Quantifying Fetal Reprogramming for Biomarker Development in the Era of High-Throughput Sequencing
Abstract
:1. Introduction
2. Fetal Programming and Reprogramming
2.1. Fetal Developmental Program
2.2. Fetal Reprogramming
2.3. High-Throughput Sequencing Approach to Studying Fetal Reprogramming
3. Considerations in the Use of High-Throughput Sequencing in Fetal Reprogramming Biomarker Development
3.1. Tissue Collection
3.2. Subjects
3.3. Sequencing Depth
3.4. Alignment/Mapping
3.5. Count Normalization
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michita, R.T.; de Lima Kaminski, V.; Chies, J.A.B. Genetic variants in preeclampsia: Lessons from studies in Latin-American populations. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, R.D.; De Long, N.E.; Wang, R.C.; Yazdi, F.T.; Holloway, A.C.; Raha, S. Angiogenesis in the placenta: The role of reactive oxygen species signaling. Biomed Res. Int. 2015, 2015, 814543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaman, K.D.; Dambaeva, S.; Katara, G.K.; Kulshrestha, A.; Gilman-Sachs, A. The immune response in pregnancy and in cancer is active and supportive of placental and tumor cell growth not their destruction. Gynecol. Oncol. 2017, 145, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Shastri, S.; Sharma, P. Intrauterine growth restriction: Antenatal and postnatal aspects. Clin. Med. Insights Pediatr. 2016, 10, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Rinaudo, P.; Wang, E. Fetal programming and metabolic syndrome. Annu. Rev. Physiol. 2012, 74, 107–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuyt, A.M.; Alexander, B.T. Developmental programming and hypertension. Curr. Opin. Nephrol. Hypertens. 2009, 18, 144–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, A.J.; Zhang, L. Hypoxia and fetal heart development. Curr. Mol. Med. 2010, 10, 653–666. [Google Scholar] [CrossRef] [PubMed]
- Armengaud, J.B.; Yzydorczyk, C.; Siddeek, B.; Peyter, A.C.; Simeoni, U. Intrauterine growth restriction: Clinical consequences on health and disease at adulthood. Reprod. Toxicol. 2020. [Google Scholar] [CrossRef]
- Räikkönen, K.; Pesonen, A.-K.; Heinonen, K.; Kajantie, E.; Hovi, P.; Järvenpää, A.-L.; Eriksson, J.G.; Andersson, S. Depression in young adults with very low birth weight: The Helsinki study of very low-birth-weight adults. Arch. Gen. Psychiatry 2008, 65, 290–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, T.A.; Grunau, R.E.; McAuliffe, F.M.; Pinnamaneni, R.; Foran, A.; Alderdice, F.A. Early childhood neurodevelopment after intrauterine growth restriction: A systematic review. Pediatrics 2015, 135, 126–141. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Fu, W.; Liu, J. Neurodevelopment in children with intrauterine growth restriction: Adverse effects and interventions. J. Matern. Fetal Neonatal Med. 2016, 29, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, C.; Cumberland, A.; Walker, D.; Tolcos, M. Intrauterine growth restriction and development of the hippocampus: Implications for learning and memory in children and adolescents. Lancet Child Adolesc. Health 2018, 2, 755–764. [Google Scholar] [CrossRef]
- Korzeniewski, S.J.; Allred, E.N.; Joseph, R.M.; Heeren, T.; Kuban, K.C.K.; O’Shea, T.M.; Leviton, A.; For the ELGAN Study Investigators. Neurodevelopment at age 10 years of children born <28 weeks with fetal growth restriction. Pediatrics 2017, 140. [Google Scholar] [CrossRef] [Green Version]
- Padilla, N.; Falcón, C.; Sanz-Cortés, M.; Figueras, F.; Bargallo, N.; Crispi, F.; Eixarch, E.; Arranz, A.; Botet, F.; Gratacós, E. Differential effects of intrauterine growth restriction on brain structure and development in preterm infants: A magnetic resonance imaging study. Brain Res. 2011, 1382, 98–108. [Google Scholar] [CrossRef]
- Padilla, N.; Junqué, C.; Figueras, F.; Sanz-Cortés, M.; Bargalló, N.; Arranz, A.; Donaire, A.; Figueras, J.; Gratacos, E. Differential vulnerability of gray matter and white matter to intrauterine growth restriction in preterm infants at 12 months corrected age. Brain Res. 2014, 1545, 1–11. Available online: http://www.ncbi.nlm.nih.gov/pubmed/24361462 (accessed on 14 February 2021). [CrossRef]
- Miller, S.L.; Huppi, P.S.; Mallard, C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J. Physiol. 2016, 594, 807–823. [Google Scholar] [CrossRef] [Green Version]
- Chmurzynska, A. Fetal programming: Link between early nutrition, DNA methylation, and complex diseases. Nutr. Rev. 2010, 68, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Simeoni, U.; Armengaud, J.-B.; Siddeek, B.; Tolsa, J.-F. Perinatal origins of adult disease. Neonatology 2018, 113, 393–399. [Google Scholar] [CrossRef]
- Hoffman, D.J.; Reynolds, R.M.; Hardy, D.B. Developmental origins of health and disease: Current knowledge and potential mechanisms. Nutr. Rev. 2017, 75, 951–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, D.; Limesand, S.W.; Goyal, R. Epigenetic responses and the developmental origins of health and disease. J. Endocrinol. 2019, 242, T105–T119. [Google Scholar] [CrossRef] [Green Version]
- Chou, F.-S.; Wang, P.-S. The SLC25A42 transcript is a biomarker for fetal reprogramming in response to placental insufficiency in preterm newborns under 32 weeks gestation-a pilot study. Front. Pediatr. 2020, 8, 459. [Google Scholar] [CrossRef]
- Johnson, A.B.; Denko, N.; Barton, M.C. Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat. Res. 2008, 640, 174–179. Available online: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2346607&tool=pmcentrez&rendertype=abstract (accessed on 14 February 2021). [CrossRef] [PubMed] [Green Version]
- Kooistra, S.M.; Helin, K. Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell Biol. 2012, 13, 297–311. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22473470 (accessed on 14 February 2021). [CrossRef] [PubMed]
- Shmakova, A.; Batie, M.; Druker, J.; Rocha, S. Chromatin and oxygen sensing in the context of JmjC histone demethylases. Biochem J. 2014, 462, 385–395. Available online: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4147966&tool=pmcentrez&rendertype=abstract (accessed on 14 February 2021). [CrossRef] [Green Version]
- Suárez, E.; Burguete, A.; Mclachlan, G.J. Microarray data analysis for differential expression: A tutorial. P R Health Sci. J. 2009, 28, 89–104. Available online: https://www.ncbi.nlm.nih.gov/pubmed/19530550 (accessed on 14 February 2021).
- Whitehead, C.; Teh, W.T.; Walker, S.P.; Leung, C.; Mendis, S.; Larmour, L.; Tong, S. Quantifying circulating hypoxia-induced RNA transcripts in maternal blood to determine in utero fetal hypoxic status. BMC Med. 2013, 11, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.Y.; Cho, Y.; Shin, Y.-J.; Park, J.; Shim, S.; Jung, Y.; Shim, S.; Cha, D. Functional analysis of cell-free RNA using mid-trimester amniotic fluid supernatant in pregnancy with the fetal growth restriction. Medicine 2018, 97, e9572. [Google Scholar] [CrossRef] [PubMed]
- Tarca, A.L.; Romero, R.; Pique-Regi, R.; Pacora, P.; Done, B.; Kacerovsky, M.; Bhatti, G.; Jaiman, S.; Hassan, S.S.; Hsu, C.-D.; et al. Amniotic fluid cell-free transcriptome: A glimpse into fetal development and placental cellular dynamics during normal pregnancy. BMC Med. Genom. 2020, 13, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Stoffers, D.A.; Nicholls, R.D.; Simmons, R.A. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J. Clin. Invest. 2008, 118, 2316–2324. [Google Scholar] [CrossRef] [Green Version]
- Goyal, R.; Goyal, D.; Leitzke, A.; Gheorghe, C.P.; Longo, L.D. Brain renin-angiotensin system: Fetal epigenetic programming by maternal protein restriction during pregnancy. Reprod. Sci. 2010, 17, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Pinney, S.E. Intrauterine growth retardation—A developmental model of type 2 diabetes. Drug Discov. Today Dis. Models 2013, 10, e71–e77. [Google Scholar] [CrossRef] [Green Version]
- Terstappen, F.; Calis, J.J.A.; Paauw, N.D.; Joles, J.A.; van Rijn, B.B.; Mokry, M.; Plösch, T.; Lely, A.T. Developmental programming in human umbilical cord vein endothelial cells following fetal growth restriction. Clin. Epigenetics 2020, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Ranzil, S.; Ellery, S.; Walker, D.W.; Vaillancourt, C.; Alfaidy, N.; Bonnin, A.; Borg, A.; Wallace, E.M.; Ebeling, P.R.; Erwich, J.J.; et al. Disrupted placental serotonin synthetic pathway and increased placental serotonin: Potential implications in the pathogenesis of human fetal growth restriction. Placenta 2019, 84, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Hannan, N.J.; Stock, O.; Spencer, R.; Whitehead, C.; David, A.L.; Groom, K.; Petersen, S.; Henry, A.; Said, J.M.; Seeho, S.; et al. Circulating mRNAs are differentially expressed in pregnancies with severe placental insufficiency and at high risk of stillbirth. BMC Med. 2020, 18, 145. [Google Scholar] [CrossRef]
- Ohno, S.; Nakajin, S. Quantitative analysis of UGT2B28 mRNA expression by real-time RT-PCR and application to human tissue distribution study. Drug Metab. Lett. 2011, 5, 202–208. [Google Scholar] [CrossRef]
- Cai, Y.; Yu, X.; Hu, S.; Yu, J. A brief review on the mechanisms of miRNA regulation. Genom. Proteom. Bioinform. 2009, 7, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Awamleh, Z.; Gloor, G.B.; Han, V.K.M. Placental microRNAs in pregnancies with early onset intrauterine growth restriction and preeclampsia: Potential impact on gene expression and pathophysiology. BMC Med. Genom. 2019, 12, 91. [Google Scholar] [CrossRef] [Green Version]
- Awamleh, Z.; Han, V.K.M. Identification of miR-210-5p in human placentae from pregnancies complicated by preeclampsia and intrauterine growth restriction, and its potential role in the pregnancy complications. Pregnancy Hypertens. 2020, 19, 159–168. [Google Scholar] [CrossRef]
- Eckmann-Scholz, C.; Wilke, C.; Acil, Y.; Alkatout, I.; Salmassi, A. Macrophage colony-stimulating factor (M-CSF) in first trimester maternal serum: Correlation with pathologic pregnancy outcome. Arch. Gynecol. Obstet. 2016, 293, 1213–1217. [Google Scholar] [CrossRef]
- Kaitu’u-Lino, T.J.; MacDonald, T.M.; Cannon, P.; Nguyen, T.-V.; Hiscock, R.J.; Haan, N.; Myers, J.E.; Hastie, R.; Dane, K.M.; Middleton, A.L.; et al. Circulating SPINT1 is a biomarker of pregnancies with poor placental function and fetal growth restriction. Nat. Commun. 2020, 11, 2411. [Google Scholar] [CrossRef]
- Gruslin, A.; Lemyre, B. Pre-Eclampsia: Fetal assessment and neonatal outcomes. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 491–507. [Google Scholar] [CrossRef] [PubMed]
- Langenveld, J.; Ravelli, A.C.J.; van Kaam, A.H.; van der Ham, D.P.; van Pampus, M.G.; Porath, M.; Mol, B.W.; Ganzevoort, W. Neonatal outcome of pregnancies complicated by hypertensive disorders between 34 and 37 weeks of gestation: A 7 year retrospective analysis of a national registry. Am. J. Obstet. Gynecol. 2011, 205, 540.e1–540.e7. [Google Scholar] [CrossRef]
- Sharma, D.; Farahbakhsh, N.; Shastri, S.; Sharma, P. Intrauterine growth restriction—Part 2. J. Matern. Fetal Neonatal Med. 2016, 1–12. [Google Scholar] [CrossRef]
- Alur, P. Sex differences in nutrition, growth, and metabolism in preterm infants. Front. Pediatr. 2019, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Mouna, K.; Doddagowda, S.M.; Junjegowda, K.; Krishnamurthy, L. Changes in haematological parameters in newborns born to preeclamptic mothers—A case control study in a rural hospital. J. Clin. Diagn. Res. 2017, 11, EC26–EC29. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Essien, M.D.; Johnson, A.J.; Lee, G.T.; Chou, F.-S. Use of mean platelet volume in the assessment of intrauterine infection in newborns with combined thrombocytopenia and leukopenia at birth. J. Matern. Fetal Neonatal Med. 2019, 1–7. [Google Scholar] [CrossRef]
- Kang, J.H.; Park, H.J.; Jung, Y.W.; Shim, S.H.; Sung, S.R.; Park, J.E.; Cha, D.H.; Ahn, E.H. Comparative transcriptome analysis of cell-free fetal RNA from amniotic fluid and RNA from amniocytes in uncomplicated pregnancies. PLoS ONE 2015, 10, e0132955. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.; Misra, D. Fetal nucleic acids in maternal circulation: A genetic resource for noninvasive prenatal diagnosis. ISRN Genet. 2012, 2013. Available online: https://www.hindawi.com/journals/isrn/2013/961293/ (accessed on 24 January 2021). [CrossRef] [Green Version]
- Ngo, T.T.M.; Moufarrej, M.N.; Rasmussen, M.-L.H.; Camunas-Soler, J.; Pan, W.; Okamoto, J.; Neff, N.F.; Liu, K.; Wong, R.J.; Downes, K.; et al. Noninvasive blood tests for fetal development predict gestational age and preterm delivery. Science 2018, 360, 1133–1136. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; Ngo, T.T.M.; Camunas-Soler, J.; Song, C.-X.; Kowarsky, M.; Blumenfeld, Y.J.; Wong, R.J.; Shaw, G.M.; Stevenson, D.K.; Quake, S.R. Simultaneously monitoring immune response and microbial infections during pregnancy through plasma cfRNA sequencing. Clin. Chem. 2017, 63, 1695–1704. [Google Scholar] [CrossRef] [Green Version]
- Sequencing Coverage. Available online: https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/coverage.html (accessed on 11 February 2021).
- Wagner, G.P.; Kin, K.; Lynch, V.J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012, 131, 281–285. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Kishikawa, T.; Otsuka, M.; Ohno, M.; Yoshikawa, T.; Takata, A.; Koike, K. Circulating RNAs as new biomarkers for detecting pancreatic cancer. World J. Gastroenterol. 2015, 21, 8527–8540. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dean, D.C.; Hornicek, F.J.; Shi, H.; Duan, Z. RNA sequencing (RNA-Seq) and its application in ovarian cancer. Gynecol. Oncol. 2019, 152, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Sohel, M.M.H. Circulating microRNAs as biomarkers in cancer diagnosis. Life Sci. 2020, 248, 117473. [Google Scholar] [CrossRef]
- Ahsen, M.E.; Chun, Y.; Grishin, A.; Grishina, G.; Stolovitzky, G.; Pandey, G.; Bunyavanich, S. NeTFactor, a framework for identifying transcriptional regulators of gene expression-based biomarkers. Sci. Rep. 2019, 9, 12970. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, E.; Parent, C.; Kee, M.Z.L.; Meaney, M.J. Maternal distress and offspring neurodevelopment: Challenges and opportunities for pre-clinical research models. Front. Hum. Neurosci. 2021, 15. [Google Scholar] [CrossRef]
Author | Year | Tissue Origin | Subject Number | Findings |
---|---|---|---|---|
Chou et al. | 2020 | Neonatal blood collected at time of birth | 20 (11 control; 3 preeclampsia; 6 placental insufficiency) |
|
Terstappen et al. | 2020 | Umbilical vein endothelial cells | 19 (11 FGR; 8 control) |
|
Ranzil et al. * | 2019 | Third trimester placental tissue | 65 (42 control; 23 FGR) |
|
Hannan et al. | 2020 | Maternal blood 2 h prior to delivery in FGR; 28–34 weeks gestation in control | 170 (42 control; 128 preterm FGR) |
|
Awamleh et al. | 2019 | Placental tissue collected within 30 min of delivery | 79 (21 control; 20 preeclampsia; 18 FGR; 20 preeclampsia+FGR) |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, F.-S.; Newton, K.; Wang, P.-S. Quantifying Fetal Reprogramming for Biomarker Development in the Era of High-Throughput Sequencing. Genes 2021, 12, 329. https://doi.org/10.3390/genes12030329
Chou F-S, Newton K, Wang P-S. Quantifying Fetal Reprogramming for Biomarker Development in the Era of High-Throughput Sequencing. Genes. 2021; 12(3):329. https://doi.org/10.3390/genes12030329
Chicago/Turabian StyleChou, Fu-Sheng, Krystel Newton, and Pei-Shan Wang. 2021. "Quantifying Fetal Reprogramming for Biomarker Development in the Era of High-Throughput Sequencing" Genes 12, no. 3: 329. https://doi.org/10.3390/genes12030329
APA StyleChou, F. -S., Newton, K., & Wang, P. -S. (2021). Quantifying Fetal Reprogramming for Biomarker Development in the Era of High-Throughput Sequencing. Genes, 12(3), 329. https://doi.org/10.3390/genes12030329