Transcriptomic Analysis of Laying Hens Revealed the Role of Aging-Related Genes during Forced Molting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animal Experimental Design
2.3. Serological Indices
2.4. Sample Collection
2.5. RNA Isolation, Library Construction, and Sequencing
2.6. Alignment with the Reference Genome and DEGs Analysis
2.7. Functional Annotation of DEGs
2.8. Trend Analysis
- (1)
- Maximum unit change in model profiles between time points was 1;
- (2)
- Maximum output profile number was 20 (similar profiles will be merged);
- (3)
- Minimum ratio of fold change of DEGs was no less than 2.
2.9. Construction of Gene Coexpression Networks and Screening of Hub Genes
3. Results
3.1. Comparison of Changes in Feather Coverage during FM
3.2. Serological Indices between Two Periods in the Five FM Periods
3.3. RNA-Seq Analysis for Identifying DEGs among Three Groups
3.4. Functional Enrichment and Annotation of DEGs among the Three Groups
3.4.1. Group 1-vs-2 in the Hypothalamus and Ovary
3.4.2. Group 2-vs-3 in the Hypothalamus and Ovary
3.4.3. Group 3-vs-5 in the Hypothalamus and Ovary
3.5. Short Time-Series Expression Miner Analysis of Hypothalamus and Ovary
3.6. Weighted Gene Coexpression Network Analysis of the Hypothalamus and Ovary
3.6.1. Construction of Coexpression Modules of FM
3.6.2. Gene Coexpression Modules Correspond to Phenotypic Traits
3.6.3. Module Visualization and Hub Genes
4. Discussion
4.1. Fasting Promotes the Health of Both People and Animals
4.2. Serological Indices Regulate the FM Process
4.3. Aging-Related Gene Expression Level Associated with the FM Process
4.4. Physical Changes Are Slow in the Early Natural Aging Process
4.5. FM Accelerates Aging and Redevelopment of Hens
4.6. Dynamic Expression Patterns of Aging-Related Genes Are Consistent with the ELR
4.7. Aging-Related Hub Genes Were Identified by WGCNA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiat, Y.; Vortman, Y.; Sapir, N. Feather moult and bird appearance are correlated with global warming over the last 200 years. Nat. Commun. 2019, 10, 2540. [Google Scholar] [CrossRef] [Green Version]
- Huo, S.; Li, Y.; Guo, Y.; Zhang, S.; Li, P.; Gao, P. Improving effects of Epimedium flavonoids on the selected reproductive features in layer hens after forced molting. Poult. Sci. 2020, 99, 2757–2765. [Google Scholar] [CrossRef]
- Onbaşılar, E.E.; Erol, H. Effects of Different Forced Molting Methods on Postmolt Production, Corticosterone Level, and Immune Response to Sheep Red Blood Cells in Laying Hens. J. Appl. Poult. Res. 2007, 16, 529–536. [Google Scholar] [CrossRef]
- Luck, M.R.; Scanes, C. The relationship between reproductive activity and blood calcium in the calcium-deficient hen. Br. Poult. Sci. 1979, 20, 559–564. [Google Scholar] [CrossRef]
- Perez, F.M.; Malamed, S.; Scanes, C.G. Possible participation of calcium in growth hormone release and in thyrotropin-releasing hormone and human pancreatic growth hormone-releasing factor synergy in a primary culture of chicken pituitary cells. Gen. Comp. Endocrinol. 1989, 75, 481–491. [Google Scholar] [CrossRef]
- Zhang, Y.; Ouyang, K.; Lipina, T.V.; Wang, H.; Zhou, Q. Conditioned stimulus presentations alter anxiety level in fear-conditioned mice. Mol. Brain 2019, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Thorner, M.O.; Holl, R.W.; Leong, D.A. The somatotrope: An endocrine cell with functional calcium transients. J. Exp. Biol. 1988, 139, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, B.; Mani, S.K. Dopamine agonist signalling in the hypothalamus of female rats is independent of calcium-dependent kinases. J. Neuroendocrinol. 2009, 21, 954–960. [Google Scholar] [CrossRef] [Green Version]
- Szabo, A.; Febel, H.; Mezes, M.; Horn, P.; Balogh, K.; Romvari, R. Differential utilization of hepatic and myocardial fatty acids during forced molt of laying hens. Poult. Sci. 2005, 84, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Kubena, L.F.; Byrd, J.A.; Moore, R.W.; Ricke, S.C.; Nisbet, D.J. Effects of drinking water treatment on susceptibility of laying hens to Salmonella enteritidis during forced molt. Poult. Sci. 2005, 84, 204–211. [Google Scholar] [CrossRef]
- Mpango, M.M.; Madekurozwa, M.-C. Comparative histomorphological and ultrastructural study of the luminal epithelium of the isthmus in laying and moulting domestic fowls (Gallus domesticus). Anat. Histol. Embryol. 2018, 47, 444–455. [Google Scholar] [CrossRef] [PubMed]
- Madekurozwa, M.-C.N.; Mpango, M.M. Ultrastructure of the tubular glands in the isthmus region of the oviduct in laying and natural moulting commercial egg-type chickens. Anat. Histol. Embryol. 2018, 47, 493–497. [Google Scholar] [CrossRef]
- Holmes, D.J.; Thomson, S.L.; Wu, J.; Ottinger, M.A. Reproductive aging in female birds. Exp. Gerontol. 2003, 38, 751–756. [Google Scholar] [CrossRef]
- Laporta, L.; Micera, E.; Surdo, N.C.; Moramarco, A.M.; Di Modugno, G.; Zarrilli, A. A functional study on L-type calcium channels in granulosa cells of small follicles in laying and forced molt hens. Anim. Reprod. Sci. 2011, 126, 265–270. [Google Scholar] [CrossRef]
- Kakhki, R.A.M.; Mousavi, Z.; Anderson, K. An appraisal of moulting on post-moult egg production and egg weight distribution in white layer hens; meta-analysis. Br. Poult. Sci. 2018, 59, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.M.H.; Rodríguez-Navarro, A.B.; Vidal, M.L.; Gautron, J.; García-Ruiz, J.M.; Nys, Y. Changes in eggshell mechanical properties, crystallographic texture and in matrix proteins induced by moult in hens. Br. Poult. Sci. 2005, 46, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, L.; Sadeghi, G. Using different ratios of bitter vetch (Vicia ervilia) seed for moult induction and post-moult performance in commercial laying hens. Br. Poult. Sci. 2009, 50, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Meir, M.; Ar, A. Changes in eggshell conductance, water loss and hatchability of layer hens with flock age and moulting. Br. Poult. Sci. 2008, 49, 677–684. [Google Scholar] [CrossRef]
- Han, G.P.; Lee, K.-C.; Kang, H.K.; Na, O.H.; Sul, W.J.; Kil, D.Y. Analysis of excreta bacterial community after forced molting in aged laying hens. Asian-Australas. J. Anim. Sci. 2019, 32, 1715–1724. [Google Scholar] [CrossRef] [Green Version]
- Gregory, N.G.; Wilkins, L.J.; Kestin, S.C.; Belyavin, C.G.; Alvey, D.M. Effect of husbandry system on broken bones and bone strength in hens. Vet. Rec. 1991, 128, 397–399. [Google Scholar] [CrossRef]
- Onbaşılar, E.E.; Kahraman, M.; Güngör, Ö.F.; Kocakaya, A.; Karakan, T.; Pirpanahi, M.; Doğan, B.; Metin, D.; Akan, M.; Şehu, A.; et al. Effects of cage type on performance, welfare, and microbiological properties of laying hens during the molting period and the second production cycle. Trop. Anim. Health Prod. 2020, 52, 3713–3724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Du, H.; Yang, C.; Li, Q.; Qiu, M.; Song, X.; Yu, C.; Jiang, X.; Liu, L.; Hu, C.; et al. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds. Anim. Biotechnol. 2019, 30, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.; Liu, R.; Zhao, G.; Liu, L.; Groenen, M.A.M.; Madsen, O.; Zheng, M.; Yang, X.; Crooijmans, R.P.M.A.; Wen, J. RNA-Seq Analysis Reveals Hub Genes Involved in Chicken Intramuscular Fat and Abdominal Fat Deposition During Development. Front. Genet. 2020, 11, 1009. [Google Scholar] [CrossRef] [PubMed]
- Langouet-Astrie, C.J.; Meinsen, A.L.; Grunwald, E.R.; Turner, S.; Enke, R.A. RNA sequencing analysis of the developing chicken retina. Sci. Data 2016, 3, 160117. [Google Scholar] [CrossRef] [PubMed]
- Piórkowska, K.; Żukowski, K.; Połtowicz, K.; Nowak, J.; Wojtysiak, D.; Derebecka, N.; Wesoły, J.; Ropka-Molik, K. Transcriptomic Changes in Broiler Chicken Hypothalamus during Growth and Development. Int. J. Genom. 2018, 2018, 6049469. [Google Scholar] [CrossRef]
- Ayers, K.L.; Lambeth, L.S.; Davidson, N.M.; Sinclair, A.H.; Oshlack, A.; Smith, C.A. Identification of candidate gonadal sex differentiation genes in the chicken embryo using RNA-seq. BMC Genom. 2015, 16, 704. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zheng, X.; Mo, C.; Li, S.; Liu, Z.; Yang, G.; Zhao, Q.; Li, S.; Mou, C. Transcriptome analysis and identification of genes associated with chicken sperm storage duration. Poult. Sci. 2020, 99, 1199–1208. [Google Scholar] [CrossRef]
- Guo, J.; Ito, S.; Nguyen, H.T.; Yamamoto, K.; Iwata, H. Effects on the hepatic transcriptome of chicken embryos in ovo exposed to phenobarbital. Ecotoxicol. Environ. Saf. 2018, 160, 94–103. [Google Scholar] [CrossRef]
- Yin, Z.; Lian, L.; Zhu, F.; Zhang, Z.-H.; Hincke, M.; Yang, N.; Hou, Z.-C. The transcriptome landscapes of ovary and three oviduct segments during chicken (Gallus gallus) egg formation. Genomics 2020, 112, 243–251. [Google Scholar] [CrossRef]
- Truong, A.D.; Hong, Y.H.; Lillehoj, H.S. RNA-seq Profiles of Immune Related Genes in the Spleen of Necrotic Enteritis-afflicted Chicken Lines. Asian-Australas. J. Anim. Sci. 2015, 28, 1496–1511. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.-X.; Nie, F.-R.; Huang, A.-Q.; Wang, R.-N.; Li, M.-Y.; Deng, H.-Y.; Zhou, Y.-Z.; Zhou, X.-M.; Huang, Y.-K.; Zhou, J.; et al. Transcriptomic analysis of chicken immune response to infection of different doses of Newcastle disease vaccine. Gene 2021, 766, 145077. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Y.; Ren, J.; Liu, H.; Adam, F.A.; Wang, X.; Yang, Z. Insights into the chicken bursa of fabricius response to Newcastle disease virus at 48 and 72 hours post-infection through RNA-seq. Vet. Microbiol. 2019, 236, 108389. [Google Scholar] [CrossRef]
- Sunkaraa, L.; Ahmad, S.M.; Heidari, M. RNA-seq analysis of viral gene expression in the skin of Marek’s disease virus infected chickens. Vet. Immunol. Immunopathol. 2019, 213, 109882. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Singh, K.; Rodman, M.J.; Hassanzadeh, S.; Wu, K.; Nguyen, A.; Huffstutler, R.D.; Seifuddin, F.; Dagur, P.K.; Saxena, A.; et al. Fasting-induced FOXO4 blunts human CD4+ T helper cell responsiveness. Nat. Metab. 2021, 3, 318–326. [Google Scholar] [CrossRef]
- Mihaylova, M.M.; Cheng, C.-W.; Cao, A.; Tripathi, S.; Mana, M.D.; Bauer-Rowe, K.E.; Abu-Remaileh, M.; Clavain, L.; Erdemir, A.; Lewis, C.A.; et al. Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging. Cell Stem Cell 2018, 22, 769–778.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longo, V.D.; Mattson, M.P. Fasting: Molecular Mechanisms and Clinical Applications. Cell Metab. 2014, 19, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lequin, R.M. Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clin. Chem. 2005, 51, 2415–2418. [Google Scholar] [CrossRef] [Green Version]
- Dingemans, A.; Danner, U.; Parks, M. Emotion Regulation in Binge Eating Disorder: A Review. Nutrients 2017, 9, 1274. [Google Scholar] [CrossRef] [Green Version]
- Michalsen, A.; Li, C. Fasting therapy for treating and preventing disease—Current state of evidence. Forsch. Komplementmed 2013, 20, 444–453. [Google Scholar] [CrossRef]
- Nencioni, A.; Caffa, I.; Cortellino, S.; Longo, V.D. Fasting and cancer: Molecular mechanisms and clinical application. Nat. Rev. Cancer 2018, 18, 707–719. [Google Scholar] [CrossRef]
- Bagherniya, M.; Butler, A.E.; Barreto, G.E.; Sahebkar, A. The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Res. Rev. 2018, 47, 183–197. [Google Scholar] [CrossRef]
- Vargas, L.; Sakomura, N.K.; Leme, B.B.; Antayhua, F.A.P.; Campos, D.; Gous, R.M.; Fisher, C. A description of the growth and moulting of feathers in commercial broilers. Br. Poult. Sci. 2020, 61, 454–464. [Google Scholar] [CrossRef]
- Silva-Mendonça, M.C.A.; Fagundes, N.S.; Mendonça, G.A.; Gonçalves, F.C.; Fonseca, B.B.; Mundim, A.V.; Fernandes, E.A. Comparison of moulting methods for layers: High-zinc diet versus fasting. Br. Poult. Sci. 2015, 56, 598–604. [Google Scholar] [CrossRef]
- Filho, R.A.; Milbradt, E.; Okamoto, A.; Silva, T.; Vellano, I.; Gross, L.; Oro, C.; Hataka, A. Salmonella Enteritidis infection, corticosterone levels, performance and egg quality in laying hens submitted to different methods of molting. Poult. Sci. 2019, 98, 4416–4425. [Google Scholar] [CrossRef]
- Szelényi, Z.; Péczely, P.; Vadócz, E. Hormonal changes during forced moult induced by progesterone in domestic hen. Acta Physiol. Hung. 1988, 71, 69–75. [Google Scholar]
- Bacon, W.L.; Long, D.W. Secretion of Luteinizing Hormone During a Forced Molt in Turkey Hens. Poult. Sci. 1996, 75, 1579–1586. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Ma, W.; Ni, Y.; Wang, S.; Zhao, R. Corticosterone in ovo modifies aggressive behaviors and reproductive performances through alterations of the hypothalamic-pituitary-gonadal axis in the chicken. Anim. Reprod. Sci. 2014, 146, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Pavlová, S.; Tena-Sempere, M.; Grossmann, R.; Jiménez, M.R.; Rodriguez, J.M.C.; Valenzuela, F. Food restriction, ghrelin, its antagonist and obestatin control expression of ghrelin and its receptor in chicken hypothalamus and ovary. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2013, 164, 141–153. [Google Scholar] [CrossRef]
- Jikumaru, M.; Hiramoto, K.; Honma, T.; Sato, E.F.; Sekiyama, A.; Inoue, M. Effect of starvation on the survival of male and female mice. Physiol. Chem. Phys. Med. NMR 2007, 39, 247–257. [Google Scholar] [PubMed]
- Lamb, H.M.; Hardwick, J.M. The Dark Side of Estrogen Stops Translation to Induce Apoptosis. Mol. Cell 2019, 75, 1087–1089. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chen, J.; Ai, Y.; Gu, X.; Li, L.; Che, D.; Jiang, Z.; Chen, S.; Huang, H.; Wang, J.; et al. Estrogen-Related Hormones Induce Apoptosis by Stabilizing Schlafen-12 Protein Turnover. Mol. Cell 2019, 75, 1103–1116.e9. [Google Scholar] [CrossRef]
- Luna, M.; Martínez-Moreno, C.G.; Ahumada-Solórzano, M.S.; Harvey, S.; Carranza, M.; Arámburo, C. Extrapituitary growth hormone in the chicken reproductive system. Gen. Comp. Endocrinol. 2014, 203, 60–68. [Google Scholar] [CrossRef]
- Hrabia, A. Growth hormone production and role in the reproductive system of female chicken. Gen. Comp. Endocrinol. 2015, 220, 112–118. [Google Scholar] [CrossRef]
- Sechman, A. The role of thyroid hormones in regulation of chicken ovarian steroidogenesis. Gen. Comp. Endocrinol. 2013, 190, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, R.; Akhlaghi, A.A.; Zamiri, M.; Shirazi, M.J.; Saemi, F.; Zhandi, M.; Afrouziyeh, M.; Zuidhof, M. The long-term oral administration of thyroxine: Effects on blood hematological and biochemical features in broiler breeder hens. Poult. Sci. 2019, 98, 7003–7008. [Google Scholar] [CrossRef] [PubMed]
- Steiner, A.Z.; Crawford, N.M. Thyroid Autoimmunity and Reproductive Function. Semin. Reprod. Med. 2016, 34, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, K.; Kumar, H.; Park, W.; Byun, M.; Lim, D.; Kemp, S.; Pas, M.F.W.T.; Kim, J.-M.; Park, J.-E. Cardiac and Skeletal Muscle Transcriptome Response to Heat Stress in Kenyan Chicken Ecotypes Adapted to Low and High Altitudes Reveal Differences in Thermal Tolerance and Stress Response. Front. Genet. 2019, 10, 993. [Google Scholar] [CrossRef] [Green Version]
- Zaboli, G.; Huang, X.; Feng, X.; Ahn, D.U. How can heat stress affect chicken meat quality?—A review. Poult. Sci. 2019, 98, 1551–1556. [Google Scholar] [CrossRef]
- Monson, M.S.; Van Goor, A.G.; Ashwell, C.M.; Persia, M.E.; Rothschild, M.F.; Schmidt, C.J.; Lamont, S.J. Immunomodulatory effects of heat stress and lipopolysaccharide on the bursal transcriptome in two distinct chicken lines. BMC Genom. 2018, 19, 643. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Jiang, H.; Qi, Z.; Shen, X.; Xue, M.; Hu, J.; Liu, H.; Zhou, X.; Tu, J.; Qi, K. APEC infection affects cytokine–cytokine receptor interaction and cell cycle pathways in chicken trachea. Res. Vet. Sci. 2020, 130, 144–152. [Google Scholar] [CrossRef]
- DeFalco, J.; Tomishima, M.; Liu, H.; Zhao, C.; Cai, X.; Marth, J.D.; Enquist, L.; Friedman, J.M. Virus-Assisted Mapping of Neural Inputs to a Feeding Center in the Hypothalamus. Science 2001, 291, 2608–2613. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.S.; Seo, M.; Lee, B.R.; Lee, H.J.; Park, Y.H.; Kim, S.K.; Lee, H.C.; Choi, H.J.; Yoon, J.; Kim, H.; et al. The transcriptome of early chicken embryos reveals signaling pathways governing rapid asymmetric cellularization and lineage segregation. Development 2018, 145, dev157453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimomura, T.; Kawakami, M.; Tatsumi, K.; Tanaka, T.; Morita-Takemura, S.; Kirita, T.; Wanaka, A. The Role of the Wnt Signaling Pathway in Upper Jaw Development of Chick Embryo. Acta Histochem. Cytochem. 2019, 52, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Zhang, C.; Zhu, G. Profiling of RNA N6-methyladenosine methylation during follicle selection in chicken ovary. Poult. Sci. 2019, 98, 6117–6124. [Google Scholar] [CrossRef] [PubMed]
- Hata, A.; Chen, Y.-G. TGF-β Signaling from Receptors to Smads. Cold Spring Harb. Perspect. Biol. 2016, 8, a022061. [Google Scholar] [CrossRef]
- Derynck, R.; Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003, 425, 577–584. [Google Scholar] [CrossRef]
- Schauer, M.; Kottek, T.; Schönherr, M.; Bhattacharya, A.; Ibrahim, S.; Hirose, M.; Köhling, R.; Fuellen, G.; Schmitz, U.; Kunz, M. A mutation in the NADH-dehydrogenase subunit 2 suppresses fibroblast aging. Oncotarget 2015, 6, 8552–8566. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Lin, X.; Tang, H.; Fan, Y.; Zeng, S.; Jia, L.; Li, Y.; Shi, Y.; He, S.; Wang, H.; et al. Mitochondrial DNA mutation exacerbates female reproductive aging via impairment of the NADH/NAD + redox. Aging Cell 2020, 19, e13206. [Google Scholar] [CrossRef]
- Ferrucci, L.; Gonzalez-Freire, M.; Fabbri, E.; Simonsick, E.; Tanaka, T.; Moore, Z.; Salimi, S.; Sierra, F.; De Cabo, R. Measuring biological aging in humans: A quest. Aging Cell 2020, 19, e13080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesnefsky, E.J.; Hoppel, C.L. Oxidative phosphorylation and aging. Ageing Res. Rev. 2006, 5, 402–433. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lin, X.; Zhang, S.; Guo, C.; Li, J.; Mi, Y.; Zhang, C. Lycopene ameliorates oxidative stress in the aging chicken ovary via activation of Nrf2/HO-1 pathway. Aging 2018, 10, 2016–2036. [Google Scholar] [CrossRef] [PubMed]
- Thal, D.M.; Glukhova, A.; Sexton, P.; Christopoulos, A. Structural insights into G-protein-coupled receptor allostery. Nature 2018, 559, 45–53. [Google Scholar] [CrossRef]
- Liu, J.; Liang, C.; Guo, B.; Wu, X.; Li, D.; Zhang, Z.; Zheng, K.; Dang, L.; He, X.; Lu, C.; et al. Increased PLEKHO1 within osteoblasts suppresses Smad-dependent BMP signaling to inhibit bone formation during aging. Aging Cell 2017, 16, 360–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowery, J.W.; Rosen, V. The BMP Pathway and Its Inhibitors in the Skeleton. Physiol. Rev. 2018, 98, 2431–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunnane, S.C.; Trushina, E.; Morland, C.; Prigione, A.; Casadesus, G.; Andrews, Z.B.; Beal, M.F.; Bergersen, L.H.; Brinton, R.D.; de la Monte, S.; et al. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 2020, 19, 609–633. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Chen, B.; Zhu, Q.; Xu, Z.; Ning, C.; Yin, H.; Wang, Y.; Zhao, X.; Fan, X.; Yang, M.; et al. Transcriptome analysis reveals differentially expressed genes associated with high rates of egg production in chicken hypothalamic-pituitary-ovarian axis. Sci. Rep. 2020, 10, 5976. [Google Scholar] [CrossRef]
- Brady, K.; Porter, T.E.; Liu, H.-C.; Long, J.A. Characterization of the hypothalamo–pituitary–gonadal axis in low and high egg producing turkey hens. Poult. Sci. 2020, 99, 1163–1173. [Google Scholar] [CrossRef]
- Xue, Q.; Li, G.; Cao, Y.; Yin, J.; Zhu, Y.; Zhang, H.; Zhou, C.; Shen, H.; Dou, X.; Su, Y.; et al. Identification of genes involved in inbreeding depression of reproduction in Langshan chickens. Anim. Biosci. 2021, 34, 975–984. [Google Scholar] [CrossRef]
- Chou, W.-C.; Cheng, A.-L.; Brotto, M.; Chuang, C.-Y. Visual gene-network analysis reveals the cancer gene co-expression in human endometrial cancer. BMC Genom. 2014, 15, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shameer, K.; Klee, E.W.; Dalenberg, A.K.; Kullo, I.J. Whole Exome Sequencing Implicates an INO80D Mutation in a Syndrome of Aortic Hypoplasia, Premature Atherosclerosis, and Arterial Stiffness. Circ. Cardiovasc. Genet. 2014, 7, 607–614. [Google Scholar] [CrossRef] [Green Version]
- Hanet, A.; Räsch, F.; Weber, R.; Ruscica, V.; Fauser, M.; Raisch, T.; Kuzuoğlu-Öztürk, D.; Chang, C.-T.; Bhandari, D.; Igreja, C.; et al. HELZ directly interacts with CCR4–NOT and causes decay of bound mRNAs. Life Sci. Alliance 2019, 2, e201900405. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.; Bae, H.; Lim, W.; Song, G. Dicer1, AGO3, and AGO4 microRNA machinery genes are differentially expressed in developing female reproductive organs and overexpressed in cancerous ovaries of chickens. J. Anim. Sci. 2017, 95, 4857–4868. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Surma, M.; Yang, Y.; Wei, L. Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging. FASEB J. 2019, 33, 7348–7362. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, C.; Li, Q.; Li, G.; Li, W.; Kang, X.; Tian, Y. Novel Regulatory Factors in the Hypothalamic-Pituitary-Ovarian Axis of Hens at Four Developmental Stages. Front. Genet. 2020, 11, 591672. [Google Scholar] [CrossRef] [PubMed]
- Castro, W.; Chelbi, S.T.; Niogret, C.; Ramón, C.; Welten, S.; Osterheld, K.; Wang, H.; Rota, G.; Morgado, L.; Vivier, E.; et al. The transcription factor Rfx7 limits metabolism of NK cells and promotes their maintenance and immunity. Nat. Immunol. 2018, 19, 809–820. [Google Scholar] [CrossRef] [PubMed]
Period | Days of Age | Egg Production | Numbers of Hens | Egg-Laying Rate | Description |
---|---|---|---|---|---|
1 | 224 | 41,460 | 44,079 | 0.941 | first peak of egg production |
2 | 456 | 31,180 | 40,228 | 0.774 | preparation period for molting |
3 | 469 | 99 | 39,992 | 0.002 | cessation of stress period |
4 | 500 | 18,770 | 39,752 | 0.472 | recovery period of molting |
5 | 527 | 34,630 | 39,677 | 0.873 | second peak of egg production |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Chen, Y.; Wen, J.; Jia, Y.; Wang, L.; Lv, X.; Yang, W.; Qu, C.; Li, H.; Wang, H.; et al. Transcriptomic Analysis of Laying Hens Revealed the Role of Aging-Related Genes during Forced Molting. Genes 2021, 12, 1767. https://doi.org/10.3390/genes12111767
Zhang T, Chen Y, Wen J, Jia Y, Wang L, Lv X, Yang W, Qu C, Li H, Wang H, et al. Transcriptomic Analysis of Laying Hens Revealed the Role of Aging-Related Genes during Forced Molting. Genes. 2021; 12(11):1767. https://doi.org/10.3390/genes12111767
Chicago/Turabian StyleZhang, Tongyu, Yu Chen, Junhui Wen, Yaxiong Jia, Liang Wang, Xueze Lv, Weifang Yang, Changqing Qu, Haiying Li, Huie Wang, and et al. 2021. "Transcriptomic Analysis of Laying Hens Revealed the Role of Aging-Related Genes during Forced Molting" Genes 12, no. 11: 1767. https://doi.org/10.3390/genes12111767
APA StyleZhang, T., Chen, Y., Wen, J., Jia, Y., Wang, L., Lv, X., Yang, W., Qu, C., Li, H., Wang, H., Qu, L., & Ning, Z. (2021). Transcriptomic Analysis of Laying Hens Revealed the Role of Aging-Related Genes during Forced Molting. Genes, 12(11), 1767. https://doi.org/10.3390/genes12111767