Chronic Pancreatitis: The True Pathogenic Culprit within the SPINK1 N34S-Containing Haplotype Is No Longer at Large
Abstract
:Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ru, N.; Xu, X.N.; Cao, Y.; Zhu, J.H.; Hu, L.H.; Wu, S.Y.; Qian, Y.Y.; Pan, J.; Zou, W.B.; Li, Z.S.; et al. The impacts of genetic and environmental factors on the progression of chronic pancreatitis. Clin. Gastroenterol. Hepatol. 2021. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, E.; Sahin-Tóth, M. Genetic risk in chronic pancreatitis: The trypsin-dependent pathway. Dig. Dis. Sci. 2017, 62, 1692–1701. [Google Scholar] [CrossRef]
- Genetic Risk Factors in Chronic Pancreatitis. Available online: http://www.pancreasgenetics.org/index.php (accessed on 27 September 2021).
- Girodon, E.; Rebours, V.; Chen, J.M.; Pagin, A.; Lévy, P.; Férec, C.; Bienvenu, T. Clinical interpretation of SPINK1 and CTRC variants in pancreatitis. Pancreatology 2020, 20, 1354–1367. [Google Scholar] [CrossRef]
- Girodon, E.; Rebours, V.; Chen, J.M.; Pagin, A.; Lévy, P.; Férec, C.; Bienvenu, T. Clinical interpretation of PRSS1 variants in patients with pancreatitis. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101497. [Google Scholar] [CrossRef] [PubMed]
- Witt, H.; Luck, W.; Hennies, H.C.; Classen, M.; Kage, A.; Lass, U.; Landt, O.; Becker, M. Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat. Genet. 2000, 25, 213–216. [Google Scholar] [CrossRef]
- GnomAD (Genome Aggregation Database). Available online: https://gnomad.broadinstitute.org/ (accessed on 27 September 2021).
- Chen, J.M.; Herzig, A.F.; Genin, E.; Masson, E.; Cooper, D.N.; Férec, C. Scale and scope of gene-alcohol interactions in chronic pancreatitis: A systematic review. Genes 2021, 12, 471. [Google Scholar] [CrossRef]
- Kuwata, K.; Hirota, M.; Shimizu, H.; Nakae, M.; Nishihara, S.; Takimoto, A.; Mitsushima, K.; Kikuchi, N.; Endo, K.; Inoue, M.; et al. Functional analysis of recombinant pancreatic secretory trypsin inhibitor protein with amino-acid substitution. J. Gastroenterol. 2002, 37, 928–934. [Google Scholar] [CrossRef]
- Boulling, A.; le Maréchal, C.; Trouvé, P.; Raguénès, O.; Chen, J.M.; Férec, C. Functional analysis of pancreatitis-associated missense mutations in the pancreatic secretory trypsin inhibitor (SPINK1) gene. Eur. J. Hum. Genet. 2007, 15, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Király, O.; Wartmann, T.; Sahin-Tóth, M. Missense mutations in pancreatic secretory trypsin inhibitor (SPINK1) cause intracellular retention and degradation. Gut 2007, 56, 1433–1438. [Google Scholar] [CrossRef]
- Chen, J.M.; Mercier, B.; Audrézet, M.P.; Raguénès, O.; Quéré, I.; Férec, C. Mutations of the pancreatic secretory trypsin inhibitor (PSTI) gene in idiopathic chronic pancreatitis. Gastroenterology 2001, 120, 1061–1064. [Google Scholar] [CrossRef]
- Kereszturi, E.; Király, O.; Sahin-Tóth, M. Minigene analysis of intronic variants in common SPINK1 haplotypes associated with chronic pancreatitis. Gut 2009, 58, 545–549. [Google Scholar] [CrossRef] [Green Version]
- Boulling, A.; Chen, J.M.; Callebaut, I.; Férec, C. Is the SPINK1 p.Asn34ser missense mutation per se the true culprit within its associated haplotype? WebmedCentral Gene 2012, 3, WMC003084. [Google Scholar]
- Wu, H.; Boulling, A.; Cooper, D.N.; Li, Z.S.; Liao, Z.; Férec, C.; Chen, J.M. Analysis of the impact of known SPINK1 missense variants on pre-mRNA splicing and/or mRNA stability in a full-length gene assay. Genes 2017, 8, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masamune, A.; Kume, K.; Takagi, Y.; Kikuta, K.; Satoh, K.; Satoh, A.; Shimosegawa, T. N34s mutation in the SPINK1 gene is not associated with alternative splicing. Pancreas 2007, 34, 423–428. [Google Scholar] [CrossRef]
- The Genotype-Tissue Expression (GTEx) Database. Available online: https://gtexportal.org/home/ (accessed on 7 October 2021).
- Boulling, A.; Masson, E.; Zou, W.B.; Paliwal, S.; Wu, H.; Issarapu, P.; Bhaskar, S.; Genin, E.; Cooper, D.N.; Li, Z.S.; et al. Identification of a functional enhancer variant within the chronic pancreatitis-associated SPINK1 c.101A>G (p.Asn34ser)-containing haplotype. Hum. Mutat. 2017, 38, 1014–1024. [Google Scholar] [CrossRef] [Green Version]
- den Dunnen, J.T.; Dalgleish, R.; Maglott, D.R.; Hart, R.K.; Greenblatt, M.S.; McGowan-Jordan, J.; Roux, A.F.; Smith, T.; Antonarakis, S.E.; Taschner, P.E. HGVS recommendations for the description of sequence variants: 2016 update. Hum. Mutat. 2016, 37, 564–569. [Google Scholar] [CrossRef] [Green Version]
- Lelli, K.M.; Slattery, M.; Mann, R.S. Disentangling the many layers of eukaryotic transcriptional regulation. Annu. Rev. Genet. 2012, 46, 43–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masui, T.; Swift, G.H.; Hale, M.A.; Meredith, D.M.; Johnson, J.E.; Macdonald, R.J. Transcriptional autoregulation controls pancreatic Ptf1a expression during development and adulthood. Mol. Cell. Biol. 2008, 28, 5458–5468. [Google Scholar] [CrossRef] [Green Version]
- Holmstrom, S.R.; Deering, T.; Swift, G.H.; Poelwijk, F.J.; Mangelsdorf, D.J.; Kliewer, S.A.; MacDonald, R.J. LRH-1 and PTF1-L coregulate an exocrine pancreas-specific transcriptional network for digestive function. Genes Dev. 2011, 25, 1674–1679. [Google Scholar] [CrossRef] [Green Version]
- Molero, X.; Vaquero, E.C.; Flandez, M.; Gonzalez, A.M.; Ortiz, M.A.; Cibrian-Uhalte, E.; Servitja, J.M.; Merlos, A.; Juanpere, N.; Massumi, M.; et al. Gene expression dynamics after murine pancreatitis unveils novel roles for Hnf1α in acinar cell homeostasis. Gut 2012, 61, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Kereszturi, É.; Sahin-Tóth, M. Pancreatic cancer cell lines heterozygous for the SPINK1 p.N34s haplotype exhibit diminished expression of the variant allele. Pancreas 2017, 46, e54–e55. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Kolossváry, I.; Kozakov, D.; Sahin-Tóth, M.; Vajda, S. The N34S mutation of SPINK1 may impact the kinetics of trypsinogen activation to cause early trypsin release in the pancreas. bioRxiv 2020. [Google Scholar] [CrossRef]
- Kulke, M.; Nagel, F.; Schulig, L.; Geist, N.; Gabor, M.; Mayerle, J.; Lerch, M.M.; Link, A.; Delcea, M. A hypothesized mechanism for chronic pancreatitis caused by the N34S mutation of serine protease inhibitor Kazal-type 1 based on conformational studies. J. Inflamm. Res. 2021, 14, 2111–2119. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, I.; Nagel, F.; Klein, A.; Wagh, P.R.; Mahajan, U.M.; Greinacher, A.; Lerch, M.M.; Mayerle, J.; Delcea, M. The impact of physiological stress conditions on protein structure and trypsin inhibition of serine protease inhibitor Kazal type 1 (SPINK1) and its N34S variant. Biochim. Biophys. Acta Proteins Proteom. 2020, 1868, 140281. [Google Scholar] [CrossRef]
- Szabó, A.; Toldi, V.; Gazda, L.D.; Demcsak, A.; Tozser, J.; Sahin-Tóth, M. Defective binding of SPINK1 variants is an uncommon mechanism for impaired trypsin inhibition in chronic pancreatitis. J. Biol. Chem. 2021, 296, 100343. [Google Scholar] [CrossRef]
- Sahin-Tóth, M.; Kukor, Z.; Nemoda, Z. Human cationic trypsinogen is sulfated on Tyr154. FEBS J. 2006, 273, 5044–5050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabó, A.; Salameh, M.A.; Ludwig, M.; Radisky, E.S.; Sahin-Tóth, M. Tyrosine sulfation of human trypsin steers S2’ subsite selectivity towards basic amino acids. PLoS ONE 2014, 9, e102063. [Google Scholar] [CrossRef] [PubMed]
- LDlink. Available online: https://ldlink.nci.nih.gov/?tab=home (accessed on 21 October 2021).
- Sengupta, D.; Choudhury, A.; Basu, A.; Ramsay, M. Population stratification and underrepresentation of Indian subcontinent genetic diversity in the 1000 genomes project dataset. Genome Biol. Evol. 2016, 8, 3460–3470. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Férec, C. The true culprit within the SPINK1 p.N34S-containing haplotype is still at large. Gut 2009, 58, 478–480. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, N.; Masson, E.; Cooper, D.N.; Génin, E.; Férec, C.; Chen, J.-M. Chronic Pancreatitis: The True Pathogenic Culprit within the SPINK1 N34S-Containing Haplotype Is No Longer at Large. Genes 2021, 12, 1683. https://doi.org/10.3390/genes12111683
Pu N, Masson E, Cooper DN, Génin E, Férec C, Chen J-M. Chronic Pancreatitis: The True Pathogenic Culprit within the SPINK1 N34S-Containing Haplotype Is No Longer at Large. Genes. 2021; 12(11):1683. https://doi.org/10.3390/genes12111683
Chicago/Turabian StylePu, Na, Emmanuelle Masson, David N. Cooper, Emmanuelle Génin, Claude Férec, and Jian-Min Chen. 2021. "Chronic Pancreatitis: The True Pathogenic Culprit within the SPINK1 N34S-Containing Haplotype Is No Longer at Large" Genes 12, no. 11: 1683. https://doi.org/10.3390/genes12111683
APA StylePu, N., Masson, E., Cooper, D. N., Génin, E., Férec, C., & Chen, J. -M. (2021). Chronic Pancreatitis: The True Pathogenic Culprit within the SPINK1 N34S-Containing Haplotype Is No Longer at Large. Genes, 12(11), 1683. https://doi.org/10.3390/genes12111683