RETRACTED: Using Comorbidity Pattern Analysis to Detect Reliable Methylated Genes in Colorectal Cancer Verified by Stool DNA Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Differential DNA Methylation Analysis for Primary Biomarkers
2.2. Comorbidity Analysis for Secondary Biomarkers
2.3. Specimen Collection
2.4. Stool DNA Extraction and Bisulfite Conversion
2.5. Quantitative Methylation Specific PCR (qMSP)
2.6. Fecal Immunochemical Test (FIT)
2.7. Statistical Analysis
3. Results
3.1. Primary Biomarkers from Differentially Methylated Positions (DMPs)
3.2. Secondary Biomarkers from Comorbidity Analysis
3.3. Verification of Stool DNA Methylation in Individual Specimen
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Cancer Registry Annual Report, 2018 Taiwan. Available online: https://www.hpa.gov.tw/EngPages/Detail.aspx?nodeid=1061&pid=6071 (accessed on 6 September 2021).
- Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet 2014, 383, 1490–1502. [Google Scholar] [CrossRef]
- Balchen, V.; Simon, K. Colorectal cancer development and advances in screening. Clin. Interv. Aging 2016, 11, 967–976. [Google Scholar] [CrossRef]
- Navarro, M.; Nicolas, A.; Ferrandez, A.; Lanas, A. Colorectal cancer population screening programs worldwide in 2016: An update. World J. Gastroenterol. 2017, 23, 3632–3642. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Kato, J.; Yamaji, Y.; Wada, R.; Mitsushima, T.; Shiratori, Y. A comparison of the immunochemical fecal occult blood test and total colonoscopy in the asymptomatic population. Gastroenterology 2005, 129, 422–428. [Google Scholar] [CrossRef]
- Whitlock, E.P.; Lin, J.S.; Liles, E.; Beil, T.L.; Fu, R. Screening for Colorectal Cancer: A Targeted, Updated Systematic Review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2008, 149, 638–658. [Google Scholar] [CrossRef] [PubMed]
- De Wijkerslooth, T.R.; Stoop, E.M.; Bossuyt, P.M.; Meijer, A.G.; van Ballegooijen, M.; van Roon, A.H.C.; Stegeman, I.; Kraaijenhagen, A.R.; Fockens, P.; van Leerdam, E.M.; et al. Immunochemical Fecal Occult Blood Testing Is Equally Sensitive for Proximal and Distal Advanced Neoplasia. Am. J. Gastroenterol. 2012, 107, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Imperiale, T.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget Stool DNA Testing for Colorectal-Cancer Screening. N. Engl. J. Med. 2014, 370, 1287–1297. [Google Scholar] [CrossRef]
- Lee, J.K.; Liles, E.G.; Bent, S.; Levin, T.R.; Corley, D.A. Accuracy of fecal immunochemical tests for colorectal cancer: Systematic review and meta-analysis. Ann. Intern. Med. 2014, 160, 171. [Google Scholar] [CrossRef]
- Brenner, H.; Niedermaier, T.; Chen, H. Strong subsite-specific variation in detecting advanced adenomas by fecal immunochemical testing for hemoglobin. Int. J. Cancer 2017, 140, 2015–2022. [Google Scholar] [CrossRef]
- Kim, C.W.; Kim, H.; Kim, H.R.; Kye, B.-H.; Min, B.S.; Oh, T.J.; An, S.; Lee, S.-H. Colorectal cancer screening using a stool DNA-based SDC2 methylation test: A multicenter, prospective trial. BMC Gastroenterol. 2021, 21, 173. [Google Scholar] [CrossRef]
- Ebner, D.W.; Kisiel, J.B. Stool-Based Tests for Colorectal Cancer Screening: Performance Benchmarks Lead to High Expected Efficacy. Curr. Gastroenterol. Rep. 2020, 22, 1–9. [Google Scholar] [CrossRef]
- Park, S.-K.; Baek, H.L.; Yu, J.; Kim, J.Y.; Yang, H.-J.; Jung, Y.S.; Choi, K.Y.; Kim, H.; Kim, H.O.; Jeong, K.U.; et al. Is methylation analysis of SFRP2, TFPI2, NDRG4, and BMP3 promoters suitable for colorectal cancer screening in the Korean population? Intest. Res. 2017, 15, 495–501. [Google Scholar] [CrossRef]
- Cooper, G.S.; Markowitz, S.D.; Chen, Z.; Tuck, M.; Willis, J.E.; Berger, B.M.; Brenner, D.E.; Li, L. Performance of multitarget stool DNA testing in African American patients. Cancer 2018, 124, 3876–3880. [Google Scholar] [CrossRef]
- Hsieh, C.-Y.; Su, C.-C.; Shao, S.-C.; Sung, S.-F.; Lin, S.-J.; Kao Yang, Y.-H.; Lai, E.C.-C. Taiwan’s National Health Insurance Research Database: Past and future. Clin. Epidemiol. 2019, 11, 349–358. [Google Scholar] [CrossRef]
- Huang, C.-H.; Yip, B.-S.; Taniar, D.; Hwang, C.-S.; Pai, T.-W. Comorbidity Pattern Analysis for Predicting Amyotrophic Lateral Sclerosis. Appl. Sci. 2021, 11, 1289. [Google Scholar] [CrossRef]
- Morris, T.J.; Butcher, L.M.; Feber, A.; Teschendorff, A.E.; Chakravarthy, A.R.; Wojdacz, T.K.; Beck, S. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics 2014, 30, 428–430. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.; Queralt-Rosinach, N.; Bravo, À.; Deu-Pons, J.; Bauer-Mehren, A.; Baron, M.; Sanz, F.; Furlong, L.I. DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes. Database 2015, 2015, bav028. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Jiang, X.; Li, Q.; Sun, Z.; Quan, W.; Duan, Y.; Li, D.; Chen, T. Diagnostic Value of Methylated Septin9 for Colorectal Cancer Detection. Front. Oncol. 2018, 8, 247. [Google Scholar] [CrossRef]
- Lee, H.S.; Hwang, S.M.; Kim, T.S.; Kim, D.-W.; Park, D.J.; Kang, S.-B.; Kim, H.-H.; Park, K.U. Circulating Methylated Septin 9 Nucleic Acid in the Plasma of Patients with Gastrointestinal Cancer in the Stomach and Colon. Transl. Oncol. 2013, 6, 290–296. [Google Scholar] [CrossRef]
- Sung, J.J.; Lau, J.Y.; Goh, K.L.; Leung, W.K. Asia Pacific Working Group on Colorectal Cancer. Increasing incidence of colorectal cancer in Asia: Implications for screening. Lancet Oncol. 2005, 6, 871–876. [Google Scholar] [CrossRef]
- Soon, M.-S.; Soon, A.; Lin, T.-Y.; Lin, O.S. Distribution of colon neoplasia in Chinese patients: Implications for endoscopic screening strategies. Eur. J. Gastroenterol. Hepatol. 2008, 20, 642–647. [Google Scholar] [CrossRef]
- Kwabi-Addo, B. Epigenetic Biomarkers and Racial Differences in Cancer. In Epigenetic Mechanisms in Cancer; Saldanha, S., Ed.; Academic Press: Boston, MA, USA, 2018; Chapter 10; pp. 243–273. [Google Scholar]
- Han, Y.D.; Oh, T.J.; Chung, T.-H.; Jang, H.W.; Kim, Y.N.; An, S.; Kim, N.K. Early detection of colorectal cancer based on presence of methylated syndecan-2 (SDC2) in stool DNA. Clin. Epigenet. 2019, 11, 51. [Google Scholar] [CrossRef]
- Hu, Y.-H.; Ma, S.; Zhang, X.-N.; Zhang, Z.-Y.; Zhu, H.-F.; Ji, Y.-H.; Li, J.; Qian, X.-L.; Wang, Y.-X. Hypermethylation of ADHFE1 Promotes The Proliferation of Colorectal Cancer Cell Via Modulating Cell Cycle Progression. OncoTargets Ther. 2019, 12, 8105–8115. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, X.; Liu, Y.; Ma, Y.; Yang, J.; Li, H.; Xiong, S.; Fei, S.; Zheng, M.; Zhao, X. Methylated SFRP2 and SDC2 in stool specimens for Colorectal Cancer early detection: A cost-effective strategy for Chinese population. J. Cancer 2021, 12, 2665–2672. [Google Scholar] [CrossRef]
- Niedermaier, T.; Balavarca, Y.; Brenner, H. Stage-Specific Sensitivity of Fecal Immunochemical Tests for Detecting Colorectal Cancer: Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2020, 115, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Issa, A.I.; Noureddine, M. Colorectal cancer screening: An updated review of the available options. World J. Gastroenterol. 2017, 23, 5086–5096. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, S.; Wang, H.; Zheng, L.; Zhou, C.; Li, G.; Huang, R.; Wang, H.; Li, C.; Fan, X.; et al. Robust performance of a novel stool DNA test of methylated SDC2 for colorectal cancer detection: A multicenter clinical study. Clin. Epigenet. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, C.; Wang, S.; Xiang, Z.; Dou, R.; Lin, Z.; Zheng, J.; Xiong, B. SDC2 and TFPI2 Methylation in Stool Samples as an Integrated Biomarker for Early Detection of Colorectal Cancer. Cancer Manag. Res. 2021, 13, 3601–3617. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Su, X.; Long, Y.; Zhou, D.; Zhang, X.; Ye, Z.; Ma, J.; Tang, T.; Wang, F.; He, C. A systematic review and quantitative assessment of methylation biomarkers in fecal DNA and colorectal cancer and its precursor, colorectal adenoma. Mutat. Res. Rev. Mutat. Res. 2019, 779, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Kardon, T.; Noël, G.; Vertommen, D.; Van Schaftingen, E. Identification of the gene encoding hydroxyacid-oxoacid transhydrogenase, an enzyme that metabolizes 4-hydroxybutyrate. FEBS Lett. 2006, 580, 2347–2350. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.W.; Lee, S.K.; Lee, Y.W.; Lee, J.O.; Kim, N.; Lee, H.J.; Seo, J.S.; Kim, J.; Kim, H.S.; Park, S.-H. Alcohol induces cell proliferation via hypermethylation of ADHFE1 in colorectal cancer cells. BMC Cancer 2014, 14, 377. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Li, J.; Guo, S.; Tao, C.; Zhang, H.; Wang, W.; Zhang, Y.; Zhang, D.; Ding, S.; Zeng, C. Genome-wide DNA methylation profiles of low- and high-grade adenoma reveals potential biomarkers for early detection of colorectal carcinoma. Clin. Epigenet. 2020, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hua, R.; Yu, J.; Yan, X.; Ni, Q.; Zhi, X.; Li, X.; Jiang, B.; Zhu, J. Syndecan-2 in colorectal cancer plays oncogenic role via epithelial-mesenchymal transition and MAPK pathway. Biomed. Pharmacother. 2020, 121, 109630. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.; Kim, N.; Moon, Y.; Kim, M.S.; Hoehn, B.D.; Park, C.H.; Kim, T.S.; Kim, N.K.; Chung, H.C.; An, S. Genome-Wide Identification and Validation of a Novel Methylation Biomarker, SDC2, for Blood-Based Detection of Colorectal Cancer. J. Mol. Diagn. 2013, 15, 498–507. [Google Scholar] [CrossRef]
- Niu, F.; Wen, J.; Fu, X.; Li, C.; Zhao, R.; Wu, S.; Yu, H.; Liu, X.; Wang, X.; Zou, H. Stool DNA Test of Methylated Syndecan-2 for the Early Detection of Colorectal Neoplasia. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1411–1419. [Google Scholar] [CrossRef]
- Eichhorn, P.J.; Creyghton, M.P.; Bernards, R. Protein phosphatase 2A regulatory subunits and cancer. Biochim. Biophys. Acta BBA Bioenergy 2009, 1795, 1–15. [Google Scholar] [CrossRef]
- Lee, T.Y.; Lai, T.Y.; Lin, S.C.; Wu, C.W.; Ni, I.F.; Yang, Y.S.; Hung, L.Y.; Law, B.K.; Chiang, C.W. The B56gamma3 regulatory subunit of protein phosphatase 2A (PP2A) regulates S phase-specific nuclear accumulation of PP2A and the G1 to S transition. J. Biol. Chem. 2010, 285, 21567–21580. [Google Scholar] [CrossRef]
- Xie, H.; Mahoney, D.W.; Foote, P.H.; Burger, K.N.; Doering, K.A.; Taylor, W.R.; Then, S.S.; Cao, X.; McGlinch, M.; Berger, C.K.; et al. Novel Methylated DNA Markers in the Surveillance of Colorectal Cancer Recurrence. Clin. Cancer Res. 2021, 27, 141–149. [Google Scholar] [CrossRef]
- Joo, J.E.; Fab, K.C.; Dowty, J.G.; Milne, R.L.; Wong, E.M.; Dugue, P.-A.; English, D.; Hopper, J.L.; Goldgar, D.E.; Giles, G.G.; et al. Heritable DNA methylation marks associated with susceptibility to breast cancer. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Potter, N.T.; Hurban, P.; White, M.N.; Whitlock, K.D.; Lofton-Day, C.E.; Tetzner, R.; Koenig, T.; Quigley, N.B.; Weiss, G. Validation of a Real-Time PCR–Based Qualitative Assay for the Detection of Methylated SEPT9 DNA in Human Plasma. Clin. Chem. 2014, 60, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- NCCN Guidelines Version 2.2021—Colorectal Cancer Screening. Available online: https://www.nccn.org/login?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/colorectal_screening.pdf (accessed on 6 September 2021).
Manufacture | Product Name | Target Genes | Specimen Type | Sensitivity/Specificity for CRC 1 |
---|---|---|---|---|
Exact Sciences | Cologuard | NDRG4, BMP3 | Stool DNA | 92%/90% |
Epigenomics | Epi proColon | SEPT9 | Plasma DNA | 68%/89% |
New Horizon Health Limited | ColoClear | NDRG4, BMP3 | Stool DNA | 96%/87% |
BGI Genomics | Colotect | ADHFE1, SDC2, PPP2R5C | Stool DNA | 90%/89% |
Ammunition Life Technology | IColocomf | SDC2, TFPI2 | Stool DNA | 93%/95% |
Creative Biosciences | Colosafe | SDC2 | Stool DNA | 84%/98% |
BioChain Institute | mSEPT9 | SEPT9 | Plasma DNA | 77%/86% |
RealBio Technology | COLOWELL | SDC2, SFRP2 | Stool DNA | 84%/94% |
Gene Name | ||||
---|---|---|---|---|
ADHFE1 | SDC2 | PPP2R5C | ADHFE1 + SDC2 + PPP2R5C | |
Cutoff value 1 | 5.02 | 7.50 | 9.33 | Any one positive |
Sensitivity (Positive number/case) 2 | 84.6% (11/13) | 69.2% (9/13) | 69.2% (9/13) | 84.6% (11/13) |
Specificity (Positive number/control) 3 | 100% (13/13) | 92.3% (12/13) | 100% (13/13) | 92.3% (12/13) |
No. | Status | Size/Stage | FIT | mADHFE1 | mSDC2 | mPPP2R5C |
---|---|---|---|---|---|---|
Participant-001 | Normal | |||||
Participant-002 | Normal | |||||
Participant-003 | Normal | |||||
Participant-004 | Normal | |||||
Participant-005 | Normal | |||||
Participant-006 | Normal | |||||
Participant-007 | Normal | |||||
Participant-008 | Normal | |||||
Participant-009 | Normal | |||||
Participant-010 | Normal | |||||
Participant-011 | Normal | |||||
Participant-012 | Normal | ● | ||||
Participant-013 | Normal | |||||
Participant-014 | Adenoma | 0.4 cm | ● | |||
Participant-015 | Adenoma | 0.2 cm | ● | |||
Participant-016 | Adenoma | 0.4 cm | ● | ● | ||
Participant-017 | Adenoma | 0.5 cm | ||||
Participant-018 | CRC | IIIC | ● | ● | ● | ● |
Participant-019 | CRC | IV | ● | ● | ● | ● |
Participant-020 | CRC | IIIB | ● | ● | ● | ● |
Participant-021 | CRC | IIIA | ● | ● | ● | |
Participant-022 | CRC | IIIB | ● | |||
Participant-023 | CRC | IV | ● | |||
Participant-024 | CRC | IIIB | ● | ● | ● | |
Participant-025 | CRC | IIA | ● | ● | ● | ● |
Participant-026 | CRC | IV | ● | ● | ● | |
Participant-027 | CRC | I | ● | ● | ● | ● |
Participant-028 | CRC | I | ● | ● | ||
Participant-029 | CRC | IIIB | ● | ● | ● | ● |
Participant-030 | CRC | IIA | ● | ● | ● | ● |
Methylation Markers (ADHFE1 + SDC2 + PPP2R5C) | FIT | Methylation Markers + FIT | |
---|---|---|---|
Sensitivity (Positive number/adenoma cases) | 75.0% (3/4) | 0% (0/4) | 75.0% (3/4) |
Sensitivity (Positive number/CRC cases) | 84.6% (11/13) | 92.3% (12/13) | 100% (13/13) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.-C.; Wu, P.-H.; Chen, Y.-J.; Yang, C.-H.; Huang, J.-L.; Chou, Y.-C.; Chang, P.-K.; Wen, C.-C.; Jao, S.-W.; Huang, H.-H.; et al. RETRACTED: Using Comorbidity Pattern Analysis to Detect Reliable Methylated Genes in Colorectal Cancer Verified by Stool DNA Test. Genes 2021, 12, 1539. https://doi.org/10.3390/genes12101539
Cheng Y-C, Wu P-H, Chen Y-J, Yang C-H, Huang J-L, Chou Y-C, Chang P-K, Wen C-C, Jao S-W, Huang H-H, et al. RETRACTED: Using Comorbidity Pattern Analysis to Detect Reliable Methylated Genes in Colorectal Cancer Verified by Stool DNA Test. Genes. 2021; 12(10):1539. https://doi.org/10.3390/genes12101539
Chicago/Turabian StyleCheng, Yi-Chiao, Po-Hsien Wu, Yen-Ju Chen, Cing-Han Yang, Jhen-Li Huang, Yu-Ching Chou, Pi-Kai Chang, Chia-Cheng Wen, Shu-Wen Jao, Hsin-Hui Huang, and et al. 2021. "RETRACTED: Using Comorbidity Pattern Analysis to Detect Reliable Methylated Genes in Colorectal Cancer Verified by Stool DNA Test" Genes 12, no. 10: 1539. https://doi.org/10.3390/genes12101539
APA StyleCheng, Y. -C., Wu, P. -H., Chen, Y. -J., Yang, C. -H., Huang, J. -L., Chou, Y. -C., Chang, P. -K., Wen, C. -C., Jao, S. -W., Huang, H. -H., Tsai, Y. -H., & Pai, T. -W. (2021). RETRACTED: Using Comorbidity Pattern Analysis to Detect Reliable Methylated Genes in Colorectal Cancer Verified by Stool DNA Test. Genes, 12(10), 1539. https://doi.org/10.3390/genes12101539