Genes and Weightlifting Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Ethical Approval
2.2. Genotyping
2.3. Weightlifting Performance Measurement
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Degens, H.; Hans, D. Determinants of Skeletal Muscle Hypertrophy and the Attenuated Hypertrophic Response at Old Age. J. Sports Med. Doping Stud. 2012, 1. [Google Scholar] [CrossRef] [Green Version]
- Fry, A.C.; Schilling, B.K.; Staron, R.S.; Hagerman, F.C.; Hikida, R.S.; Thrush, J.T. Muscle fiber characteristics and performance correlates of male Olympic-style weightlifters. J. Strength Cond. Res. 2003, 17, 746–754. [Google Scholar] [PubMed] [Green Version]
- Folland, J.P.; Williams, A.G. The adaptations to strength training: Morphological and neurological contributions to increased strength. Sports Med. 2007, 37, 145–168. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.; Semenova, E.A.; Borisov, O.V.; Larin, A.K.; Moreland, E.; Generozov, E.V.; Ahmetov, I.I. Genomic predictors of testosterone levels are associated with muscle fiber size and strength. Eur. J. Appl. Physiol. 2021. [Google Scholar] [CrossRef]
- Stepto, N.K.; Coffey, V.G.; Carey, A.L.; Ponnampalam, A.P.; Canny, B.J.; Powell, D.; Hawley, J.A. Global Gene Expression in Skeletal Muscle from Well-Trained Strength and Endurance Athletes. Med. Sci. Sports Exerc. 2009, 41, 546–565. [Google Scholar] [CrossRef] [PubMed]
- Storey, A.; Smith, H.K. Unique aspects of competitive weightlifting: Performance, training and physiology. Sports Med. 2012, 42, 769–790. [Google Scholar] [CrossRef]
- Fuku, N.; Kumagai, H.; Ahmetov, I.I. Genetics of muscle fiber composition. In Sports, Exercise, and Nutritional Genomics; Academic Press: Cambridge, MA, USA, 2019; pp. 295–314. [Google Scholar]
- Hall, E.C.R.; Semenova, E.A.; Borisov, O.V.; Andryushchenko, O.N.; Andryushchenko, L.B.; Zmijewski, P.; Generozov, E.V.; Ahmetov, I.I. Association of muscle fiber composition with health and exercise-related traits in athletes and untrained subjects. Biol. Sport 2021, 38, 659–666. [Google Scholar] [CrossRef]
- Hughes, D.C.; Day, S.H.; Ahmetov, I.I.; Williams, A.G. Genetics of muscle strength and power: Polygenic profile similarity limits skeletal muscle performance. J. Sports Sci. 2011, 29, 1425–1434. [Google Scholar] [CrossRef]
- Moreland, E.; Borisov, O.V.; Semenova, E.A.; Larin, A.K.; Andryushchenko, O.N.; Andryushchenko, L.B.; Generozov, E.V.; Williams, A.G.; Ahmetov, I.I. Polygenic Profile of Elite Strength Athletes. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Roth, S.M. Genetic aspects of skeletal muscle strength and mass with relevance to sarcopenia. BoneKEy Rep. 2012, 1, 58. [Google Scholar] [CrossRef] [Green Version]
- Zempo, H.; Miyamoto-Mikami, E.; Kikuchi, N.; Fuku, N.; Miyachi, M.; Murakami, H. Heritability estimates of muscle strength-related phenotypes: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2016, 27, 1537–1546. [Google Scholar] [CrossRef] [PubMed]
- Arden, N.K.; Spector, T.D. Genetic Influences on Muscle Strength, Lean Body Mass, and Bone Mineral Density: A Twin Study. J. Bone Miner. Res. 1997, 12, 2076–2081. [Google Scholar] [CrossRef]
- Loos, R.; Thomis, M.; Maes, H.H.; Beunen, G.; Claessens, A.L.; Derom, C.; Legius, E.; Derom, R.; Vlietinck, R. Gender-specific regional changes in genetic structure of muscularity in early adolescence. J. Appl. Physiol. 1997, 82, 1802–1810. [Google Scholar] [CrossRef]
- Maciejewska-Skrendo, A.; Sawczuk, M.; Cięszczyk, P.; Ahmetov, I.I. Genes and power athlete status. In Sports, Exercise, and Nutritional Genomics; Academic Press: Cambridge, MA, USA, 2019; pp. 41–72. [Google Scholar]
- Ahmetov, I.I.; Hall, E.C.R.; Semenova, E.A.; Pranckevičienė, E.; Ginevičienė, V. Advances in sports genomics. Adv. Clin. Chem 2021. [Google Scholar] [CrossRef]
- Matteini, A.M.; Tanaka, T.; Karasik, D.; Atzmon, G.; Chou, W.C.; Eicher, J.D.; Johnson, A.D.; Arnold, A.M.; Callisaya, M.L.; Davies, G.; et al. GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium. Aging Cell 2016, 15, 792–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willems, S.M.; Wright, D.J.; Day, F.R.; Trajanoska, K.; Joshi, P.K.; Morris, J.A.; Matteini, A.M.; Garton, F.C.; Grarup, N. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat. Commun. 2017, 8, 16015. [Google Scholar] [CrossRef]
- Tikkanen, E.; Gustafsson, S.; Amar, D.; Shcherbina, A.; Waggott, D.; Ashley, E.A.; Ingelsson, E. Biological Insights into Mus-cular Strength: Genetic Findings in the UK Biobank. Sci. Rep. 2018, 8, 6451. [Google Scholar] [CrossRef]
- Grishina, E.E.; Zmijewski, P.; Semenova, E.A.; Cięszczyk, P.; Humińska-Lisowska, K.; Michałowska-Sawczyn, M.; Maculewicz, E.; Crewther, B.; Orysiak, J.; Kostryukova, E.S.; et al. Three DNA Polymorphisms Previously Identified as Markers for Handgrip Strength Are Associated with Strength in Weightlifters and Muscle Fiber Hypertrophy. J. Strength Cond. Res. 2019, 33, 2602–2607. [Google Scholar] [CrossRef] [Green Version]
- Homma, H.; Kobatake, N.; Sekimoto, Y.; Saito, M.; Mochizuki, Y.; Okamoto, T.; Nakazato, K.; Nishiyama, T.; Kikuchi, N. Ciliary Neurotrophic Factor Receptor rs41274853 Polymorphism Is Associated with Weightlifting Performance in Japanese Weightlifters. J. Strength Cond. Res. 2020, 34, 3037–3041. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.; VShikhova, Y.; RDondukovskaya, R.; ATopanova, A.; ASemenova, E.; VAstratenkova, I.; Ahmetov, I.I. Androgen receptor gene microsatellite polymorphism is associated with muscle mass and strength in bodybuilders and power athlete status. Ann. Hum. Biol. 2021, 48, 142–149. [Google Scholar] [CrossRef]
- Cui, J.; Wang, L.; Ren, X.; Zhang, Y.; Zhang, H. LRPPRC: A Multifunctional Protein Involved in Energy Metabolism and Human Disease. Front. Physiol. 2019, 10, 595. [Google Scholar] [CrossRef] [PubMed]
- Piwko, W.; Mlejnkova, L.J.; Mutreja, K.; Ranjha, L.; Stafa, D.; Smirnov, A.; Brodersen, M.M.; Zellweger, R.; Sturzenegger, A.; Janscak, P.; et al. The MMS22L-TONSL heterodimer directly promotes RAD51-dependent recombination upon replication stress. EMBO J. 2016, 35, 2584–2601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connell, B.C.; Adamson, B.; Lydeard, J.R.; Sowa, M.E.; Ciccia, A.; Bredemeyer, A.; Schlabach, M.; Gygi, S.P.; Elledge, S.J.; Harper, J.W. A Genome-wide Camptothecin Sensitivity Screen Identifies a Mammalian MMS22L-NFKBIL2 Complex Required for Genomic Stability. Mol. Cell 2010, 40, 645–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwahn, B.; Rozen, R. Polymorphisms in the methylenetetrahydrofolate reductase gene: Clinical consequences. Am. J. Phamacogenomics 2001, 1, 189–201. [Google Scholar] [CrossRef]
- Zarebska, A.; Ahmetov, I.; Sawczyn, S.; Weiner, A.S.; Kaczmarczyk, M.; Ficek, K.; Maciejewska-Karlowska, A.; Sawczuk, M.; Leonska-Duniec, A.; Klocek, T.; et al. Association of the MTHFR 1298A>C (rs1801131) polymorphism with speed and strength sports in Russian and Polish athletes. J. Sports Sci. 2013, 32, 375–382. [Google Scholar] [CrossRef]
- Wiezlak, M.; Diring, J.; Abella, J.; Mouilleron, S.; Way, M.; McDonald, N.Q.; Treisman, R. G-actin regulates the shuttling and PP1 binding of the RPEL protein Phactr1 to control actomyosin assembly. J. Cell Sci. 2012, 125, 5860–5872. [Google Scholar] [CrossRef] [Green Version]
- Roth, S.M.; Walsh, S.; Liu, D.; Metter, E.J.; Ferrucci, L.; Hurley, B.F. The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur. J. Hum. Genet. 2007, 16, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Fedotovskaia, O.N.; Popov, D.V.; Vinogradova, O.L.; Akhmetov, I.I. Association of the muscle-specific creatine kinase (CKMM) gene polymorphism with physical performance of athletes. Fiziol. Cheloveka 2012, 38, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Gabbasov, R.T.; Arkhipova, A.A.; Borisova, A.V.; Hakimullina, A.M.; Kuznetsova, A.V.; Williams, A.G.; Day, S.H.; Ahmetov, I.I. The HIF1A Gene Pro582Ser Polymorphism in Russian Strength Athletes. J. Strength Cond. Res. 2013, 27, 2055–2058. [Google Scholar] [CrossRef]
- Ben-Zaken, S.; Eliakim, A.; Nemet, D.; Meckel, Y. Genetic Variability among Power Athletes: The Stronger vs. the Faster. J. Strength Cond. Res. 2019, 33, 1505–1511. [Google Scholar] [CrossRef]
- Ramírez, J.D.; Álvarez-Herms, J.; Castañeda-Babarro, A.; Larruskain, J.; de la Piscina, X.R.; Borisov, O.V.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Andryushchenko, O.N.; et al. The GALNTL6 Gene rs558129 Polymorphism Is Associated with Power Performance. J. Strength Cond. Res. 2020, 34, 3031–3036. [Google Scholar] [CrossRef] [PubMed]
SNP | Mean (SD) | r | p | ||
---|---|---|---|---|---|
Genotype 1 | Genotype 2 | Genotype 3 | |||
LRPPRC rs10186876 | GG | AG | AA | ||
Russians | 231.8 (21.6) | 244.2 (20.6) | 251.8 (24.1) | 0.30 | 0.026 * |
Japanese | 182.5 | 202.3 (17.3) | 203.3 (20.2) | 0.03 | 0.799 |
MMS22L rs9320823 | CC | TC | TT | ||
Russians | 233.0 (21.7) | 244.8 (23.4) | 253.4 (14.2) | 0.33 | 0.017 * |
Japanese | 200.5 (19.4) | 201.4 (19.3) | 212.6 (18.9) | 0.20 | 0.047 * |
MTHFR rs1801131 | AA | AC | CC | ||
Russians | 236.1 (21.9) | 243.7 (22.8) | 254.5 (21.5) | 0.27 | 0.048 * |
Japanese | 202.4 (18.9) | 205.9 (23.3) | 202.7 (17.9) | 0.05 | 0.601 |
PHACTR1 rs6905419 | CC | CT | TT | ||
Russians | 247.1 (22.9) | 236.3 (21.5) | 224.8 (13.1) | 0.39 | 0.004 * |
Japanese | 203.2 (21.1) | 205.1 (15.9) | 195.1 (14.7) | 0.08 | 0.411 |
SNP | Genotype 1 | Genotype 2 | Genotype 3 | Strength-Related Allele Frequency, % |
---|---|---|---|---|
LRPPRC rs10186876 | GG | AG | AA | A |
Russians | 17 | 24 | 12 | 45.3 |
Japanese | 1 | 14 | 84 | 91.9 |
MMS22L rs9320823 | CC | TC | TT | T |
Russians | 18 | 28 | 7 | 39.6 |
Japanese | 35 | 47 | 17 | 40.9 |
MTHFR rs1801131 | AA | AC | CC | C |
Russians | 21 | 26 | 6 | 35.8 |
Japanese | 68 | 25 | 5 | 17.9 |
PHACTR1 rs6905419 | CC | CT | TT | C |
Russians | 32 | 17 | 4 | 76.4 |
Japanese | 73 | 23 | 4 | 84.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kikuchi, N.; Moreland, E.; Homma, H.; Semenova, E.A.; Saito, M.; Larin, A.K.; Kobatake, N.; Yusupov, R.A.; Okamoto, T.; Nakazato, K.; et al. Genes and Weightlifting Performance. Genes 2022, 13, 25. https://doi.org/10.3390/genes13010025
Kikuchi N, Moreland E, Homma H, Semenova EA, Saito M, Larin AK, Kobatake N, Yusupov RA, Okamoto T, Nakazato K, et al. Genes and Weightlifting Performance. Genes. 2022; 13(1):25. https://doi.org/10.3390/genes13010025
Chicago/Turabian StyleKikuchi, Naoki, Ethan Moreland, Hiroki Homma, Ekaterina A. Semenova, Mika Saito, Andrey K. Larin, Naoyuki Kobatake, Rinat A. Yusupov, Takanobu Okamoto, Koichi Nakazato, and et al. 2022. "Genes and Weightlifting Performance" Genes 13, no. 1: 25. https://doi.org/10.3390/genes13010025
APA StyleKikuchi, N., Moreland, E., Homma, H., Semenova, E. A., Saito, M., Larin, A. K., Kobatake, N., Yusupov, R. A., Okamoto, T., Nakazato, K., Williams, A. G., Generozov, E. V., & Ahmetov, I. I. (2022). Genes and Weightlifting Performance. Genes, 13(1), 25. https://doi.org/10.3390/genes13010025