Epigenetic Regulation of Processes Related to High Level of Fibroblast Growth Factor 21 in Obese Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Anthropometry Measurements
2.3. Sample Collection and Biochemical Tests
2.4. Adipokines, Miokines and Cytokines
2.5. Genome-wide DNA Methylation Analysis
2.6. Determination of miRNAs Expression by Real-Time PCR -TLDA (TaqMan Low Density Arrays)
2.7. Real-time PCR Analysis
2.8. Statistical Analyses
3. Results
3.1. Biochemical and Anthropometric Characteristics of the Study Groups
3.2. Epigenetics Study Results
3.2.1. Results of DNA Methylation Analysis
3.2.2. Results of microRNA Expression Level in Leukocytes:
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Cao, H.; Hou, Y.; Sun, G.; Li, D.; Wang, W. Liver Plays a Major Role in FGF-21 Mediated Glucose Homeostasis. Cell. Physiol. Biochem. 2018, 45, 1423–1433. [Google Scholar] [CrossRef]
- Tanajak, P.; Pongkan, W.; Chattipakorn, S.C.; Chattipakorn, N. Increased plasma FGF21 level as an early biomarker for insulin resistance and metabolic disturbance in obese insulin-resistant rats. Diabetes Vasc. Dis. Res. 2018, 15, 263–269. [Google Scholar] [CrossRef]
- Staiger, H.; Keuper, M.; Berti, L.; de Angelis, M.H.; Häring, H.U. Fibroblast growth factor 21-metabolic role in mice and men. Endocr. Rev. 2017, 38, 468–488. [Google Scholar] [CrossRef]
- Yan, H.; Xia, M.; Chang, X.; Xu, Q.; Bian, H.; Zeng, M.; Zeng, M.; Rao, S.; Yao, X.; Tu, Y.; et al. Circulating Fibroblast Growth Factor 21 Levels Are Closely Associated with Hepatic Fat Content: A Cross- Sectional Study. PLoS ONE 2011, 6, e24895. [Google Scholar] [CrossRef]
- Fontana, L.; Cummings, N.E.; Apelo, S.I.A.; Neuman, J.C.; Kasza, I.; Schmidt, B.A.; Cava, E.; Spelta, F.; Tosti, V.; Syed, F.A.; et al. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health. Cell Rep. 2016, 16, 520–530. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, H.; Tanisawa, K.; Sun, X.; Cao, Z. Cardiorespiratory fitness and visceral fat are key determinants of serum fibroblast growth factor 21 concentration in Japanese men. J. Clin. Endocrinol. Metab. 2014, 99, 1877–1884. [Google Scholar] [CrossRef] [Green Version]
- Dushay, J.R.; Toschi, E.; Mitten, E.K.; Fisher, F.M.; Herman, M.A.; Maratos-Flier, E. Fructose ingestion acutely stimulates circulating FGF21 levels in humans. Mol. Metab. 2015, 4, 51–57. [Google Scholar] [CrossRef]
- Andersen, B.; Beck-Nielsen, H.; Højlund, K. Plasma FGF21 displays a circadian rhythm during a 72-h fast in healthy female volunteers. Clin. Endocrinol. 2011, 75, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Bae, K.-H.; Kim, J.-G.; Park, K.-G. Transcriptional regulation of fibroblast growth factor 21 expression. Endocrinol. Metab. 2014, 29, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, J.S.; Stechschulte, L.A.; Stec, D.E.; Nestor-Kalinoski, A.; Coleman, S.; Hinds, T.D. Glucocorticoid receptor β induces hepatic steatosis by augmenting inflammation and inhibition of the Peroxisome Proliferator-activated Receptor (PPAR) α. J. Biol. Chem. 2016, 291, 25776–25788. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Solt, L.A.; Burris, T.P. Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor α. J. Biol. Chem. 2010, 285, 15668–15673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tezze, C.; Romanello, V.; Sandri, M. FGF21 as modulator of metabolism in health and disease. Front. Physiol. 2019, 10, 419. [Google Scholar] [CrossRef]
- Kim, Y.D.; Hwang, S.-L.; Jeon, H.-J.; Jeon, Y.H.; Nedumaran, B.; Kim, K.; Lee, S.E. B-cell translocation gene 2 enhances fibroblast growth factor 21 production by inducing Kruppel-like factor 15. Sci. Rep. 2019, 9, 3730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.H.; Jeong, Y.T.; Oh, H.; Kim, S.H.; Cho, J.M.; Kim, Y.-N.; Kim, S.S.; Kim, D.H.; Hur, K.Y.; Kim, H.K.; et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 2013, 19, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Fisher, F.M.; Chui, P.C.; Antonellis, P.J.; Bina, H.A.; Kharitonenkov, A.; Flier, J.S.; Maratos-Flier, E. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 2010, 59, 2781–2789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruse, R.; Vienberg, S.G.; Vind, B.F.; Andersen, B.; Højlund, K. Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes. Diabetologia 2017, 60, 2042–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonoda, J.; Chen, M.Z.; Baruch, A. FGF21-receptor agonists: An emerging therapeutic class for obesity-related diseases. Horm. Mol. Biol. Clin. Investig. 2017, 30. [Google Scholar] [CrossRef]
- Hanks, L.J.; Gutiérrez, O.M.; Bamman, M.M.; Ashraf, A.; McCormick, K.L.; Casazza, K. Circulating levels of fibroblast growth factor-21 increase with age independently of body composition indices among healthy individuals. J. Clin. Transl. Endocrinol. 2015, 2, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yeung, D.C.; Karpisek, M.; Stejskal, D.; Zhou, Z.-G.; Liu, F.; Wong, R.L.C.; Chow, W.-S.; Tso, A.W.K.; Lam, K.S.L.; et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 2008, 57, 1246–1253. [Google Scholar] [CrossRef] [Green Version]
- Markan, K.R.; Naber, M.C.; Small, S.M.; Peltekian, L.; Kessler, R.L.; Potthoff, M.J. FGF21 resistance is not mediated by downregulation of beta-klotho expression in white adipose tissue. Mol. Metab. 2017, 6, 602–610. [Google Scholar] [CrossRef]
- Ajala, O.; Mora, S. Fibroblast growth factor-21 levels in metabolic syndrome: Another instrument in a widening tool belt? Atherosclerosis 2019, 281, 143–144. [Google Scholar] [CrossRef]
- Chen, C.; Cheung, B.M.; Tso, A.W.; Wang, Y.; Law, L.S.; Ong, K.L.; Wat, N.M.S.; Xu, A.; Lam, K.S.L. High plasma level of fibroblast growth factor 21 is an independent predictor of type 2 diabetes: A 5.4-year population-based prospective study in Chinese subjects. Diabetes Care 2011, 34, 2113–2115. [Google Scholar] [CrossRef] [Green Version]
- Vinales, K.L.; Begaye, B.; Bogardus, C.; Walter, M.; Krakoff, J.; Piaggi, P. FGF21 is a hormonal mediator of the human “thrifty” metabolic phenotype. Diabetes 2019, 68, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Hollstein, T.; Piaggi, P. Metabolic Factors Determining the Susceptibility to Weight Gain: Current Evidence. Curr. Obes. Rep. 2020, 9, 121–135. [Google Scholar] [CrossRef]
- Yuan, X.; Tsujimoto, K.; Hashimoto, K.; Kawahori, K.; Hanzawa, N.; Hamaguchi, M.; Seki, T.; Nawa, M.; Ehara, T.; Kitamura, Y.; et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood. Nat. Commun. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef]
- Glaser, C.; Demmelmair, H.; Koletzko, B. High-throughput analysis of total plasma fatty acid composition with direct in situ transesterification. PLoS ONE 2010, 5, e12045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houseman, E.A.; Molitor, J.; Marsit, C.J. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics 2014, 30, 1431–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maere, S.; Heymans, K.; Kuiper, M. BiNGO: A Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinform. 2005, 21, 3448–3449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlachos, I.S.; Kostoulas, N.; Vergoulis, T.; Georgakilas, G.; Reczko, M.; Maragkakis, M.; Paraskevopoulou, M.D.; Prionidis, K.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA miRPath v. 2.0: Investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012, 40, W498–W504. [Google Scholar] [CrossRef]
- Hsu, S.-D.; Lin, F.-M.; Wu, W.-Y.; Liang, C.; Huang, W.-C.; Chan, W.-L.; Tsai, W.-T.; Chen, G.-Z.; Lee, C.-J.; Chiu, C.-M.; et al. miRTarBase: A database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 2011, 39, D163–D169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dweep, H.; Sticht, C.; Pandey, P.; Gretz, N. miRWalk--database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform. 2011, 44, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, T.; Dutchak, P.; Zhao, G.; Ding, X.; Gautron, L.; Parameswara, V.; Li, Y.; Goetz, R.; Mohammadi, M.; Esser, V.; et al. Endocrine Regulation of the Fasting Response by PPARα-Mediated Induction of Fibroblast Growth Factor 21. Cell Metab. 2007, 5, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Rouillard, A.D.; Gundersen, G.W.; Fernandez, N.F.; Wang, Z.; Monteiro, C.D.; McDermott, M.G.; Ma’ayan, A. The harmonizome: A collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database J. Biol. Databases Curation. 2016, 2016, baw100. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, R.; Shimizu, M.; Li, J.; Inoue, J.; Sato, R. Fibroblast growth factor 21 induction by activating transcription factor 4 is regulated through three amino acid response elements in its promoter region. Biosci. Biotechnol. Biochem. 2016, 80, 929–934. [Google Scholar] [CrossRef] [Green Version]
- Joe, Y.; Kim, S.; Kim, H.J.; Park, J.; Chen, Y.; Park, H.J.; Jekal, S.J.; Ryter, S.W.; Kim, U.H.; Chung, H.T. FGF21 induced by carbon monoxide mediates metabolic homeostasis via the PERK/ATF4 pathway. FASEB J. 2018, 32, 2630–2643. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.; Bookout, A.L.; Magomedova, L.; Owen, B.M.; Consiglio, G.P.; Shimizu, M.; Zhang, Y.; Mangelsdorf, D.J.; Kliewer, S.A.; Cummins, C.L. Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop. Mol. Endocrinol. 2015, 29, 213–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matys, V.; Fricke, E.; Geffers, R.; Gössling, E.; Haubrock, M.; Hehl, R.; Hornischer, K.; Karas, D.; Kel, A.E.; Kel-Margoulis, O.V.; et al. TRANSFAC: Transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003, 31, 374–378. [Google Scholar] [CrossRef]
- Rottach, A.; Leonhardt, H.; Spada, F. DNA methylation-mediated epigenetic control. J. Cell. Biochem. 2009, 108, 43–51. [Google Scholar] [CrossRef]
- Handel, A.E.; Ebers, G.C.; Ramagopalan, S.V. Epigenetics: Molecular mechanisms and implications for disease. Trends Mol. Med. 2010, 16, 7–16. [Google Scholar] [CrossRef]
- Huang, S.; Czech, M.P. The GLUT4 Glucose Transporter. Cell Metab. 2007, 5, 237–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyagi, S.; Gupta, P.; Saini, A.; Kaushal, C.; Sharma, S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res. 2011, 2, 236–240. [Google Scholar] [CrossRef]
- Rashid, T.; Nemazanyy, I.; Paolini, C.; Tatsuta, T.; Crespin, P.; Villeneuve, D.; Brodesser, S.; Benit, P.; Rustin, P.; Baraibar, M.A.; et al. Lipin1 deficiency causes sarcoplasmic reticulum stress and chaperone-responsive myopathy. EMBO J. 2019, 38, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Kersten, S.; Stienstra, R. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochim. 2017, 136, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Phan, J.; Reue, K. Lipin, a lipodystrophy and obesity gene. Cell Metab. 2005, 1, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Stark, R.; Reichenbach, A.; Andrews, Z.B. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis. Mol. Cell. Endocrinol. 2015, 418, 9–16. [Google Scholar] [CrossRef]
- Tilg, H.; Effenberger, M. From NAFLD to MAFLD: When Pathophysiology Succeeds. Nat Rev Gastroenterol Hepatol. 2020, 17, 387–388. [Google Scholar] [CrossRef]
- Badman, M.K.; Pissios, P.; Kennedy, A.R.; Koukos, G.; Flier, J.S.; Maratos-Flier, E. Hepatic Fibroblast Growth Factor 21 Is Regulated by PPARα and Is a Key Mediator of Hepatic Lipid Metabolism in Ketotic States. Cell Metab. 2007, 5, 426–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iizuka, K. Recent progress on the role of ChREBP in glucose and lipid metabolism. Endocr. J. 2013, 60, 543–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, F.M.; Estall, J.L.; Adams, A.C.; Antonellis, P.J.; Bina, H.A.; Flier, J.S.; Kharitonenkov, A.; Spiegelman, B.M.; Maratos-Flier, E. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 2011, 152, 2996–3004. [Google Scholar] [CrossRef]
- Lin, Z.; Pan, X.; Wu, F.; Ye, M.D.; Zhang, Y.; Wang, Y.; Jin, L.; Lian, Q.; Huang, Y.; Ding, H.; et al. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation 2015, 131, 1861–1871. [Google Scholar] [CrossRef] [Green Version]
- Kurosu, H.; Choi, M.; Ogawa, Y.; Dickson, A.S.; Goetz, R.; Eliseenkova, V.; Mohammadi, M.; Rosenblatt, K.P.; Kliewer, S.A.; Kuro-o, M. Tissue-specific Expression of βKlotho and Fibroblast Growth Factor (FGF) Receptor Isoforms Determines Metabolic Activity of FGF19 and FGF21. NIH Public Access 2008, 282, 26687–26695. [Google Scholar]
- Gallego-Escuredo, J.M.; Gomezambrosi, J.; Catalan, V.; Domingo, P.; Giralt, M.; Frühbeck, G.; Villarroya, F. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int. J. Obes. 2015, 39, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Trajkovski, M.; Ahmed, K.; Esau, C.C.; Stoffel, M. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat. Cell Biol. 2012, 14, 1330–1335. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Z.; Chen, A.; Ma, J.; Qian, J.; Ge, J. Elevated serum miR-133a predicts patients at risk of periprocedural myocardial injury after elective percutaneous coronary intervention. Cardiol. J. 2020. [Google Scholar] [CrossRef] [Green Version]
- Qoriansas, N.; Renovaldi, D.; Raditya, J.; Lestari, P.; Signa, N.; Gumilas, S.; Heriyanto, D.S.; Ratnasari, N.; Mubarika, S. Expression of circulating miR-200c and vascular endothelial growth factor-A (VEGF-A) mRNA as potential biomarker in human hepatocellular carcinoma. J. Med Sci. (Berk. Ilmu Kedokt.) 2018, 50. [Google Scholar] [CrossRef]
- Wang, R.; Tian, S.; Wang, H.B.; Chu, D.P.; Cao, J.L.; Xia, H.F.; Ma, X. MiR-185 is involved in human breast carcinogenesis by targeting Vegfa. FEBS Lett. 2014, 588, 4438–4447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azodi, M.Z.; Rezaei-Tavirani, M.; Rezaei-Tavirani, M.; Robati, R.M. Gestational diabetes mellitus regulatory network identifies hsa-mir-145-5p and hsa-mir-875-5p as potential biomarkers. Int. J. Endocrinol. Metab. 2019, 17, 3. [Google Scholar]
- Estep, M.; Armistead, D.; Hossain, N.; Elarainy, H.; Goodman, Z.; Baranova, A.; Chandhoke, V.; Younossi, Z. Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2010, 32, 487–497. [Google Scholar] [CrossRef]
- Houde, A.-A.; Légaré, C.; Biron, S.; Lescelleur, O.; Biertho, L.; Marceau, S.; Tchernof, A.; Vohl, M.C.; Hivert, M.F.; Bouchard, L. Leptin and adiponectin DNA methylation levels in adipose tissues and blood cells are associated with BMI, waist girth and LDL-cholesterol levels in severely obese men and women. BMC Med Genet. 2015, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Walle, P.; Männistö, V.; De Mello, V.D.; Vaittinen, M.; Perfilyev, A.; Hanhineva, K.; Ling, C.; Pihlajamäki, J. Liver DNA methylation of FADS2 associates with FADS2 genotypex 06 Biological Sciences 0604 Genetics. Clin. Epigenetics 2019, 11, 24–30. [Google Scholar]
- Ali, O.; Cerjak, D.; Kent, J.W.; James, R.; Blangero, J.; Carless, M.A.; Zhang, Y. Methylation of SOCS3 is inversely associated with metabolic syndrome in an epigenome-wide association study of obesity. Epigenetics 2016, 11, 699–707. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Zhu, B. Integrated analysis of the gene expression profile and DNA methylation profile of obese patients with type 2 diabetes. Mol. Med. Rep. 2018, 17, 7636–7644. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Eid, S.A.; Elzinga, S.E.; Pacut, C.; Feldman, E.L.; Hur, J. Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy. Clin. Epigenetics 2020, 12, 123. [Google Scholar] [CrossRef] [PubMed]
- Hanzawa, N.; Hashimoto, K.; Yuan, X.; Kawahori, K.; Tsujimoto, K.; Hamaguchi, M.; Tanaka, T.; Nagaoka, Y.; Nishina, H.; Morita, S.; et al. Targeted DNA demethylation of the Fgf21 promoter by CRISPR/dCas9-mediated epigenome editing. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Race (Caucasian) | High FGF21 (n = 68) | Low FGF21 (n = 68) | p | ||
---|---|---|---|---|---|
Sex. F/M (%) | 63 | 75 | Ns | ||
Age (years) | 48.3 | ±11.5 | 47.2 | ±11.0 | 0.582 |
BMI (kg/m2) | 32.90 | (30.4–36.2) | 32.3 | (30.3–34.6) | 0.235 |
Adipose tissue mass (%) | 39.7 | (33.7–42.7) | 38.2 | (34.1–42.9) | 0.969 |
WHR | 0.92 | (0.85–1.02) | 0.84 | (0.80–0.92) | 0.001 |
Waist circumference (cm) | 108.5 | ±12.1 | 100 | ±11.1 | 0.001 |
Systolic blood pressure (mmHg) | 130.6 | ±14.9 | 127.7 | ±15.9 | 0.246 |
Diastolic blood pressure (mmHg) | 84.4 | ±8.6 | 83.2 | ±9.3 | 0.427 |
Fasting glucose (mmol/L) | 5.4 | (5.0–5.7) | 5.2 | (4.7–5.5) | 0.193 |
Insulin (µIU/mL) | 18.1 | ±10.4 | 14.5 | ±7.7 | 0.035 |
HOMA-IR | 3.29 | (2.45–4.9) | 2.71 | (2.0–4.04) | 0.038 |
VEGF (pg/mL) | 361.1 | (226.7–521.1) | 263.2 | (176.4–421) | 0.038 |
Total cholesterol (mmol/L) | 5.7 | ±1.0 | 5.4 | ±1.1 | 0.061 |
HDL cholesterol (mmol/L) | 1.3 | ±0.3 | 1.3 | ±0.2 | 0.236 |
LDL cholesterol (mmol/L) | 3.6 | ±0.9 | 3.4 | ±1.0 | 0.192 |
TG (mmol/L) | 1.8 | ±0.9 | 1.3 | ±0.7 | 0.0004 |
GIP (pg/mL) | 31.6 | (18.8–45.6) | 25.5 | (16.1–33.1) | 0.019 |
ALT (U/L) | 20.8 | ±12.0 | 16.8 | ±8.3 | 0.026 |
GGT (U/L) | 34.2 | ±39.3 | 19.8 | ±11.9 | 0.005 |
Leptin (ng/mL) | 36.1 | (20.3–56.3) | 27.5 | (20.8–44.6) | 0.155 |
Adiponectin (µg/mL) | 4.9 | (3.8–7.55) | 7.3 | (5.3–9.7) | 0.013 |
Resitin (ng/mL) | 9.5 | ±3.7 | 10.4 | ±3.9 | 0.120 |
Visfatin (ng/mL) | 1.2 | ±0.9 | 1.1 | ±0.9 | 0.439 |
FGF21 (pg/mL) | 299 | (253.8–401.9) | 127.8 | (62–162.4) | <0.0001 |
Irisin (µg/mL) | 5 | ±1.6 | 4.6 | ±1.2 | 0.112 |
Myostatin (ng/mL) | 21.5 | (18.5–24.3) | 21.2 | (18.7–25.05) | 0.964 |
IL-6 (pg/mL) | 1.3 | (0.9–1.9) | 1.2 | (0.8–1.7) | 0.411 |
hs-CRP (mg/mL) | 2.2 | (1.0–3.8) | 1.1 | (0.5–3.8) | 0.191 |
MCP1 (pg/mL) | 392.1 | ±127.2 | 348.2 | ±102 | 0.034 |
sVCAM-1 (ng/mL) | 609 | ±160.1 | 636.9 | ±149.1 | 0.270 |
sPECAM-1 (ng/mL) | 74.6 | ±19.9 | 71.7 | ±16.9 | 0.395 |
sEselectin (pg/mL) | 43.8 | ±20.7 | 39.4 | ±15.6 | 0.179 |
Fasting NEFAs (mmol/L) | 0.804 | ±0.314 | 0.674 | ±0.268 | 0.008 |
Total fatty acids (µg/mL) | 3642.9 | ±819.8 | 3258.9 | ±737.1 | 0.005 |
Saturated fatty acids (%) | 33.4 | ±2.6 | 33 | ±1.9 | 0.351 |
Monounsaturated fatty acids (%) | 26.3 | ±2.7 | 25.4 | ±3.0 | 0.051 |
Polyunsaturated fatty acids (%) | 40.3 | ± 4.0 | 41.6 | ±3.7 | 0.057 |
Description | Corr p-Value | X | n | Regulation | Genes |
---|---|---|---|---|---|
lipid metabolic process | 9.47 × 10−10 | 35 | 834 | Hypermethylated | ABCA1; ACOXL; ACOX3; ATP8B1; CIDEA; CPT1A; CYP51A1; CYP26C1; CYP24A1; CYP46A1; CYP26B1; CYP27B1; DECR1; DHCR24; ELOVL6; FADS2; GATA6; LIPG; PPARA; PRKAR2B; SCD; VLDLR |
Hypomethylated | ACSL3; ACSS2; ADIPOR1; ATP8B1; CPT1A; CPT1B; CPT1C; CYP26A1; ELOVL4; ELOVL6; ELOVL7; GATA6; LPIN1; PDE3A; PRKAA1; PRKAB2; SLC27A1; | ||||
lipid localization | 9.18 × 10−11 | 17 | 151 | Hypermethylated | ABCA1; ABCG4; ATP8A2; ATP8B1; ATP10A; ATP10D; ATP11A; CIDEA; LIPG; PPARA; VLDLR; |
Hypomethylated | ATP8B1; ATP8B3; ATP9A; ATP9B; ATP11A; CPT1B; SLC27A1; STARD4; | ||||
lipid transport | 2.46 × 10−10 | 16 | 139 | Hypermethylated | ABCA1; ABCG4; ATP8A2; ATP8B1; ATP10D; ATP10A; ATP11A; LIPG; PPARA; VLDLR; |
Hypomethylated | ATP8B1; ATP8B3; ATP9A; ATP9B; ATP10A; CPT1B; SLC27A1; STARD4; | ||||
regulation of lipid storage | 1.48 × 10−2 | 3 | 27 | Hypermethylated | ABCA1; CIDEA; PPARA |
Hypomethylated | |||||
fatty acid metabolic process | 1.79 × 10−10 | 19 | 209 | Hypermethylated | ACOX3; CPT1A; DECR1; ELOVL6; FADS2; ACOXL; SCD; PPARA |
Hypomethylated | ACSL3; ADIPOR1; CPT1A; CPT1B; CPT1C; ELOVL4; ELOVL6; ELOVL7; LPIN1; PRKAA1; PRKAB2; PRKAR2B; SLC27A1 | ||||
regulation of fatty acid oxidation | 2.33 × 10−5 | 6 | 33 | Hypermethylated | CPT1A; PPARA |
Hypomethylated | CPT1B; IRS1; PRKAA1; PRKAB2; | ||||
regulation of sequestering of triglyceride | 1.74 × 10−2 | 2 | 9 | Hypermethylated | CIDEA; PPARA |
Hypomethylated | |||||
cholesterol metabolic process | 1.66 × 10−2 | 5 | 91 | Hypermethylated | ABCA1; CYP46A1; CYP51A1; DHCR24; VLDLR |
Hypomethylated | |||||
regulation of insulin secretion | 3.26 × 10−5 | 7 | 54 | Hypermethylated | ADRA2A; GIPR; NEUROD1; PFKM; TCF7L2; |
Hypomethylated | ADRA2A; CPT1A; IRS1; | ||||
response to insulin stimulus | 2.86 × 10−6 | 11 | 123 | Hypermethylated | IGFBP1; IGF1R; PDK1; PRKCI; PPARA; SLC2A8; VLDLR |
Hypomethylated | INSR; IRS1; SLC27A1; SOCS3; | ||||
insulin receptor signaling pathway | 4.44 × 10−4 | 5 | 36 | Hypermethylated | IGFBP1; IGF1R; SLC2A8 |
Hypomethylated | INSR; IRS1 | ||||
glucose homeostasis | 8.11 × 10−9 | 10 | 51 | Hypermethylated | BAD; FOXO3; NEUROD1; PDX1; PFKM; SLC2A4; TCF7L2; |
Hypomethylated | ADRA2A; INSR; IRS1 | ||||
response to glucose stimulus | 6.03 × 10−4 | 6 | 62 | Hypermethylated | ADRA2A; GIPR; NEUROD1; TCF7L2 |
Hypomethylated | ADRA2A; INSR; IRS1; | ||||
glucose metabolic process | 7.96 × 10−5 | 10 | 146 | Hypermethylated | ATF4; BAD; CPT1A; PDK1; PDX1; PFKM; SLC2A8 |
Hypomethylated | PDK2; PFKL; PFKP | ||||
glucose transport | 1.60 × 10−3 | 4 | 27 | Hypermethylated | SLC2A4; SLC2A5; SLC2A8; KLF15; |
Hypomethylated | SLC2A5 | ||||
regulation of glucose transport | 3.42 × 10−3 | 4 | 34 | Hypermethylated | PRKCI; PRKCZ |
Hypomethylated | INSR; IRS1; PRKCZ | ||||
glycolysis | 3.72 × 10−2 | 3 | 42 | Hypermethylated | PFKM |
Hypomethylated | PFKL; PFKP | ||||
response to nutrient levels | 8.47 × 10−14 | 24 | 243 | Hypermethylated | BMP7; BMPR2; CYP24A1; CYP27B1; GIPR; IGF1R; LIPG; PPARA; RARA; WNT3; WNT3A; VLDLR |
Hypomethylated | ACSL3; BMP2; BMP4; BMPR2; CEBPA; INSR; PDGFA; RARA; RPTOR; SOCS3; SOD1; WNT3A; WNT7B; WNT9A; WNT9B | ||||
fibroblast growth factor receptor signalling pathway | 1.35 × 10−6 | 7 | 33 | Hypermethylated | FGF3; FGF5; FGF9; FGFR1; FRS2 |
Hypomethylated | FGF3; FGFR1; FGFR3; KLB | ||||
positive regulation of MAPKKK cascade by fibroblast growth factor receptor signalling pathway | 6.41 × 10−3 | 2 | 5 | Hypermethylated | FGFR1 |
Hypomethylated | KLB; FGFR1 | ||||
fat cell differentiation | 2.86 × 10−7 | 9 | 56 | Hypermethylated | ADRB1; CTBP2; PRDM16; SLC2A4; TCF7L2; |
Hypomethylated | CEBPA; CEBPB; CTBP1; CTBP2; PRDM16 | ||||
white fat cell differentiation | 1.44 × 10−2 | 2 | 8 | Hypermethylated | CTBP2 |
Hypomethylated | CTBP1; CTBP2 | ||||
brown fat cell differentiation | 8.44 × 10−5 | 5 | 25 | Hypermethylated | ADRB1; PRDM16; SLC2A4 |
Hypomethylated | CEBPA; CEBPB; PRDM16 | ||||
positive regulation of vascular endothelial growth factor receptor signalling pathway | 1.95 × 10−3 | 3 | 12 | Hypermethylated | FGF9; |
Hypomethylated | FLT1; VEGFA | ||||
response to oxygen levels | 2.87 × 10−5 | 11 | 158 | Hypermethylated | ATP1B1; PDGFRA; PPARA; SLC2A8; VLDLR |
Hypomethylated | ANGPTL4; ATP1B; FLT1; PDGFA; PDGFRA; PRKAA1; SOCS3; VEGFA | ||||
response to hypoxia | 9.26 × 10−5 | 10 | 149 | Hypermethylated | ATP1B1; PPARA; SLC2A8; VEGFA |
Hypomethylated | ANGPTL4; ATP1B1; FLT1; PDGFA; PRKAA1; SOCS3; VLDLR | ||||
vascular process in circulatory system | 1.24 × 10−2 | 4 | 51 | Hypermethylated | ADRB1 |
Hypomethylated | FGFBP3; SOD1; VEGFA | ||||
positive regulation of canonical Wnt receptor signalling pathway | 8.48 × 10−4 | 3 | 9 | Hypermethylated | WNT3A; WNT7A; |
Hypomethylated | WNT2B; | ||||
regulation of ossification | 9.96 × 10−7 | 10 | 86 | Hypermethylated | BMP6; BMP7; BMPR2; CYP27B1; ESRRA; GNAS; TFAP2A |
Hypomethylated | BMP2; BMP4; BMPR2; GNAS; WNT7B; TFAP2A | ||||
regulation of bone mineralization | 1.35 × 10−6 | 7 | 33 | Hypermethylated | BMPR2; BMP7; BMP6; CYP27B1; TFAP2A; |
Hypomethylated | BMP2; BMP4; BMPR2; TFAP2A; | ||||
positive regulation of osteoblast differentiation | 2.68 × 10−7 | 7 | 26 | Hypermethylated | BMPR2; GNAS |
Hypomethylated | BMP2; BMP4; BMPR2; GNAS; WNT7B | ||||
generation of precursor metabolites and energy | 5.08 × 10−15 | 28 | 312 | Hypermethylated | ATP6V1B2; ATP6V1C1; ATP6V1E1; FADS2; GIPR; GNAS; NDUFAF1; NDUFA6; NDUFA8; NDUFA9; NDUFA13; NDUFB1; NDUFB2; NDUFB5; NDUFB7; NDUFS1; NDUFS2; NDUFV2; PDX1; PFKM |
Hypomethylated | ATP5D; ATP5H; CEBPA; COX7A1; GNAS; NDUFA11; NDUFV3; PFKL; PFKP | ||||
mitochondrial electron transport, NADH to ubiquinone | 3.52 × 10−12 | 12 | 43 | Hypermethylated | NDUFA6; NDUFA8; NDUFA9; NDUFB1; NDUFB2; NDUFB5; NDUFB7; NDUFAF1; NDUFS1; NDUFS2; NDUFV2 |
Hypomethylated | NDUFV3; | ||||
ATP synthesis coupled electron transport | 9.12 × 10−11 | 12 | 57 | Hypermethylated | NDUFA6; NDUFA8; NDUFA9; NDUFB1; NDUFB2; NDUFB5; NDUFB7; NDUFAF1; NDUFS1; NDUFS2; NDUFV2 |
Hypomethylated | NDUFV3; | ||||
mitochondrial ATP synthesis coupled electron transport | 9.12 × 10−11 | 12 | 57 | Hypermethylated | NDUFA6; NDUFA8; NDUFA9; NDUFB1; NDUFB2; NDUFB5; NDUFB7; NDUFAF1; NDUFS1; NDUFS2; NDUFV2 |
Hypomethylated | NDUFV3; | ||||
response to retinoic acid | 2.86 × 10−7 | 9 | 56 | Hypermethylated | WNT3; WNT3A; RARA; |
Hypomethylated | BMP2; BMP4; PDGFA; RARA; WNT3A; WNT7B; WNT9A; WNT9B; | ||||
regulation of striated muscle tissue development | 1.16 × 10−2 | 4 | 50 | Hypermethylated | FGF9; TBX5; FGFR1 |
Hypomethylated | BMP4; FGFR1 | ||||
regulation of apoptosis | 6.59 × 10−5 | 26 | 852 | Hypermethylated | BAD; BMP7; CEBPB; CIDEA; CFLAR; DHCR24; FGFR1; FOXO3; GATA6; IGF1R; IL7; MYO18A; NDUFA13; NEUROD1; PRKCI; PRKCZ; TBX5; TCF7L2 |
Hypomethylated | ANGPTL4; BMP2; BMP4; FGFR1; GATA6; MYO18A; PDE3A; PRKCE; PRKCZ; SOCS3; SOD1; VEGFA |
TF (Transcription Factor) | DNA Methylation Status | Region | Selected Regulated Genes a | Reference |
---|---|---|---|---|
PPARA | Hypermethylated (2 probes) | Promoter | ACADVL, ACOT7, ACOT8, CYP26A1, FABP1, FBP2, FGF9, FGF21, GAPDH, HNF1A, HSD17B8, IGF2BP1, IL10, IL4, LPL, LRP1, MAP2K3, PDGFB, PPARGC1A, PRDM16, VEGFA | [33] |
RORA | Hypermethylated (3 probes) | Promoter: CTCF binding sites | ABCA1, ACOXL, CYP26A1, FGF9, FGF21, IL7, KLF4 | [11,34] |
ATF4 | Hypermethylated (1 probe) | Promoter | ABCA2, CPT1B, CYP26A1, ELOVL5, FGF21, GNAS, NDUFA10, S1PR2, SREBF2 | [35,36] |
KLF15 | Hypermethylated (1 probe) | Promoter | FGF21, NR3C1, PPARA | [13] |
NR3C1 | Hypermethylated (1 probe) Hypomethylated (1 probe) | Promoter | BMPR2, CD36, CYP26A1, ELOVL6, ESRRA, FGF9, FGF21, IL10, PDGFRA, RORA, SCD, SLC2A2, | [37] |
miRNA Name | adj.p | FC | Selected Targets |
---|---|---|---|
hsa-miR-133a-3p | 0.0477 | −3.1 | FGFR1 |
VEGFA | |||
PRDM16 | |||
hsa-miR-185-5p | 0.0496 | −2.6 | FGFR1 |
VEGFA | |||
hsa-miR-200c-3p | 0.0347 | −2.2 | FGFR1 |
VEGFA | |||
FLT1 | |||
KDR | |||
TCF7L2 | |||
hsa-miR-875-5p | 0.0052 | 13 | ADIPOQ |
CPT1A | |||
IRS1 | |||
LEP | |||
LIPA | |||
SLC2A2 | |||
SLC2A3 | |||
SLC2A4 | |||
BMP8A | |||
BMPR1A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Płatek, T.; Polus, A.; Góralska, J.; Raźny, U.; Dziewońska, A.; Micek, A.; Dembińska-Kieć, A.; Solnica, B.; Malczewska-Malec, M. Epigenetic Regulation of Processes Related to High Level of Fibroblast Growth Factor 21 in Obese Subjects. Genes 2021, 12, 307. https://doi.org/10.3390/genes12020307
Płatek T, Polus A, Góralska J, Raźny U, Dziewońska A, Micek A, Dembińska-Kieć A, Solnica B, Malczewska-Malec M. Epigenetic Regulation of Processes Related to High Level of Fibroblast Growth Factor 21 in Obese Subjects. Genes. 2021; 12(2):307. https://doi.org/10.3390/genes12020307
Chicago/Turabian StylePłatek, Teresa, Anna Polus, Joanna Góralska, Urszula Raźny, Agnieszka Dziewońska, Agnieszka Micek, Aldona Dembińska-Kieć, Bogdan Solnica, and Małgorzata Malczewska-Malec. 2021. "Epigenetic Regulation of Processes Related to High Level of Fibroblast Growth Factor 21 in Obese Subjects" Genes 12, no. 2: 307. https://doi.org/10.3390/genes12020307
APA StylePłatek, T., Polus, A., Góralska, J., Raźny, U., Dziewońska, A., Micek, A., Dembińska-Kieć, A., Solnica, B., & Malczewska-Malec, M. (2021). Epigenetic Regulation of Processes Related to High Level of Fibroblast Growth Factor 21 in Obese Subjects. Genes, 12(2), 307. https://doi.org/10.3390/genes12020307