Genotype-Phenotype Correlations in PMM2-CDG
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Variables
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Pathogenic Variants with No Residual Enzyme Activity
3.3. Nucleotide Changes Involving the Folding or Stabilization Domain
3.4. Nucleotide Changes Involving the Dimerization Domain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matthijs, G.; Schollen, E.; Heykants, L.; Grünewald, S. Phosphomannomutase deficiency: The molecular basis of the classical Jaeken syndrome (CDGS type Ia). Mol. Genet. Metab. 1999, 68, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Sparks, S.E.; Krasnewich, D.M. PMM2-CDG (CDG-Ia). In GeneReviews® [Internet]; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J., Stephens, K., Mirzaa, G., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993; [cited 2020 May 3]. Available online: http://www.ncbi.nlm.nih.gov/books/NBK1110/ (accessed on 15 August 2021).
- Grunewald, S. Congenital Disorders of Glycosylation: A Review. Pediatr. Res. 2002, 52, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Matthijs, G.; Schollen, E.; Pardon, E.; Veiga-Da-Cunha, M.; Jaeken, J.; Cassiman, J.-J.; Van Schaftingen, E. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nat. Genet. 1997, 16, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Citro, V.; Cimmaruta, C.; Monticelli, M.; Riccio, G.; Hay Mele, B.; Cubellis, M.; Andreotti, G. The Analysis of Variants in the General Population Reveals That PMM2 Is Extremely Tolerant to Missense Mutations and That Diagnosis of PMM2-CDG Can Benefit from the Identification of Modifiers. Int. J. Mol. Sci. 2018, 19, 2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Péanne, R.; de Lonlay, P.; Foulquier, F.; Kornak, U.; Lefeber, D.J.; Morava, E.; Pérez, B.; Seta, N.; Thiel, C.; Van Schaftingen, E.; et al. Congenital disorders of glycosylation (CDG): Quo vadis? Eur. J. Med. Genet. 2018, 61, 643–663. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.J.; He, M.; Lam, C.T. Congenital disorders of glycosylation. Ann. Transl. Med. 2018, 6, 477. [Google Scholar] [CrossRef]
- Witters, P.; Honzik, T.; Bauchart, E.; Altassan, R.; Pascreau, T.; Bruneel, A.; Vuillaumier, S.; Seta, N.; Borgel, D.; Matthijs, G.; et al. Long-term follow-up in PMM2-CDG: Are we ready to start treatment trials? Genet. Med. 2018, 21, 1181–1188. [Google Scholar] [CrossRef]
- Altassan, R.; Péanne, R.; Jaeken, J.; Barone, R.; Bidet, M.; Borgel, D.; Brasil, S.A.; Cassiman, D.; Cechova, A.; Coman, D.; et al. International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: Diagnosis, treatment and follow up. J. Inherit. Metab. Dis. 2019, 42, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Silvaggi, N.R.; Zhang, C.; Lu, Z.; Dai, J.; Dunaway-Mariano, D.; Allen, K.N. The X-ray crystal structures of human alpha-phosphomannomutase 1 reveal the structural basis of congenital disorder of glycosylation type 1a. J. Biol. Chem. 2006, 281, 14918–14926. [Google Scholar] [CrossRef] [Green Version]
- Andreotti, G.; Cabeza de Vaca, I.; Poziello, A.; Monti, M.C.; Guallar, V.; Cubellis, M.V. Conformational Response to Ligand Binding in Phosphomannomutase2: Insights into Inborn Glycosylation Disorder. J. Biol. Chem. 2014, 289, 34900–34910. [Google Scholar] [CrossRef] [Green Version]
- Cooper, D.N.; Ball, E.V.; Stenson, P.D.; Phillips, A.D.; Evans, K.; Heywood, S.; Hayden, M.J.; Chapman, M.M.; Mort, M.E.; Azevedo, L.; et al. Humane Gene Mutation Database (HGMD) [Internet]. Available online: http://www.hgmd.cf.ac.uk/ac/index.Php (accessed on 15 August 2021).
- Monticelli, M.; Liguori, L.; Allocca, M.; Andreotti, G.; Cubellis, M.V. β-Glucose-1,6-Bisphosphate Stabilizes Pathological Phophomannomutase2 Mutants In Vitro and Represents a Lead Compound to Develop Pharmacological Chaperones for the Most Common Disorder of Glycosylation, PMM2-CDG. Int. J. Mol. Sci. 2019, 20, 4164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schollen, E.; Kjaergaard, S.; Legius, E.; Schwartz, M.; Matthijs, G. Lack of Hardy-Weinberg equilibrium for the most prevalent PMM2 mutation in CDG-Ia (congenital disorders of glycosylation type Ia). Eur. J. Hum. Genet. 2000, 8, 367–371. [Google Scholar] [CrossRef]
- Vega, A.I.; Pérez-Cerdá, C.; Abia, D.; Gámez, A.; Briones, P.; Artuch, R.; Desviat, L.R.; Ugarte, M.; Pérez, B. Expression analysis revealing destabilizing mutations in phosphomannomutase 2 deficiency (PMM2-CDG): Expression analysis of PMM2-CDG mutations. J. Inherit. Metab. Dis. 2011, 34, 929–939. [Google Scholar] [CrossRef]
- Martinez-Monseny, A.; Cuadras, D.; Bolasell, M.; Muchart, J.; Arjona, C.; Borregan, M.; Algrabli, A.; Montero, R.; Artuch, R.; Velázquez-Fragua, R.; et al. From gestalt to gene: Early predictive dysmorphic features of PMM2-CDG. J. Med. Genet. 2019, 56, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Vuillaumier-Barrot, S.; Isidor, B.; Dupré, T.; Le Bizec, C.; David, A.; Seta, N. Expanding the Spectrum of PMM2-CDG Phenotype. In JIMD Reports—Case and Research Reports, 2012/2 [Internet]; SSIEM, Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 5, pp. 123–125, JIMD Reports; [cited 3 May 2020]; Available online: http://link.springer.com/10.1007/8904_2011_114 (accessed on 15 August 2021).
- Vals, M.-A.; Morava, E.; Teeäär, K.; Zordania, R.; Pajusalu, S.; Lefeber, D.J.; Õunap, K. Three families with mild PMM2-CDG and normal cognitive development. Am. J. Med. Genet. Part A 2017, 173, 1620–1624. [Google Scholar] [CrossRef]
- Ligezka, A.N.; Radenkovic, S.; Saraswat, M.; Garapati, K.; Ranatunga, W.; Krzysciak, W.; Yanaihara, H.; Preston, G.; Brucker, W.; McGovern, R.M.; et al. Sorbitol is a Severity Biomarker for PMM2-CDG with Therapeutic Implications. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.26245 (accessed on 15 October 2021).
- Matthijs, G.; Schollen, E.; Bjursell, C.; Erlandson, A.; Freeze, H.; Imtiaz, F.; Kjaergaard, S.; Martinsson, T.; Schwartz, M.; Seta, N.; et al. Mutations in PMM2 that cause congenital disorders of glycosylation, type Ia (CDG-Ia). Hum. Mutat. 2000, 16, 386–394. [Google Scholar] [CrossRef]
- Matthijs, G.; Schollen, E.; Van Schaftingen, E.; Cassiman, J.-J.; Jaeken, J. Lack of homozygotes for the most frequent disease allele in carbohydrate-deficient glycoprotein syndrome type 1A. Am. J. Hum. Genet. 1998, 62, 542–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, M.; De Diego, V.; Muchart, J.; Cuadras, D.; Felipe-Rucian, A.; Macaya, A.; Velázquez, R.; Poo, M.P.; Fons, C.; O’Callaghan, M.M.; et al. Phosphomannomutase deficiency (PMM2-CDG): Ataxia and cerebellar assessment. Orphanet J. Rare Dis. 2015, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Grünewald, S.; Schollen, E.; Van Schaftingen, E.; Jaeken, J.; Matthijs, G. High residual activity of PMM2 in patients’ fibroblasts: Possible pitfall in the diagnosis of CDG-Ia (phosphomannomutase deficiency). Am. J. Hum. Genet. 2001, 68, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Kjaergaard, S.; Schwartz, M.; Skovby, F. Congenital disorder of glycosylation type Ia (CDG-Ia): Phenotypic spectrum of the R141H/F119L genotype. Arch. Dis. Child. 2001, 85, 236–239. [Google Scholar] [CrossRef] [Green Version]
- Achouitar, S.; Mohamed, M.; Gardeitchik, T.; Wortmann, S.B.; Sykut-Cegielska, J.; Ensenauer, R.; De Baulny, H.O.; Ounap, K.; Martinelli, D.; De Vries, M.; et al. Nijmegen paediatric CDG rating scale: A novel tool to assess disease progression. J. Inherit. Metab. Dis. 2011, 34, 923–927. [Google Scholar] [CrossRef] [PubMed]
- Pirard, M.; Matthijs, G.; Heykants, L.; Schollen, E.; Grünewald, S.; Jaeken, J.; van Schaftingen, E. Effect of mutations found in carbohydrate-deficient glycoprotein syndrome type IA on the activity of phosphomannomutase 2. FEBS Lett. 1999, 452, 319–322. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, A.J.F. (Ed.) An Introduction to Genetic Analysis, 7th ed.; W.H. Freeman: New York, NY, USA, 2000; 860p. [Google Scholar]
- Francisco, R.; Pascoal, C.; Marques-Da-Silva, D.; Brasil, S.; Pimentel-Santos, F.M.; Altassan, R.; Jaeken, J.; Grosso, A.R.; Ferreira, V.D.R.; Videira, P.A. New Insights into Immunological Involvement in Congenital Disorders of Glycosylation (CDG) from a People-Centric Approach. J. Clin. Med. 2020, 9, 2092. [Google Scholar] [CrossRef] [PubMed]
- Vuillaumier-Barrot, S.; Barnier, A.; Cuer, M.; Durand, G.; Grandchamp, B.; Seta, N. Characterization of the 415G>A (E139K) PMM2 mutation in carbohydrate-deficient glycoprotein syndrome type Ia disrupting a splicing enhancer resulting in exon 5 skipping. Hum. Mutat. 1999, 14, 543–544. [Google Scholar] [CrossRef]
First Pathogenic Variant | Second Pathogenic Variant | Number of Patients (N = 26) |
---|---|---|
p.Arg141His | ||
p.Phe119Leu | 7 (26.9%) | |
p.Cys241Ser | 2 (7.7%) | |
p.Pro113Leu | 2 (7.7%) | |
p.Val231Met | 2 (7.7%) | |
p.Glu139Lys | 1 (3.8%) | |
p.Thr18Ser | 1 (3.8%) | |
p.Phe183Ser | 1 (3.8%) | |
p.Ile132Thr | 1 (3.8%) | |
p.Ile153Thr | 1 (3.8%) | |
p.Thr237Arg | ||
p.Pro113Leu | 2 (7.7%) | |
p.Cys241Ser | 1 (3.8%) | |
p.Gln33Pro | ||
p.Ser47Leu | 1 (3.8%) | |
p.Phe119Leu | ||
p.Phe119Leu | 1 (3.8%) | |
p.Arg162Trp | ||
c.451_454del (p.Glu151Ilefs*2) | 1 (3.8%) | |
p.Asp188Gly | ||
p.Val231Met | 1 (3.8%) | |
p.Asp148Asn | ||
p.Pro113Leu | 1 (3.8%) |
Variables | N 1 | Group 1 2 N = 22 | Group 2 3 N = 4 | p-Value |
---|---|---|---|---|
Gender | 26 | 0.5739 | ||
Female | 9 (34.6%) | 2 (7.69%) | ||
Male | 13 (50.00%) | 2 (7.69%) | ||
Total subscore 1 | 23 | 9.45 (+/− 5.20) | 8.25 (+/− 1.26) | 0.4623 |
Total subscore 2 | 26 | 3.77 (+/− 2.52) | 3.50 (+/− 1.73) | 0.7189 |
Total subscore 3 | 24 | 11.70 (+/− 5.01) | 12.50 (+/− 1.91) | 0.4601 |
Total score NPCRS | 21 | 25.97 (+/− 11.35) | 24.25 (+/− 3.10) | 0.7880 |
Variables | N 1 | Group 1 2 N = 8 | Group 2 3 N = 14 | p-Value |
---|---|---|---|---|
Gender | 22 | 0.5836 | ||
Female | 3 (13.64%) | 6 (27.27%) | ||
Male | 5 (22.73%) | 8 (36.36%) | ||
Total subscore 1 | 19 | 6.29 (+/− 4.42) | 11.29 (+/− 4.85) | 0.0196 |
Total subscore 2 | 22 | 3.50 (+/− 2.73) | 3.93 (+/− 2.50) | 0.7292 |
Total subscore 3 | 20 | 8.14 (+/− 3.24) | 13.62 (+/− 4.81) | 0.0123 |
Total score NPCRS | 17 | 19.33 (+/− 9.65) | 29.59 (+/− 10.91) | 0.0444 |
Variables | N 1 | Group 1 2 N = 3 | Group 2 3 N = 19 | p-Value |
---|---|---|---|---|
Gender | 22 | 0.6416 | ||
Female | 1 (4.55%) | 8 (36.36%) | ||
Male | 2 (9.09%) | 11 (50.00%) | ||
Total subscore 1 | 19 | 2.67 (+/− 2.50) | 10.72 (+/− 4.56) | 0.0158 |
Total subscore 2 | 22 | 0.67 (+/− 0.58) | 4.26 (+/− 2.35) | 0.0290 |
Total subscore 3 | 20 | 5.50 (+/− 4.95) | 12.39 (+/− 4.64) | 0.0879 |
Total score NPCRS | 17 | 10.00 (+/− 7.07) | 28.10 (+/− 10.12) | 0.0369 |
Variables | N 1 | Group 1 2 N = 11 | Group 2 3 N = 11 | p-Value |
---|---|---|---|---|
Gender | 22 | 0.5000 | ||
Female | 4 (18.18%) | 5 (22.73%) | ||
Male | 7 (31.82%) | 6 (27.27%) | ||
Total subscore 1 | 19 | 13.17 (+/− 3.22) | 6.10 (+/− 4.31) | 0.0012 |
Total subscore 2 | 22 | 4.55 (+/− 2.38) | 3.00 (+/− 2.35) | 0.1428 |
Total subscore 3 | 20 | 14.70 (+/− 4.81) | 8.70 (+/− 3.13) | 0.0039 |
Total score NPCRS | 17 | 34.19 (+/− 7.60) | 18.67 (+/− 8.93) | 0.0021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaes, L.; Rymen, D.; Cassiman, D.; Ligezka, A.; Vanhoutvin, N.; Quelhas, D.; Morava, E.; Witters, P. Genotype-Phenotype Correlations in PMM2-CDG. Genes 2021, 12, 1658. https://doi.org/10.3390/genes12111658
Vaes L, Rymen D, Cassiman D, Ligezka A, Vanhoutvin N, Quelhas D, Morava E, Witters P. Genotype-Phenotype Correlations in PMM2-CDG. Genes. 2021; 12(11):1658. https://doi.org/10.3390/genes12111658
Chicago/Turabian StyleVaes, Laurien, Daisy Rymen, David Cassiman, Anna Ligezka, Nele Vanhoutvin, Dulce Quelhas, Eva Morava, and Peter Witters. 2021. "Genotype-Phenotype Correlations in PMM2-CDG" Genes 12, no. 11: 1658. https://doi.org/10.3390/genes12111658
APA StyleVaes, L., Rymen, D., Cassiman, D., Ligezka, A., Vanhoutvin, N., Quelhas, D., Morava, E., & Witters, P. (2021). Genotype-Phenotype Correlations in PMM2-CDG. Genes, 12(11), 1658. https://doi.org/10.3390/genes12111658