A Population Genomic Investigation of Immune Cell Diversity and Phagocytic Capacity in a Butterfly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Total Hemocyte Count
2.3. Phagocytosis Slide Assay
2.4. Quenching with Trypan Blue
2.5. Phagocytosis Flow Cytometry Assay
2.6. Immunostaining of Hemocytes with Prophenoloxidase Antiserum
2.7. Data Analysis
2.8. Gene Scan and Population Genetics
3. Results
3.1. Total Hemocyte Count, Cell Type Identification and Characterization
3.2. Phagocytic Index
3.3. Phagocytic Index by Cell Types
3.4. Population Differentiation
4. Discussion
4.1. Species Level Patterns: Sex Differences
4.2. Population Level Variation: Hemocyte Composition, Phagocytic Capacity, & Propensity
4.3. Population Genomic Analysis
4.4. Pleiotropic Effects and Phagocytosis
4.5. Hemocyte and Phagocytosis Insights from Multiple Angles
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bradshaw, A.D.; Endler, J.A. Geographic Variation, Speciation, and Clines. J. Ecol. 1979, 67, 1127. [Google Scholar] [CrossRef]
- Kurtz, J.; Wiesner, A.; Götz, P.; Sauer, K.P. Gender differences and individual variation in the immune system of the scorpionfly Panorpa vulgaris (Insecta: Mecoptera). Dev. Comp. Immunol. 2000, 24, 1–12. [Google Scholar] [CrossRef]
- Kraaijeveld, A.R.; Van Alphen, J.J.M. Geographical variation in encapsulation ability ofDrosophila melanogaster larvae and evidence for parasitoid-specific components. Evol. Ecol. 1995, 9, 10–17. [Google Scholar] [CrossRef]
- Tinsley, M.C.; Blanford, S.; Jiggins, F.M. Genetic variation in Drosophila melanogaster pathogen susceptibility. Parasitology 2006, 132, 767–773. [Google Scholar] [CrossRef] [Green Version]
- Corby-Harris, V.; Promislow, D.E.L. Host ecology shapes geographical variation for resistance to bacterial infection in Drosophila melanogaster. J. Anim. Ecol. 2008, 77, 768–776. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.H.; Varghese, F.S.; Van Rij, R.P. Natural Variation in Resistance to Virus Infection in Dipteran Insects. Viruses 2018, 10, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fors, L.; Markus, R.; Theopold, U.; Ericson, L.; Hambäck, P.A. Geographic variation and trade-offs in parasitoid virulence. J. Anim. Ecol. 2016, 85, 1595–1604. [Google Scholar] [CrossRef] [PubMed]
- Coon, K.L.; Brown, M.R.; Strand, M.R. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 2016, 25, 5806–5826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaplinska, M.; Gerritsma, S.; Dini-Andreote, F.; Salles, J.F.; Wertheim, B. Bacterial Communities Differ among Drosophila melanogaster Populations and Affect Host Resistance against Parasitoids. PLoS ONE 2016, 11, e0167726. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, H.M.; Read, A.F. Genetic and environmental determinants of malaria parasite virulence in mosquitoes. Proc. R. Soc. B Biol. Sci. 2002, 269, 1217–1224. [Google Scholar] [CrossRef] [Green Version]
- Blanford, S.; Thomas, M.B.; Pugh, C.; Pell, J.K. Temperature checks the Red Queen? Resistance and virulence in a fluctuating environment. Ecol. Lett. 2002, 6, 2–5. [Google Scholar] [CrossRef] [Green Version]
- E Mitchell, S.; Read, A.F. Poor maternal environment enhances offspring disease resistance in an invertebrate. Proc. R. Soc. B Biol. Sci. 2005, 272, 2601–2607. [Google Scholar] [CrossRef] [Green Version]
- Lazzaro, B.P.; Little, T.J. Immunity in a variable world. Philos. Trans. R. Soc. B Biol. Sci. 2008, 364, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Schmid-Hempel, P. Variation in immune defence as a question of evolutionary ecology. Proc. R. Soc. B Biol. Sci. 2003, 270, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Buchon, N.; Broderick, N.A.; Poidevin, M.; Pradervand, S.; Lemaitre, B. Drosophila Intestinal Response to Bacterial Infection: Activation of Host Defense and Stem Cell Proliferation. Cell Host Microbe 2009, 5, 200–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraaijeveld, A.R.; Godfray, H.C.J. Selection for resistance to a fungal pathogen in Drosophila melanogaster. Heredity 2008, 100, 400–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelweith, F.; Thiéry, D.; Moret, Y.; Moreau, J. Immunocompetence increases with larval body size in a phytophagous moth. Physiol. Èntomol. 2013, 38, 219–225. [Google Scholar] [CrossRef]
- Khan, I.; Prakash, A.; Agashe, D. Experimental evolution of insect immune memory versus pathogen resistance. Proc. R. Soc. B Biol. Sci. 2017, 284, 20171583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charroux, B.; Royet, J. Drosophila immune response: From systemic antimicrobial peptide production in fat body cells to local defense in the intestinal tract. Fly 2010, 4, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haine, E.R.; Moret, Y.; Siva-Jothy, M.T.; Rolff, J. Antimicrobial Defense and Persistent Infection in Insects. Science 2008, 322, 1257–1259. [Google Scholar] [CrossRef] [PubMed]
- Strand, M.R. The insect cellular immune response. Insect Sci. 2008, 15, 1–14. [Google Scholar] [CrossRef]
- Stuart, L.M.; Ezekowitz, R.A. Phagocytosis and comparative innate immunity: Learning on the fly. Nat. Rev. Immunol. 2008, 8, 131–141. [Google Scholar] [CrossRef]
- Oliver, J.D.; Loy, J.D.; Parikh, G.; Bartholomay, L. Comparative analysis of hemocyte phagocytosis between six species of arthropods as measured by flow cytometry. J. Invertebr. Pathol. 2011, 108, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Barthel, A.; Kopka, I.; Vogel, H.; Zipfel, P.; Heckel, D.G.; Groot, A.T. Immune defence strategies of generalist and specialist insect herbivores. Proc. R. Soc. B Biol. Sci. 2014, 281, 20140897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hystad, E.M.; Salmela, H.; Amdam, G.V.; Munch, D. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes. PLoS ONE 2017, 12, e0184108. [Google Scholar] [CrossRef] [Green Version]
- Sackton, T.B.; Lazzaro, B.P.; Schlenke, T.A.; Evans, J.D.; Hultmark, D.; Clark, A.G. Dynamic evolution of the innate immune system in Drosophila. Nat. Genet. 2007, 39, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, R.M.; Kriventseva, E.V.; Meister, S.; Xi, Z.; Alvarez, K.S.; Bartholomay, L.C.; Barillas-Mury, C.; Bian, G.; Blandin, S.; Christensen, B.M.; et al. Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector Mosquitoes. Science 2007, 316, 1738–1743. [Google Scholar] [CrossRef] [Green Version]
- Crawford, J.E.; Bischoff, E.; Garnier, T.; Gneme, A.; Eiglmeier, K.; Holm, I.; Riehle, M.M.; Guelbeogo, W.M.; Sagnon, N.; Lazzaro, B.P.; et al. Evidence for Population-Specific Positive Selection on Immune Genes of Anopheles gambiae. G3 Genes Genomes Genet. 2012, 2, 1505–1519. [Google Scholar] [CrossRef]
- Erler, S.; Lhomme, P.; Rasmont, P.; Lattorff, H.M.G. Rapid evolution of antimicrobial peptide genes in an insect host–social parasite system. Infect. Genet. Evol. 2014, 23, 129–137. [Google Scholar] [CrossRef]
- Juneja, P.; Lazzaro, B.P. Haplotype Structure and Expression Divergence at the Drosophila Cellular Immune Gene eater. Mol. Biol. Evol. 2010, 27, 2284–2299. [Google Scholar] [CrossRef] [Green Version]
- Early, A.M.; Arguello, J.R.; Cardoso-Moreira, M.; Gottipati, S.; Grenier, J.K.; Clark, A.G. Survey of Global Genetic Diversity Within the Drosophila Immune System. Genetics 2017, 205, 353–366. [Google Scholar] [CrossRef] [Green Version]
- Porter, A.H.; Geiger, H. Limitations to the inference of gene flow at regional geographic scales?an example from the Pieris napi group (Lepidoptera: Pieridae) in Europe. Biol. J. Linn. Soc. 1995, 54, 329–348. [Google Scholar] [CrossRef]
- Pruisscher, P.; Stefanescu, C.; Nylin, S.; Wheat, C.W.; Gotthard, K.; Larsdotter-Mellström, H. Sex-linked inheritance of diapause induction in the butterfly Pieris napi. Physiol. Èntomol. 2017, 42, 257–265. [Google Scholar] [CrossRef]
- Firlej, A.; Girard, P.-A.; Brehélin, M.; Coderre, D.; Boivin, G. Immune Response of Harmonia axyridis (Coleoptera: Coccinellidae) Supports the Enemy Release Hypothesis in North America. Ann. Èntomol. Soc. Am. 2012, 105, 328–338. [Google Scholar] [CrossRef]
- Hill, J.; Rastas, P.; Hornett, E.A.; Neethiraj, R.; Clark, N.; Morehouse, N.; Celorio-Mancera, M.D.L.P.; Cols, J.C.; Dircksen, H.; Meslin, C.; et al. Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. Sci. Adv. 2019, 5, eaau3648. [Google Scholar] [CrossRef] [Green Version]
- Im, J.H.; Lazzaro, B.P. Population genetic analysis of autophagy and phagocytosis genes in Drosophila melanogaster and D. simulans. PLoS ONE 2018, 13, e0205024. [Google Scholar] [CrossRef]
- Gotoh, O. Direct mapping and alignment of protein sequences onto genomic sequence. Bioinformatics 2008, 24, 2438–2444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwata, H.; Gotoh, O. Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features. Nucleic Acids Res. 2012, 40, e161. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Neethiraj, R.; Hornett, E.A.; Hill, J.A.; Wheat, C.W. Investigating the genomic basis of discrete phenotypes using a Pool-Seq-only approach: New insights into the genetics underlying colour variation in diverse taxa. Mol. Ecol. 2017, 26, 4990–5002. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keehnen, N.L.; Hill, J.; Nylin, S.; Wheat, C.W. Microevolutionary selection dynamics acting on immune genes of the green-veined white butterfly, Pieris napi. Mol. Ecol. 2018, 27, 2807–2822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Kofler, R.; Orozco-Terwengel, P.; De Maio, N.; Pandey, R.V.; Nolte, V.; Futschik, A.; Kosiol, C.; Schlötterer, C. PoPoolation: A Toolbox for Population Genetic Analysis of Next Generation Sequencing Data from Pooled Individuals. PLoS ONE 2011, 6, e15925. [Google Scholar] [CrossRef] [Green Version]
- Kofler, R.; Pandey, R.V.; Schlötterer, C. PoPoolation2: Identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics 2011, 27, 3435–3436. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org (accessed on 1 March 2019).
- Alexa, A.; Rahnenführer, J. Gene set enrichment analysis with topGO. Bioconductor Improv. 2009, 27, 1–26. [Google Scholar]
- Rolff, J. Bateman’s principle and immunity. Proc. R. Soc. B Biol. Sci. 2002, 269, 867–872. [Google Scholar] [CrossRef] [Green Version]
- Prasai, K.; Karlsson, B. Variation in Immune Defence in Relation to Developmental Pathway in the Green-Veined White But-terfly, Pieris napi. Evol. Ecol. Res. 2011, 13, 295–305. [Google Scholar]
- Tojo, S.; Naganuma, F.; Arakawa, K.; Yokoo, S. Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J. Insect Physiol. 2000, 46, 1129–1135. [Google Scholar] [CrossRef]
- LaVine, M.; Strand, M. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 2002, 32, 1295–1309. [Google Scholar] [CrossRef]
- Ling, E.; Yu, X.-Q. Hemocytes from the tobacco hornworm Manduca sexta have distinct functions in phagocytosis of foreign particles and self dead cells✩. Dev. Comp. Immunol. 2006, 30, 301–309. [Google Scholar] [CrossRef]
- Giulianini, P.; Bertolo, F.; Battistella, S.; Amirante, G. Ultrastructure of the hemocytes of Cetonischema aeruginosa larvae (Coleoptera, Scarabaeidae): Involvement of both granulocytes and oenocytoids in in vivo phagocytosis. Tissue Cell 2003, 35, 243–251. [Google Scholar] [CrossRef]
- Giglio, A.; Battistella, S.; Talarico, F.F.; Brandmayr, T.Z.; Giulianini, P.G. Circulating hemocytes from larvae and adults of Carabus (Chaetocarabus) lefebvrei Dejean 1826 (Coleoptera, Carabidae): Cell types and their role in phagocytosis after in vivo artificial non-self-challenge. Micron 2008, 39, 552–558. [Google Scholar] [CrossRef]
- Ribeiro, C.; Brehélin, M. Insect haemocytes: What type of cell is that? J. Insect Physiol. 2006, 52, 417–429. [Google Scholar] [CrossRef]
- Leitão, A.B.; Sucena, É. Drosophila sessile hemocyte clusters are true hematopoietic tissues that regulate larval blood cell differentiation. eLife 2015, 4, e06166. [Google Scholar] [CrossRef] [Green Version]
- Anderl, I.; Vesala, L.; Ihalainen, T.O.; Vanha-Aho, L.-M.; Andó, I.; Rämet, M.; Hultmark, D. Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection. PLoS Pathog. 2016, 12, e1005746. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.R.; Dziedziech, A.; Arefin, B.; Kienzle, T.; Wang, Z.; Akhter, M.; Berka, J.; Theopold, U. Insect hemolymph coagulation: Kinetics of classically and non-classically secreted clotting factors. Insect Biochem. Mol. Biol. 2019, 109, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Bartel, R.A.; Oberhauser, K.S.; De Roode, J.C.; Altizer, S.M. Monarch butterfly migration and parasite transmission in eastern North America. Ecology 2011, 92, 342–351. [Google Scholar] [CrossRef]
- Liu, P.-S.; Wang, H.; Li, X.; Chao, T.; Teav, T.; Christen, S.; Di Conza, G.; Cheng, W.-C.; Chou, C.-H.; Vavakova, M.; et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 2017, 18, 985–994. [Google Scholar] [CrossRef]
- Allison, K.E.; Coomber, B.L.; Bridle, B.W. Metabolic reprogramming in the tumour microenvironment: A hallmark shared by cancer cells and T lymphocytes. Immunology 2017, 152, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Dolezal, T.; Krejcova, G.; Bajgar, A.; Nedbalova, P.; Strasser, P. Molecular regulations of metabolism during immune response in insects. Insect Biochem. Mol. Biol. 2019, 109, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Posledovich, D.; Toftegaard, T.; Wiklund, C.; Ehrlén, J.; Gotthard, K. Latitudinal variation in diapause duration and post-winter development in two pierid butterflies in relation to phenological specialization. Oecologia 2014, 177, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Pruisscher, P.; Nylin, S.; Gotthard, K.; Wheat, C.W. Genetic variation underlying local adaptation of diapause induction along a cline in a butterfly. Mol. Ecol. 2018, 27, 3613–3626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, L.V.; Sinclair, B.J. Insect Immunity Varies Idiosyncratically During Overwintering. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2017, 327, 222–234. [Google Scholar] [CrossRef] [Green Version]
- Flatt, T.; Heyland, A.; Rus, F.; Porpiglia, E.; Sherlock, C.; Yamamoto, R.; Garbuzov, A.; Palli, S.R.; Tatar, M.; Silverman, N. Hormonal regulation of the humoral innate immune response in Drosophila melanogaster. J. Exp. Biol. 2008, 211, 2712–2724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, B.; Wickman, P.-O. The Cost of Prolonged Life: An Experiment on a Nymphalid Butterfly. Funct. Ecol. 1989, 3, 399. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keehnen, N.L.P.; Fors, L.; Järver, P.; Spetz, A.-L.; Nylin, S.; Theopold, U.; Wheat, C.W. A Population Genomic Investigation of Immune Cell Diversity and Phagocytic Capacity in a Butterfly. Genes 2021, 12, 279. https://doi.org/10.3390/genes12020279
Keehnen NLP, Fors L, Järver P, Spetz A-L, Nylin S, Theopold U, Wheat CW. A Population Genomic Investigation of Immune Cell Diversity and Phagocytic Capacity in a Butterfly. Genes. 2021; 12(2):279. https://doi.org/10.3390/genes12020279
Chicago/Turabian StyleKeehnen, Naomi L. P., Lisa Fors, Peter Järver, Anna-Lena Spetz, Sören Nylin, Ulrich Theopold, and Christopher W. Wheat. 2021. "A Population Genomic Investigation of Immune Cell Diversity and Phagocytic Capacity in a Butterfly" Genes 12, no. 2: 279. https://doi.org/10.3390/genes12020279
APA StyleKeehnen, N. L. P., Fors, L., Järver, P., Spetz, A. -L., Nylin, S., Theopold, U., & Wheat, C. W. (2021). A Population Genomic Investigation of Immune Cell Diversity and Phagocytic Capacity in a Butterfly. Genes, 12(2), 279. https://doi.org/10.3390/genes12020279