46, 997–1007. [Google Scholar]
- Zhu, B.T.; Chen, S.C.; Zhao, C.G.; Zhong, W.H.; Zeng, R.Y.; Yang, S.P. Effects of Marichromatium gracile YL28 on the nitrogen management in the aquaculture pond water. Bioresour. Technol. 2019, 292, 121917. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Chen, Z.; Zhao, C.G.; Yang, S.P. Nitrogen transformation under different dissolved oxygen levels by the anoxygenic phototrophic bacterium Marichromatium gracile. World J. Microbiol. Biotechnol. 2017, 33, 113. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, C.G.; Hong, X.; Yang, S.P. Genome sequence of Marichromatium gracile YL-28, a purple sulfur bacterium with bioremediation potential. Genome Announc. 2016, 4, 00288-16. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.T.; Zhang, X.B.; Zhao, C.; Chen, S.C.; Yang, S.P. Comparative genome analysis of marine purple sulfur bacterium Marichromatium gracile YL28 reveals the diverse nitrogen cycle mechanisms and habitat-specific traits. Sci. Rep. 2018, 8, 17803. [Google Scholar] [CrossRef]
- Zhan, P.; Liu, W. Use of fluidized bed biofilter and immobilized Rhodopseudomonas palustris for ammonia removal and fish health maintenance in a recirculation aquaculture system. Aquacult. Res. 2013, 44, 327–334. [Google Scholar]
- de Aguero, M.G.; Ganal-Vonarburg, S.C.; Fuhrer, T. The maternal microbiota drives early postnatal innate immune development. Science 2016, 351, 1296–1301. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–61. [Google Scholar] [CrossRef]
- McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012, 6, 610–618. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.; Lian, Y.; Du, X.; Zhang, S.; Yuan, J.; Sena, S.; De, S. Farming system transformation yields significant reduction in nutrient loading: Case study of Hongze Lake, Yangtze River Basin, China. Aquaculture 2016, 457, 109–117. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Wang, Y.; Fu, L.; Fu, Y.; Li, B.; Jiao, B. Aquaculture industry in China: Current state, challenges, and outlook. Rev. Fish. Sci. 2011, 19, 187–200. [Google Scholar] [CrossRef]
- Beardsley, C.; Moss, S.; Malfatti, F.; Azam, F. Quantitative role of shrimp fecal bacteria in organic matter fluxes in a recirculating shrimp aquaculture system. FEMS Microbiol. Ecol. 2011, 77, 134–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.N.; Briones, A.; Diana, J.; Raskin, L. Ammonia-oxidizing archaea and nitrite-oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system. FEMS Microbiol. Ecol. 2013, 83, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Sun, Y.; Zhang, T.; Ding, X.Y.; Li, Y.F.; Wang, M.Z.; Zeng, Z.L. Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China. Microb. Ecol. 2015, 70, 425–432. [Google Scholar] [CrossRef]
- Zheng, X.; Tang, J.; Zhang, C.; Qin, J.; Wang, Y. Bacterial composition, abundance and diversity in fish polyculture and mussel–fish integrated cultured ponds in China. Aquacult. Res. 2017, 48, 3950–3961. [Google Scholar] [CrossRef]
- Ni, Z.; Wu, X.; Li, L.; Lv, Z.; Zhang, Z.; Hao, A.; Iseri, Y.; Kuba, T.; Zhang, X.; Wu, W.; et al. Pollution control and in situ bioremediation for lake aquaculture using an ecological dam. J. Clean. Prod. 2018, 172, 2256–2265. [Google Scholar] [CrossRef]
- Van, D.L.; Song, B.; Ito, H.; Hama, T.; Otani, M.; Kawagoshi, Y. High growth potential and nitrogen removal performance of marine anammox bacteria in shrimp-aquaculture sediment. Chemosphere 2018, 196, 69–77. [Google Scholar]
- Severin, T.; Bacosa, H.P.; Sato, A.; Erdner, D.L. Dynamics of Heterocapsa sp. and the associated attached and free-living bacteria under the influence of dispersed and undispersed crude oil. Lett. Appl. Microbiol. 2016, 63, 419–425. [Google Scholar] [CrossRef]
- Cheng, A.C.; Lin, H.L.; Shiu, Y.L.; Tyan, Y.C.; Liu, C.H. Isolation and characterization of antimicrobial peptides derived from Bacillus subtilis E20-fermented soybean meal and its use for preventing Vibrio infection in shrimp aquaculture. Fish. Shellfish Immunol. 2017, 67, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Hickey, M.E.; Lee, J.L. A comprehensive review of Vibrio (Listonella) anguillarum: Ecology, pathology and prevention. Rev. Fish. Sci. 2018, 10, 585–610. [Google Scholar]
- Han, B.; Kaur, V.I.; Baruah, K.; Nguyen, V.D.; Bossier, P. High doses of sodium ascorbate act as a prooxidant and protect gnotobiotic brine shrimp larvae (Artemia franciscana) against Vibrio harveyi infection coinciding with heat shock protein 70 activation. Dev. Comp. Immunol. 2019, 92, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Klinman, J.P.; Mathews, F.S. Copper amine oxidase from Hansenula polymorpha: The crystal structure determined at 2.4 Å resolution reveals the active conformation. Structure 1998, 6, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Mondy, S.; Lenglet, A.; Cosson, V.; Pelletier, S.; Pateyron, S.; Gilard, F.; Péan, M. GOLLUM [FeFe]-hydrogenase-like proteins are essential for plant development in normoxic conditions and modulate energy metabolism. Plant. Cell Environ. 2014, 37, 54–69. [Google Scholar] [CrossRef] [Green Version]
- Coyle, C.L.; Zumft, W.G.; Kroneck, P.M.; Körner, H.; Jakob, W. Nitrous oxide reductase from denitrifying: Pseudomonas perfectomarina purification and properties of a novel multicopper enzyme. Eur. J. Biochem. 1985, 153, 459–467. [Google Scholar] [CrossRef]
- Silva Marques, E.D.L.; Gross, E.; Teixeira Dias, J.C.; Priminho Pirovani, C.; Passos Rezende, R. Ammonia oxidation (amoA) and nitrogen fixation (nifH) genes along metasandstone and limestone caves of Brazil. Geomicrobiol. J. 2018, 35, 869–878. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, D.; Jiang, Z.; Sun, P.; Xiao, H.; Yu, X.; Chen, J. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Sci. Total Environ. 2019, 651, 2281–2291. [Google Scholar] [CrossRef]
Indices | Sequences per Sample | Control Group | YL28-L | YL28-H |
---|---|---|---|---|
Chao1 | 49,200 | 7841.95 ± 896.25 | 8118.95 ± 350.13 | 7801.23 ± 895.85 |
Shannon | 49,600 | 10.64 ± 0.38 | 10.38 ± 0.38 | 10.32 ± 0.40 |
Pairwise Comparison | Chao1 | Shannon | ||
---|---|---|---|---|
F Value | p Value | F Value | p Value | |
Control group vs. YL28-L | 0.247 | 0.645 | 0.736 | 0.439 |
Control group vs. YL28-H | 0.009 | 0.958 | 1.074 | 0.359 |
YL28-L vs. YL28-H | 0.326 | 0.599 | 0.039 | 0.853 |
Pairwise Comparison | Sum of Squares | Mean Square | F Value | R2 | p-Value |
---|---|---|---|---|---|
Control group vs. YL28-L | 0.049 | 0.049 | 1.939 | 0.244 | 0.201 |
Control group vs. YL28-H | 0.405 | 0.405 | 15.132 | 0.716 | 0.033 |
YL28-L vs. YL28-H | 0.169 | 0.169 | 6.281 | 0.511 | 0.029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Zhu, B.; Zhang, X.; Chan, Z.; Zhao, C.; Zeng, R.; Yang, S.; Chen, S. Effects of Supplement of Marichromatium gracile YL28 on Water Quality and Microbial Structures in Shrimp Mariculture Ecosystems. Genes 2021, 12, 40. https://doi.org/10.3390/genes12010040
Cui L, Zhu B, Zhang X, Chan Z, Zhao C, Zeng R, Yang S, Chen S. Effects of Supplement of Marichromatium gracile YL28 on Water Quality and Microbial Structures in Shrimp Mariculture Ecosystems. Genes. 2021; 12(1):40. https://doi.org/10.3390/genes12010040
Chicago/Turabian StyleCui, Liang, Bitong Zhu, Xiaobo Zhang, Zhuhua Chan, Chungui Zhao, Runying Zeng, Suping Yang, and Shicheng Chen. 2021. "Effects of Supplement of Marichromatium gracile YL28 on Water Quality and Microbial Structures in Shrimp Mariculture Ecosystems" Genes 12, no. 1: 40. https://doi.org/10.3390/genes12010040
APA StyleCui, L., Zhu, B., Zhang, X., Chan, Z., Zhao, C., Zeng, R., Yang, S., & Chen, S. (2021). Effects of Supplement of Marichromatium gracile YL28 on Water Quality and Microbial Structures in Shrimp Mariculture Ecosystems. Genes, 12(1), 40. https://doi.org/10.3390/genes12010040