Evaluation of the Association of COMT Rs4680 Polymorphism with Swimmers’ Competitive Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- World Championship medallists (n = 8),
- European Championship medallists (n = 15),
- Polish Championship medallists (n = 202).
- Short distance swimmers (SDS; competitive distance 50–200 m; n = 169,
- Long distance swimmers (LDS; competitive distance ≥400 m; n = 56.
2.2. Genetic Analyses
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmetov, I.I.; Fedotovskaya, O.N. Sports Genomics: Current State of Knowledge and Future Directions. Cell. Mol. Exerc. Physiol. 2012, 1, e1. [Google Scholar] [CrossRef]
- De Moor, M.H.M.; Spector, T.D.; Cherkas, L.F.; Falchi, M.; Hottenga, J.J.; Boomsma, D.I.; De Geus, E.J.C. Genome-Wide Linkage Scan for Athlete Status in 700 British Female DZ Twin Pairs. Twin Res. Hum. Genet. 2007, 10, 812–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulygina, E.A.; Borisov, O.V.; Valeeva, E.V.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Larin, A.K.; Nabiullina, R.M.; Mavliev, F.A.; Akhatov, A.M.; et al. Whole Genome Sequencing of Elite Athletes. Biol. Sport 2020, 37, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Zmijewski, P.; Leońska-Duniec, A. Association between the FTO A/T Polymorphism and Elite Athlete Status in Caucasian Swimmers. Genes 2021, 12, 715. [Google Scholar] [CrossRef] [PubMed]
- Leońska-Duniec, A.; Ahmetov, I.I.; Zmijewski, P. Genetic Variants Influencing Effectiveness of Exercise Training Programmes in Obesity—An Overview of Human Studies. Biol. Sport 2016, 33, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Abe, D.; Doi, H.; Asai, T.; Kimura, M.; Wada, T.; Takahashi, Y.; Matsumoto, T.; Shinohara, K. Association between COMT Val158Met Polymorphism and Competition Results of Competitive Swimmers. J. Sports Sci. 2018, 36, 393–397. [Google Scholar] [CrossRef]
- Cordeiro, L.M.S.; Rabelo, P.C.R.; Moraes, M.M.; Teixeira-Coelho, F.; Coimbra, C.C.; Wanner, S.P.; Soares, D.D. Physical Exercise-Induced Fatigue: The Role of Serotonergic and Dopaminergic Systems. Braz. J. Med Biol. Res. 2017, 50, e6432. [Google Scholar] [CrossRef]
- Heyes, M.P.; Garnett, E.S.; Coates, G. Central Dopaminergic Activity Influences Rats Ability to Exercise. Life Sci. 1985, 36, 671–677. [Google Scholar] [CrossRef]
- Gerald, M.C. Effects of (+)-Amphetamine on the Treadmill Endurance Performance of Rats. Neuropharmacology 1978, 17, 703–704. [Google Scholar] [CrossRef]
- Lee, C.G.; Moon, H.; Park, S. The Effects of Dopamine Receptor Genes on the Trajectories of Sport Participation from Adolescence through Young Adulthood. Ann. Hum. Biol. 2020, 47, 256–262. [Google Scholar] [CrossRef]
- Bastos, P.; Gomes, T.; Ribeiro, L. Catechol-O-Methyltransferase (COMT): An Update on Its Role in Cancer, Neurological and Cardiovascular Diseases. In Reviews of Physiology, Biochemistry and Pharmacology; Springer: Cham, Swizerland, 2017; Volume 173, pp. 1–39. [Google Scholar]
- Axelrod, J.; Tomchick, R. Enzymatic O-Methylation of Epinephrine and Other Catechols. J. Biol. Chem. 1958, 233, 702–705. [Google Scholar] [CrossRef]
- Machoy-Mokrzyńska, A.; Starzyńska-Sadura, Z.; Dziedziejko, V.; Safranow, K.; Kurzawski, M.; Leźnicka, K.; Sulżyc-Bielicka, V.; Jurewicz, A.; Bohatyrewicz, A.; Białecka, M. Association of COMT Gene Variability with Pain Intensity in Patients after Total Hip Replacement. Scand. J. Clin. Lab. Investig. 2019, 79, 202–207. [Google Scholar] [CrossRef]
- Stroth, S.; Reinhardt, R.K.; Thöne, J.; Hille, K.; Schneider, M.; Härtel, S.; Weidemann, W.; Bös, K.; Spitzer, M. Impact of Aerobic Exercise Training on Cognitive Functions and Affect Associated to the COMT Polymorphism in Young Adults. Neurobiol. Learn. Mem. 2010, 94, 364–372. [Google Scholar] [CrossRef]
- Qayyum, A.C.; Zai, C.; Hirata, Y.K.; Tiwari, A.; Cheema, S.; Nowrouzi, B.; Beitchman, J.; Kennedy, L. The Role of the Catechol-o-Methyltransferase (COMT) GeneVal158Met in Aggressive Behavior, a Review of Genetic Studies. Curr. Neuropharmacol. 2015, 13, 802–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Zaken, S.; Eliakim, A.; Nemet, D.; Kaufman, L.; Meckel, Y. Genetic Characteristics of Competitive Swimmers: A Review. Biol. Sport 2022, 39, 157–170. [Google Scholar]
- Youn, B.-Y.; Ko, S.-G.; Young Kim, J. Genetic Basis of Elite Combat Sports Athletes: A Systematic Review. Biol. Sport 2021, 38, 667–675. [Google Scholar] [CrossRef]
- White, T.P.; Loth, E.; Rubia, K.; Krabbendam, L.; Whelan, R.; Banaschewski, T.; Barker, G.J.; Bokde, A.L.W.; Büchel, C.; Conrod, P.; et al. Sex Differences in COMT Polymorphism Effects on Prefrontal Inhibitory Control in Adolescence. Neuropsychopharmacology 2014, 39, 2560–2569. [Google Scholar] [CrossRef] [Green Version]
- De Castro-Catala, M.; Barrantes-Vidal, N.; Sheinbaum, T.; Moreno-Fortuny, A.; Kwapil, T.R.; Rosa, A. COMT-by-Sex Interaction Effect on Psychosis Proneness. Biomed Res. Int. 2015, 2015, 829237. [Google Scholar] [CrossRef] [PubMed]
- Bilder, R.M.; Volavka, J.; Lachman, H.M.; Grace, A.A. The Catechol-O-Methyltransferase Polymorphism: Relations to the Tonic-Phasic Dopamine Hypothesis and Neuropsychiatric Phenotypes. Neuropsychopharmacology 2004, 29, 1943–1961. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, K.; Alphandéry, E.; McMillan, A.; Daggett, V.; Parson, W.W. The V108M Mutation Decreases the Structural Stability of Catechol O-Methyltransferase. Biochim. Biophys. Acta-Proteins Proteom. 2008, 1784, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Weinshilboum, R.M.; Otterness, D.M.; Szumlanski, C.L. Methylation Pharmacogenetics: Catechol O-Methyltransferase, Thiopurine Methyltransferase, and Histamine N-Methyltransferase. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 19–52. [Google Scholar] [CrossRef] [PubMed]
- van Breda, K.; Collins, M.; Stein, D.J.; Rauch, L. The COMT val158met polymorphism in ultra-endurance athletes. Physiol. Behav. 2015, 151, 279–283. [Google Scholar] [CrossRef]
- Leźnicka, K.; Niewczas, M.; Kurzawski, M.; Cięszczyk, P.; Safranow, K.; Ligocka, M.; Białecka, M. The association between COMT rs4680 and OPRM1 rs1799971 polymorphisms and temperamental traits in combat athletes. Pers. Individ. Differ. 2018, 124, 105–110. [Google Scholar] [CrossRef]
- Sutoo, D.; Akiyama, K. Regulation of Brain Function by Exercise. Neurobiol. Dis. 2003, 13, 1–14. [Google Scholar] [CrossRef]
- Foley, T.E.; Fleshner, M. Neuroplasticity of Dopamine Circuits after Exercise: Implications for Central Fatigue. NeuroMol. Med. 2008, 10, 67–80. [Google Scholar] [CrossRef]
- Balthazar, C.H.; Leite, L.H.R.; Ribeiro, R.M.M.; Soares, D.D.; Coimbra, C.C. Effects of Blockade of Central Dopamine D1 and D2 Receptors on Thermoregulation, Metabolic Rate and Running Performance. Pharmacol. Rep. 2010, 62, 54–61. [Google Scholar] [CrossRef]
Effect on | COMT Val158Met (rs4680) | |
---|---|---|
A Allele | G Allele | |
Amino acid residue | Met | Val |
Properties of enzyme | Higher thermolability | Normal thermolability |
Enzyme activity | Low | High |
Dopamine levels | High | Low |
Cognitive abilities | Benefits on tasks demanding stability (maintenance phases of working memory, sustained execution of prepotent response sets), but excessive cognitive rigidity (difficulty updating or switching) | Benefits on tasks demanding flexibility (updating contents of working memory, switching to novel task), but lack cognitive stability (increased distractibility, loss of cognitive sets) |
Sport | Higher mean value of FINA points and greater chances of becoming an elite athlete [6] | Superior executive control abilities after aerobic exercise training [14] |
Genotype | Controls (n = 377) | Athletes (n = 225) | OR (95% CI) | p |
---|---|---|---|---|
Codominant | ||||
AA * | 106 (28.1) | 71 (31.6) | 1 | 0.614 |
AG * | 174 (46.2) | 102 (45.3) | 0.88 (0.59–1.29) | |
GG * | 97 (25.7) | 52 (23.1) | 0.80 (0.50–1.26) | |
Dominant | ||||
AA | 106 (28.1) | 71 (31.6) | 1 | 0.371 |
AG-GG | 271 (71.9) | 154 (68.4) | 0.85 (0.59–1.22) | |
Recessive | ||||
AA-AG | 280 (74.3) | 173 (76.9) | 1 | 0.472 |
GG | 97 (25.7) | 52 (23.1) | 0.87 (0.59–1.27) | |
Overdominant | ||||
AA-GG | 203 (53.8) | 123 (54.7) | 1 | 0.845 |
AG | 174 (46.2) | 102 (45.3) | 0.97 (0.69–1.35) | |
A | 386 (51.2) | 244 (54.2) | 1 | 0.311 |
G | 368 (48.8) | 206 (45.8) | 0.89 (0.70–1.12) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zmijewski, P.; Leońska-Duniec, A.; Stuła, A.; Sawczuk, M. Evaluation of the Association of COMT Rs4680 Polymorphism with Swimmers’ Competitive Performance. Genes 2021, 12, 1641. https://doi.org/10.3390/genes12101641
Zmijewski P, Leońska-Duniec A, Stuła A, Sawczuk M. Evaluation of the Association of COMT Rs4680 Polymorphism with Swimmers’ Competitive Performance. Genes. 2021; 12(10):1641. https://doi.org/10.3390/genes12101641
Chicago/Turabian StyleZmijewski, Piotr, Agata Leońska-Duniec, Aleksander Stuła, and Marek Sawczuk. 2021. "Evaluation of the Association of COMT Rs4680 Polymorphism with Swimmers’ Competitive Performance" Genes 12, no. 10: 1641. https://doi.org/10.3390/genes12101641
APA StyleZmijewski, P., Leońska-Duniec, A., Stuła, A., & Sawczuk, M. (2021). Evaluation of the Association of COMT Rs4680 Polymorphism with Swimmers’ Competitive Performance. Genes, 12(10), 1641. https://doi.org/10.3390/genes12101641