Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data
Abstract
:1. Introduction
2. Single Gene-by-Gene Testing for Non-Periodical Time Course Data
3. Single Gene-By-Gene Testing for Periodical Time Course Data
4. State-Of-The-Art Batch Detection Methods for Removing Unwanted Biases in Data Integration
5. Coherent Gene-To-Gene Strategies for (Non)-Periodical Time Course Data
5.1. Dynamic Gene Set Analysis Tools
5.2. Dynamic Clustering Tools
5.3. Dynamic Machine Learning Tools
6. Meta Analyses in Cell-Lineage Differentiation and Disease Progressive Models
7. Summary and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Oh, S.; Li, C.; Baldwin, R.L.; Baldwin, R.L.; Song, S.; Liu, F.; Li, R.W. Temporal dynamics in meta longitudinal RNA-Seq data. Sci. Rep. 2019, 9, 763. [Google Scholar] [CrossRef]
- Lin, S.; Lin, Y.; Nery, J.R.; Nery, J.R.; Urich, M.A.; Breschi, A.; Davis, C.A.; Dobin, A.; Zaleski, C.; Beer, M.A.; et al. Comparison of the transcriptional landscapes between human and mouse tissues. Proc. Natl. Acad. Sci. USA 2014, 111, 17224–17229. [Google Scholar] [CrossRef] [Green Version]
- Sudmant, P.H.; Alexis, M.S.; Burge, C.B. Meta-analysis of RNA-seq expression data across species, tissues and studies. Genome Biol. 2015, 16, 287. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, M.; Rooney, M.S.; Mertins, P.; Przybylski, D.; Chevrier, N.; Satija, R.; Rodriguez, E.H.; Fields, A.P.; Schwartz, S.; Raychowdhury, R.; et al. Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens. Science 2015, 347, 1259038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, M.D.; Singh, P.K.; Russell, J.R.; Llimos, G.; Rosario, S.; Rizvi, A.; van den Berg, P.R.; Kirk, J.; Sucheston-Campbell, L.E.; Smiraglia, D.J.; et al. The miR-96 and RARγ signaling axis governs androgen signaling and prostate cancer progression. Oncogene 2019, 38, 421–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabani, M.; Raychowdhury, R.; Jovanovic, M.; Rabani, M.; Raychowdhury, R.; Jovanovic, M.; Rooney, M.; Stumpo, D.J.; Pauli, A.; Hacohen, N.; et al. High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell 2014, 159, 1698–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritchie, S.C.; Watts, S.; Fearnley, L.G.; Holt, K.E.; Abraham, G.; Inouye, M. A Scalable Permutation Approach Reveals Replication and Preservation Patterns of Network Modules in Large Datasets. Cell Syst. 2016, 3, 71–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agniel, D.; Hejblum, B.P. Variance component score test for time-course gene set analysis of longitudinal RNA-seq data. Biostatistics 2017, 18, 589–604. [Google Scholar] [CrossRef] [PubMed]
- Chechik, G.; Koller, D. Timing of gene expression responses to environmental changes. J. Comput. Biol. 2009, 16, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Zoppoli, P.; Morganella, S.; Ceccarelli, M. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinform. 2010, 11, 154. [Google Scholar] [CrossRef] [Green Version]
- Hejblum, B.P.; Skinner, J.; Thiebaut, R. Time-Course Gene Set Analysis for Longitudinal Gene Expression Data. PLoS Comput. Biol. 2015, 11, e1004310. [Google Scholar] [CrossRef]
- Sun, X.; Dalpiaz, D.; Wu, D.; Liu, J.S.; Zhong, W.; Ma, P. Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model. BMC Bioinform. 2016, 17, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, J.D.; Funes, P.; Dowse, H.B.; Hall, J.C. Signal analysis of behavioral and molecular cycles. BMC Neurosci. 2002, 3, 1. [Google Scholar]
- Nueda, M.J.; Tarazona, S.; Conesa, A. Next maSigPro: Updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics 2014, 30, 2598–2602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michna, A.; Braselmann, H.; Selmansberger, M.; Dietz, A.; Hess, J.; Gomolka, M.; Hornhardt, S.; Blüthgen, N.; Zitzelsberger, H.; Unger, K. Natural Cubic Spline Regression Modeling Followed by Dynamic Network Reconstruction for the Identification of Radiation-Sensitivity Gene Association Networks from Time-Course Transcriptome Data. PLoS ONE 2016, 11, e0160791. [Google Scholar] [CrossRef] [PubMed]
- Aijo, T.; Butty, V.; Chen, Z.; Salo, V.; Tripathi, S.; Burge, C.B.; Lahesmaa, R.; Lähdesmäki, H. Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation. Bioinformatics 2014, 30, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Anafi, R.C.; Hughes, M.E.; Kornacker, K.; Hogenesch, J.B. MetaCycle: An integrated R package to evaluate periodicity in large scale data. Bioinformatics 2016, 32, 3351–3353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouquet, J.; Soloski, M.J.; Swei, A.; Cheadle, C.; Federman, S.; Billaud, J.N.; Rebman, A.W.; Kabre, B.; Halpert, R.; Boorgula, M.; et al. Longitudinal Transcriptome Analysis Reveals a Sustained Differential Gene Expression Signature in Patients Treated for Acute Lyme Disease. MBio 2016, 7, e00100-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straube, J.; Gorse, A.D.; Huang, B.E.; Lê Cao, K.A. A Linear Mixed Model Spline Framework for Analysing Time Course ’Omics’ Data. PLoS ONE 2015, 10, e0134540. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Zhou, W.; Breidt, F.J.; Peers, G. Large scale maximum average power multiple inference on time-course count data with application to RNA-seq analysis. Biometrics 2020, 76, 9–22. [Google Scholar] [CrossRef]
- Sander, J.; Schultze, J.L.; Yosef, N. ImpulseDE: Detection of differentially expressed genes in time series data using impulse models. Bioinformatics 2017, 33, 757–759. [Google Scholar] [CrossRef]
- Wichert, S.; Fokianos, K.; Strimmer, K. Identifying periodically expressed transcripts in microarray time series data. Bioinformatics 2004, 20, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Sanavia, T.; Finotello, F.; Di Camillo, B. FunPat: Function-based pattern analysis on RNA-seq time series data. BMC Genomics 2015, 16, S2. [Google Scholar] [CrossRef] [Green Version]
- Simak, M.; Yeang, C.H.; Lu, H.H. Exploring candidate biological functions by Boolean Function Networks for Saccharomyces cerevisiae. PLoS ONE 2017, 12, e0185475. [Google Scholar] [CrossRef] [Green Version]
- Simak, M.; Lu, H.H.; Yang, J.M. Boolean function network analysis of time course liver transcriptome data to reveal novel circadian transcriptional regulators in mammals. J. Chin. Med. Assoc. 2019, 82, 872–880. [Google Scholar] [CrossRef]
- Leng, N.; Li, Y.; McIntosh, B.E.; Nguyen, B.K.; Duffin, B.; Tian, S.; Thomson, J.A.; Dewey, C.N.; Stewart, R.; Kendziorski, C. EBSeq-HMM: A Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments. Bioinformatics 2015, 31, 2614–2622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straume, M. DNA microarray time series analysis: Automated statistical assessment of circadian rhythms in gene expression patterning. Methods Enzymol. 2004, 383, 149–166. [Google Scholar] [PubMed]
- Zhang, J.; Zhu, W.; Wang, Q.; Gu, J.; Huang, L.F.; Sun, X. Differential regulatory network-based quantification and prioritization of key genes underlying cancer drug resistance based on time-course RNA-seq data. PLoS Comput. Biol. 2019, 15, e1007435. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, M.; Guipaud, O.; Milliat, F.; Buard, V.; Micheau, B.; Tarlet, G.; Benderitter, M.; Zehraoui, F.; d’Alché-Buc, F. Detecting time periods of differential gene expression using Gaussian processes: An application to endothelial cells exposed to radiotherapy dose fraction. Bioinformatics 2015, 31, 728–735. [Google Scholar] [CrossRef] [Green Version]
- Glynn, E.F.; Chen, J.; Mushegian, A.R. Detecting periodic patterns in unevenly spaced gene expression time series using Lomb-Scargle periodograms. Bioinformatics 2006, 22, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Deckard, A.; Anafi, R.C.; Hogenesch, J.B.; Haase, S.B.; Harer, J. Design and analysis of large-scale biological rhythm studies: A comparison of algorithms for detecting periodic signals in biological data. Bioinformatics 2013, 29, 3174–3180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acerbi, E.; Vigano, E.; Poidinger, M.; Mortellaro, A.; Zelante, T.; Stella, F. Continuous time Bayesian networks identify Prdm1 as a negative regulator of TH17 cell differentiation in humans. Sci. Rep. 2016, 6, 23128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levi, F.; Schibler, U. Circadian rhythms: Mechanisms and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 593–628. [Google Scholar] [CrossRef]
- Doherty, C.J.; Kay, S.A. Circadian control of global gene expression patterns. Annu. Rev. Genet. 2010, 44, 419–444. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Su, Z. Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation. Bioinformatics 2010, 26, i168–i174. [Google Scholar] [CrossRef] [Green Version]
- Spies, D.; Renz, P.F.; Beyer, T.A.; Ciaudo, C. Comparative analysis of differential gene expression tools for RNA sequencing time course data. Brief Bioinform 2019, 20, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Jäger, M.; Ott, C.E.; Grünhagen, J.; Hecht, J.; Schell, H.; Mundlos, S.; Duda, G.N.; Robinson, P.N.; Lienau, J. Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing. BMC Genomics 2011, 12, 158. [Google Scholar]
- Pauli, A.; Valen, E.; Lin, M.F.; Garber, M.; Vastenhouw, N.L.; Levin, J.Z.; Fan, L.; Sandelin, A.; Rinn, J.L.; Regev, A.; et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 2012, 22, 577–591. [Google Scholar] [CrossRef] [Green Version]
- De Smit, E.; Lukowski, S.W.; Anderson, L.; Senabouth, A.; Dauyey, K.; Song, S.; Wyse, B.; Wheeler, L.; Chen, C.Y.; Cao, K.; et al. Longitudinal expression profiling of CD4+ and CD8+ cells in patients with active to quiescent giant cell arteritis. BMC Med. Genomics 2018, 11, 61. [Google Scholar] [CrossRef] [Green Version]
- White, R.J.; Collins, J.E.; Sealy, I.M.; Wali, N.; Dooley, C.M.; Digby, Z.; Stemple, D.L.; Murphy, D.N.; Billis, K.; Hourlier, T.; et al. A high-resolution mRNA expression time course of embryonic development in zebrafish. Elife 2017, 6, e30860. [Google Scholar] [CrossRef]
- Spellman, P.T.; Sherlock, G.; Zhang, M.Q.; Iyer, V.R.; Anders, K.; Eisen, M.B.; Brown, P.O.; Botstein, D.; Futcher, B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 1998, 9, 3273–3297. [Google Scholar] [CrossRef]
- Hughes, M.; Deharo, L.; Pulivarthy, S.R.; Gu, J.; Hayes, K.; Panda, S.; Hogenesch, J.B. High-resolution time course analysis of gene expression from pituitary. Cold Spring Harb. Symp. Quant. Biol. 2007, 72, 381–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, M.E.; DiTacchio, L.; Hayes, K.R.; Vollmers, C.; Pulivarthy, S.; Baggs, J.E.; Panda, S.; Hogenesch, J.B. Harmonics of circadian gene transcription in mammals. PLoS Genet. 2009, 5, e1000442. [Google Scholar] [CrossRef] [Green Version]
- Nygaard, V.; Rodland, E.A.; Hovig, E. Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. Biostatistics 2016, 17, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.D.; Irizarry, R.A.; Wu, Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 2012, 13, 204–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risso, D.; Ngai, J.; Speed, T.P.; Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 2014, 32, 896–902. [Google Scholar] [CrossRef] [Green Version]
- Bullard, J.H.; Purdom, E.; Hansen, K.D.; Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinform. 2010, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Luecken, M.D.; Theis, F.J. Current best practices in single-cell RNA-seq analysis: A tutorial. Mol. Syst. Biol. 2019, 15, e8746. [Google Scholar] [CrossRef]
- Xiong, B.; Yang, Y.; Fineis, F.R.; Wang, J.P. DegNorm: Normalization of generalized transcript degradation improves accuracy in RNA-seq analysis. Genome Biol. 2019, 20, 75. [Google Scholar] [CrossRef] [Green Version]
- Towfic, F.; Kusko, R.; Zeskind, B. Letter to the Editor response: Nygaard et al. Biostatistics 2017, 18, 197–199. [Google Scholar]
- Leek, J.T.; Scharpf, R.B.; Bravo, H.C.; Simcha, D.; Langmead, B.; Johnson, W.E.; Geman, D.; Baggerly, K.; Irizarry, R.A. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 2010, 11, 733–739. [Google Scholar] [CrossRef] [Green Version]
- Leek, J.T. svaseq: Removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 2014, 42. [Google Scholar] [CrossRef]
- Wang, T.; Johnson, T.S.; Shao, W.; Lu, Z.; Helm, B.R.; Zhang, J.; Huang, K. BERMUDA: A novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes. Genome Biol. 2019, 20, 165. [Google Scholar] [CrossRef] [Green Version]
- Haghverdi, L.; Lun, A.T.L.; Morgan, M.D.; Marioni, J.C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 2018, 36, 421–427. [Google Scholar] [CrossRef]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Li, W.V.; Li, J.J. Modeling and analysis of RNA-seq data: A review from a statistical perspective. Quant. Biol. 2018, 6, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Oytam, Y.; Sobhanmanesh, F.; Duesing, K.; Bowden, J.C.; Osmond-McLeod, M.; Ross, J. Risk-conscious correction of batch effects: Maximising information extraction from high-throughput genomic datasets. BMC Bioinform. 2016, 17, 332. [Google Scholar] [CrossRef] [Green Version]
- Vinh, N.X.; Chetty, M.; Coppel, R.; Wangikar, P.P. GlobalMIT: Learning globally optimal dynamic bayesian network with the mutual information test criterion. Bioinformatics 2011, 27, 2765–2766. [Google Scholar] [CrossRef]
- Hoffman, G.; Roussos, P. dream: Powerful differential expression analysis for repeated measures designs. bioRxiv 2020. [Google Scholar] [CrossRef]
- Vantini, M.; Mannerström Rautio, S.; Ahlfors, H.; Stockinger, B.; Lähdesmäki, H. PairGP: Gaussian process modeling of longitudinal data from paired multi-condition studies. bioRxiv 2020. [Google Scholar] [CrossRef]
- Fischer, D.S.; Theis, F.J.; Yosef, N. Impulse model-based differential expression analysis of time course sequencing data. Nucleic Acids Res. 2018, 46, e119. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, G.E.; Hartley, B.J.; Flaherty, E.; Ladran, I.; Gochman, P.; Ruderfer, D.M.; Stahl, E.A.; Rapoport, J.; Sklar, P.; Brennand, K.J. Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains. Nat. Commun. 2017, 8, 2225. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Chamberlain, C.S.; Vanderby, R.; Stewart, R. TimeMeter assesses temporal gene expression similarity and identifies differentially progressing genes. Nucleic Acids Res. 2020, 48, e51. [Google Scholar] [CrossRef] [Green Version]
- Bhar, A.; Haubrock, M.; Mukhopadhyay, A.; Wingender, E. Multiobjective triclustering of time-series transcriptome data reveals key genes of biological processes. BMC Bioinform. 2015, 16, 200. [Google Scholar] [CrossRef] [Green Version]
- Yosef, N.; Regev, A. Impulse control: Temporal dynamics in gene transcription. Cell 2011, 144, 886–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yosef, N.; Shalek, A.K.; Gaublomme, J.T.; Jin, H.; Lee, Y.; Awasthi, A.; Wu, C.; Karwacz, K.; Xiao, S.; Jorgolli, M.; et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature 2013, 496, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Law, C.W.; Alhamdoosh, M.; Su, S.; Dong, X.; Tian, L.; Smyth, G.K.; Ritchie, M.E. RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Research 2016, 5, 1408. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anders, S.; McCarthy, D.J.; Chen, Y.; Okoniewski, M.; Smyth, G.K.; Huber, W.; Robinson, M.D. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc. 2013, 8, 1765–1786. [Google Scholar] [CrossRef] [PubMed]
- Law, C.W.; Chen, Y.; Shi, W.; Smyth, G.K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014, 15, R29. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacher, R.; Leng, N.; Chu, L.F.; Ni, Z.; Thomson, J.A.; Kendziorski, C.; Stewart, R. Trendy: Segmented regression analysis of expression dynamics in high-throughput ordered profiling experiments. BMC Bioinform. 2018, 19, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, M.E.; Hogenesch, J.B.; Kornacker, K. JTK_CYCLE: An efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J. Biol. Rhythms 2010, 25, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhu, J.; Yu, J.; Zhou, L.; Huang, J.Z.; Zhang, Z. Evaluation of five methods for genome-wide circadian gene identification. J. Biol. Rhythms 2014, 29, 231–242. [Google Scholar] [CrossRef]
- Oh, S.; Song, S.; Dasgupta, N.; Grabowski, G. The analytical landscape of static and temporal dynamics in transcriptome data. Front. Genet. 2014, 5, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, T.; Yi, S.G.; Lee, S.; Lee, S.Y.; Yoo, D.H.; Ahn, J.I.; Lee, Y.S. Statistical tests for identifying differentially expressed genes in time-course microarray experiments. Bioinformatics 2003, 19, 694–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, M.; Stichel, D.; Müller, B.; Merkle, R.; Sticht, C.; Gretz, N.; Klingmüller, U.; Breuhahn, K.; Matthäus, F. TTCA: An R package for the identification of differentially expressed genes in time course microarray data. BMC Bioinform. 2017, 18, 33. [Google Scholar] [CrossRef] [Green Version]
- Androulakis, I.P.; Yang, E.; Almon, R.R. Analysis of time-series gene expression data: Methods, challenges, and opportunities. Annu. Rev. Biomed. Eng. 2007, 9, 205–228. [Google Scholar] [CrossRef] [Green Version]
- Leng, N.; Dawson, J.A.; Thomson, J.A.; Ruotti, V.; Rissman, A.I.; Smits, B.M.; Haag, J.D.; Gould, M.N.; Stewart, R.M.; Kendziorski, C. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 2013, 29, 1035–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topa, H.; Honkela, A. GPrank: An R package for detecting dynamic elements from genome-wide time series. BMC Bioinform. 2018, 19, 367. [Google Scholar] [CrossRef]
- Nguyen, Y.; Nettleton, D. rmRNAseq: Differential expression analysis for repeated-measures RNA-seq data. Bioinformatics 2020, 36, 4432–4439. [Google Scholar] [CrossRef]
- Rockne, R.C.; Branciamore, S.; Qi, J.; Frankhouser, D.E.; O’Meally, D.; Hua, W.K.; Cook, G.; Carnahan, E.; Zhang, L.; Marom, A.; et al. State-Transition Analysis of Time-Sequential Gene Expression Identifies Critical Points That Predict Development of Acute Myeloid Leukemia. Cancer Res. 2020, 80, 3157–3169. [Google Scholar] [CrossRef]
- Stegle, O.; Denby, K.J.; Cooke, E.J.; Wild, D.L.; Ghahramani, Z.; Borgwardt, K.M. A robust Bayesian two-sample test for detecting intervals of differential gene expression in microarray time series. J. Comput. Biol. 2010, 17, 355–367. [Google Scholar] [CrossRef]
- Hwang, J.T.; Liu, P. Optimal tests shrinking both means and variances applicable to microarray data analysis. Stat. Appl. Genet. Mol. Biol. 2010, 9, Article36. [Google Scholar] [CrossRef]
- Conard, A.; Goodman, N.; Hu, Y.; Perrimon, N.; Singh, R.; Lawrence, C.; Larschan, E. TIMEOR: A web-based tool to uncover temporal regulatory mechanisms from multi-omics data. bioRxiv 2020. [Google Scholar] [CrossRef]
- Wang, M.; Beckmann, N.D.; Roussos, P.; Wang, E.; Zhou, X.; Wang, Q.; Ming, C.; Neff, R.; Ma, W.; Fullard, J.F.; et al. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer’s disease. Sci. Data 2018, 5, 180185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiziev, P.; Ernst, J. ChromTime: Modeling spatio-temporal dynamics of chromatin marks. Genome Biol. 2018, 19, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaham, U.; Stanton, K.P.; Zhao, J.; Li, H.; Raddassi, K.; Montgomery, R.; Kluger, Y. Removal of batch effects using distribution-matching residual networks. Bioinformatics 2017, 33, 2539–2546. [Google Scholar] [CrossRef] [Green Version]
- Reese, S.E.; Archer, K.J.; Therneau, T.M.; Atkinson, E.J.; Vachon, C.M.; De Andrade, M.; Kocher, J.P.A.; Eckel-Passow, J.E. A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal component analysis. Bioinformatics 2013, 29, 2877–2883. [Google Scholar] [CrossRef] [Green Version]
- Leek, J.T. Asymptotic conditional singular value decomposition for high-dimensional genomic data. Biometrics 2011, 67, 344–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Holik, A.Z.; Su, S.; Jansz, N.; Chen, K.; Leong, H.S.; Blewitt, M.E.; Asselin-Labat, M.L.; Smyth, G.K.; Ritchie, M.E. Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res. 2015, 43, e97. [Google Scholar] [CrossRef]
- Conesa, A.; Nueda, M.J.; Ferrer, A.; Talón, M. maSigPro: A method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 2006, 22, 1096–1102. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Hagood, J.S.; Ambalavanan, N.; Chhabra, D.; Nicola, T.; Yan, X.; Lal, C.V.; Hagood, J.S.; Kaminski, N.; Bar-Joseph, Z.; et al. iDREM: Interactive visualization of dynamic regulatory networks. PLoS Comput. Biol. 2018, 14, e1006019. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, Y. Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks. Sci. Rep. 2015, 5, 17841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Kelemen, A. Dynamic modeling and network approaches for omics time course data: Overview of computational approaches and applications. Brief. Bioinform. 2018, 19, 1051–1068. [Google Scholar] [CrossRef] [PubMed]
- Rimella, L.; Whiteley, N. Dynamic Bayesian Neural Networks. arXiv 2020, arXiv:2004.06963v2. [Google Scholar]
- Ramoni, M.F.; Sebastiani, P.; Kohane, I.S. Cluster analysis of gene expression dynamics. Proc. Natl. Acad. Sci. USA 2002, 99, 9121–9126. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Kelemen, A. Bayesian state space models for dynamic genetic network construction across multiple tissues. Stat. Appl. Genet. Mol. Biol. 2016, 15, 273–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchison, A.L.; Maienschein-Cline, M.; Chiang, A.H.; Tabei, S.A.; Gudjonson, H.; Bahroos, N.; Allada, R.; Dinner, A.R. Improved statistical methods enable greater sensitivity in rhythm detection for genome-wide data. PLoS Comput. Biol. 2015, 11, e1004094. [Google Scholar] [CrossRef] [Green Version]
- Singer, J.M.; Hughey, J.J. LimoRhyde: A Flexible Approach for Differential Analysis of Rhythmic Transcriptome Data. J. Biol. Rhythms 2019, 34, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Thaben, P.F.; Westermark, P.O. Detecting rhythms in time series with RAIN. J. Biol. Rhythm. 2014, 29, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Thaben, P.F.; Westermark, P.O. Differential rhythmicity: Detecting altered rhythmicity in biological data. Bioinformatics 2016, 32, 2800–2808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.E.; Liu, A.C.; Hirota, T.; Miraglia, L.J.; Welch, G.; Pongsawakul, P.Y.; Liu, X.; Atwood, A.; Huss III, J.W.; Janes, J.; et al. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell 2009, 139, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, D.; Tsai, Y.H.; Gomez, N.; Jha, D.K.; Davis, I.; Wang, Z. A high-resolution transcriptome map of cell cycle reveals novel connections between periodic genes and cancer. Cell Res. 2016, 26, 946–962. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, M.L.; Sherlock, G.; Saldanha, A.J.; Murray, J.I.; Ball, C.A.; Alexander, K.E.; Matese, J.C.; Perou, C.M.; Hurt, M.M.; Brown, P.O.; et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 2002, 13, 1977–2000. [Google Scholar] [CrossRef] [PubMed]
- Cho, R.J.; Huang, M.; Campbell, M.J.; Dong, H.; Steinmetz, L.; Sapinoso, L.; Hampton, G.; Elledge, S.J.; Davis, R.W.; Lockhart, D.J. Transcriptional regulation and function during the human cell cycle. Nat. Genet. 2001, 27, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Hurley, J.M.; Dasgupta, A.; Emerson, J.M.; Zhou, X.; Ringelberg, C.S.; Knabe, N.; Lipzen, A.M.; Lindquist, E.A.; Daum, C.G.; Barry, K.W. Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential. Proc. Natl. Acad. Sci. USA 2014, 111, 16995–17002. [Google Scholar] [CrossRef] [Green Version]
- Ko, C.H.; Takahashi, J.S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 2006, 15, R271–R277. [Google Scholar] [CrossRef]
- Hastings, M.H.; Reddy, A.B.; Maywood, E.S. A clockwork web: Circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 2003, 4, 649–661. [Google Scholar] [CrossRef]
- Buettner, F.; Pratanwanich, N.; McCarthy, D.J.; Marioni, J.C.; Stegle, O. f-scLVM: Scalable and versatile factor analysis for single-cell RNA-seq. Genome Biol. 2017, 18, 212. [Google Scholar] [CrossRef] [Green Version]
- Blasi, T.; Buettner, F.; Strasser, M.K.; Marr, C.; Theis, F.J. cgCorrect: A method to correct for confounding cell-cell variation due to cell growth in single-cell transcriptomics. Phys. Biol. 2017, 14, 036001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nueda, M.J.; Ferrer, A.; Conesa, A. ARSyN: A method for the identification and removal of systematic noise in multifactorial time course microarray experiments. Biostatistics 2012, 13, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Buettner, F.; Natarajan, K.N.; Casale, F.P.; Proserpio, V.; Scialdone, A.; Theis, F.J.; Teichmann, S.A.; Marioni, J.C.; Stegle, O. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 2015, 33, 155–160. [Google Scholar] [CrossRef]
- Smilde, A.K.; Jansen, J.J.; Hoefsloot, H.C.; Lamers, R.J.A.; Van Der Greef, J.; Timmerman, M.E. ANOVA-simultaneous component analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics 2005, 21, 3043–3048. [Google Scholar] [CrossRef]
- McDowell, I.C.; Manandhar, D.; Vockley, C.M.; Schmid, A.K.; Reddy, T.E.; Engelhardt, B.E. Clustering gene expression time series data using an infinite Gaussian process mixture model. PLoS Comput. Biol. 2018, 14, e1005896. [Google Scholar] [CrossRef] [PubMed]
- Chandereng, T.; Gitter, A. Lag penalized weighted correlation for time series clustering. BMC Bioinform. 2020, 21, 21. [Google Scholar] [CrossRef] [Green Version]
- Huynh-Thu, V.A.; Geurts, P. dynGENIE3: Dynamical GENIE3 for the inference of gene networks from time series expression data. Sci. Rep. 2018, 8, 3384. [Google Scholar] [CrossRef] [Green Version]
- Aalto, A.; Viitasaari, L.; Ilmonen, P.; Mombaerts, L.; Gonçalves, J. Gene regulatory network inference from sparsely sampled noisy data. Nat. Commun. 2020, 11, 3493. [Google Scholar] [CrossRef]
- Lu, J.; Dumitrascu, B.; McDowell, I.C.; Jo, B.; Barrera, A.; Hong, L.K.; Leichter, S.M.; Reddy, T.E.; Engelhardt, B.E. Causal Network Inference from Gene Transcriptional Time Series Response to Glucocorticoids. bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Medvedovic, M.; Yeung, K.Y.; Bumgarner, R.E. Bayesian mixture model based clustering of replicated microarray data. Bioinformatics 2004, 20, 1222–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahl, D. Model-Based Clustering for Expression Data via a Dirichlet Process Mixture Model. Bayesian Inference for Gene Expression and Proteomics; Cambridge University Press: Cambridge, UK, 2006; pp. 201–218. [Google Scholar]
- Ernst, J.; Nau, G.J.; Bar-Joseph, Z. Clustering short time series gene expression data. Bioinformatics 2005, 21 (Suppl. 1), i159–i168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Bushel, P.R. EPIG-Seq: Extracting patterns and identifying co-expressed genes from RNA-Seq data. BMC Genom. 2016, 17, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moller-Levet, C.; Klawonn, F.; Cho, K.-H.; Wolkenhauer, O. Fuzzy Clustering of Short Time-Series and Unevenly Distributed Sampling Points. In International Symposium on Intelligent Data Analysis; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2016; pp. 330–340. [Google Scholar]
- Gu, J.; Liu, J.S. Bayesian biclustering of gene expression data. BMC Genom. 2008, 9 (Suppl. 1), S4. [Google Scholar] [CrossRef] [Green Version]
- Hendriquez, R.; Madeira, S. Triclustering algorithmns for three-dimensional data analysis: A comprehensive survey. ACM Comput.Surv. 2018, 43, 1–43. [Google Scholar]
- Jung, I.; Jo, K.; Kang, H.; Ahn, H.; Yu, Y.; Kim, S. TimesVector: A vectorized clustering approach to the analysis of time series transcriptome data from multiple phenotypes. Bioinformatics 2017, 33, 3827–3835. [Google Scholar] [CrossRef]
- Sima, C.; Hua, J.; Jung, S. Inference of gene regulatory networks using time-series data: A survey. Curr. Genom. 2009, 10, 416–429. [Google Scholar] [CrossRef] [Green Version]
- Margolin, A.A.; Nemenman, I.; Basso, K.; Wiggins, C.; Stolovitzky, G.; Dalla Favera, R.; Califano, A. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 2006, 7 (Suppl. 1), S7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Gu, J.; Wang, X.; Jung, J.G.; Wang, T.L.; Hilakivi-Clarke, L.; Clarke, R.; Xuan, J. CRNET: An efficient sampling approach to infer functional regulatory networks by integrating large-scale ChIP-seq and time-course RNA-seq data. Bioinformatics 2018, 34, 1733–1740. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Hu, Y.; Wu, F.; Leung, R.W.T.; Qin, J. Integration of single-cell multi-omics for gene regulatory network inference. Comput.Struct. Biotechnol. J. 2020, 18, 1925–1938. [Google Scholar] [CrossRef]
- Nguyen, H.; Tran, D.; Tran, B.; Pehlivan, B.; Nguyen, T. A comprehensive survey of regulatory network inference methods using single-cell RNA sequencing data. Brief Bioinform. 2020. [Google Scholar] [CrossRef]
- Class, C.A.; Ha, M.J.; Baladandayuthapani, V.; Do, K.A. iDINGO-integrative differential network analysis in genomics with Shiny application. Bioinformatics 2018, 34, 1243–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, M.J.; Baladandayuthapani, V.; Do, K.A. DINGO: Differential network analysis in genomics. Bioinformatics 2015, 31, 3413–3420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talukder, A.; Barham, C.; Li, X.; Hu, H. Interpretation of deel learning in genomics and epigenomics. Briefings Bioinform. 2020. [Google Scholar] [CrossRef]
- Grün, F.; Rupprecht, C.; Navab, N.E.A. A taxonomy and library for visualiying learned features in convolutional neural networks. arXiv 2016, arXiv:1606.0775. [Google Scholar]
- Singh, R.; Lanchantin, J.; Sekhon, A.; Qi, Y. Attend and Predict: Understanding Geen Regulation by Selective Attention on Chromatin; Advances in Neural Information Processing Systems (NIPS): Long Beach, CA, USA, 2017; pp. 6785–6795. [Google Scholar]
- Eetemadi, A.; Tagkopoulos, I. Genetic Neural Networks: An artificial neural network architecture for capturing gene expression relationships. Bioinformatics 2019, 35, 2226–2234. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Bao, W.; Huang, D.S. Recurrent Neural Network for Predicting Transcription Factor Binding Sites. Sci. Rep. 2018, 8, 15270. [Google Scholar] [CrossRef] [Green Version]
- Lara-Astiaso, D.; Weiner, A.; Lorenzo-Vivas, E.; Zaretsky, I.; Jaitin, D.A.; David, E.; Keren-Shaul, H.; Mildner, A.; Winter, D.; Jung, S. Immunogenetics. Chromatin state dynamics during blood formation. Science 2014, 345, 943–949. [Google Scholar] [CrossRef] [Green Version]
- Weiner, A.; Hsieh, T.H.; Appleboim, A.; Chen, H.V.; Rahat, A.; Amit, I.; Rando, O.J.; Friedman, N. High-resolution chromatin dynamics during a yeast stress response. Mol. Cell. 2015, 58, 371–386. [Google Scholar] [CrossRef] [Green Version]
- Huet, S.; Sujobert, P.; Salles, G. From genetics to the clinic: A translational perspective on follicular lymphoma. Nat. Rev. Cancer 2018, 18, 224–239. [Google Scholar] [CrossRef]
- Mills, J.D.; Nalpathamkalam, T.; Jacobs, H.I.; Janitz, C.; Merico, D.; Hu, P.; Janitz, M. RNA-Seq analysis of the parietal cortex in Alzheimer’s disease reveals alternatively spliced isoforms related to lipid metabolism. Neurosci. Lett. 2013, 536, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Klein, H.U.; McCabe, C.; Gjoneska, E.; Sullivan, S.E.; Kaskow, B.J.; Tang, A.; Smith, R.V.; Xu, J.; Pfenning, A.R.; Bernstein, B.E. Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains. Nat. Neurosci. 2019, 22, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Nativio, R.; Donahue, G.; Berson, A.; Lan, Y.; Amlie-Wolf, A.; Tuzer, F.; Toledo, J.B.; Gosai, S.J.; Gregory, B.D.; Torres, C. Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nat. Neurosci. 2018, 21, 497–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, J.D.; Janitz, M. Alternative splicing of mRNA in the molecular pathology of neurodegenerative diseases. Neurobiol. Aging 2012, 33, 1012.e11–1012.e24. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Huang, S.C.; Wise, A.; Castanon, R.; Nery, J.R.; Chen, H.; Watanabe, M.; Thomas, J.; Bar-Joseph, Z.; Ecker, J.R. A transcription factor hierarchy defines an environmental stress response network. Science 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, G. On the Evaluation of Module Preservation. Cell Syst. 2016, 3, 17–19. [Google Scholar] [CrossRef] [Green Version]
Tools | Features/Functionalities | # of Conditions Per Time | Experimental Designs (Data Type) | Parameters Used in the Study: T(time), R(rep), C(cond) | Compared Tools in the Study |
---|---|---|---|---|---|
Next maSigpro [14] | time-based polynomial regression; step-wise best fitted model selection; differential splicing events at isoform levels | w/o condition or w/ two or more | crorss-sectional time course, i.e., non-longitudinally measured samples in single-(one-), two-, and multi-series of time course; balanced/unbalanced time course; normalized data for input | T(4,6), R(2,3,5), C(2) | maSigPro-LM, edgeR |
DyNB [16] | non-parametric gaussian process with metropolis hasting; | w/ two conditions | longitudinally measured two-series time course; balanced design | T(5), R(3), C(2) | DESeq |
EBSeq-HMM [26,80] | auto-regressive hidden Markov approach; estimates of hidden paths DE (up/down) and EE | w/o condition | longitudinally measured single-series time course; balanced/unbalanced time course at least two replicates per time | T(5,7), R(3), C(NA) | EBSeq, DESeq2, edgeR, voom, maSigPro |
Ngsp [29] | non-stationary gaussian process in Bayesian | w/ two conditions | longitudinally measured two-series time course; qPCR time course | T((9), R(3),C(2) | GP two sample |
Lmms [19] | linear mixed model splines; unified strategy of pre-filtering, gene-wise testing, and static clustering | w/o condition or w/ two conditions | one or two-series time course; microarray and proteomics | T(4,6,), R(2,5,),C(2) | limma for array |
timeSeq [12] | negative binomial mixed effects model with time, condition, and interaction terms; non-parallel vs parallel temporal patterns | w/ two conditions | two-series time course; balanced/unbalanced time course; not handling the variability for replicates | T(6,9), R(1,3), C(2) | MLL-ratio |
splineTimeR [15] | natural cubic spline regression; unified strategy between gene-wise testing and gene association network | w/ two conditions | two-series time course; balanced design; replicates are not required | T(7), R(1), C(2) | BETR for array |
ImpluseDE2 [21,62] | iterative optimization clustering; the parameters of initial peak and steady state, temporal transitions, and slopes for transitions based on the mean expression profile within each cluster | w/o condition or w/ two conditions | longitudinally measured single- or two series time course, e.g., early on-set perturbated dynamic alterations compared to control group; RNA-Seq and Chip-Seq dynamics | T(6,7,10,23), R(3), C(1,2) | DESeq2, DESea2splines, edgeR, limma, ImpulseDE |
Trendy [73] | segmented regression model w/ breakpoint in Bayesian information criterion; the estimates of breakpoints for DE (up/down) vs EE (steady) | w/o condition | longitudinally measured sing-series time course; replicates are not required; microarray and RNA-Seq dynamics | T(17, 25, 48, 50), R(3), C(NA) | EB-Seq, funPat |
AR [1] | auto-regressive model based on MCMC | w/o condition | longitudinally measured single-series time course; balanced design; replicates are not required | T(2,5), R(8), C(NA) | Next maSigPro-GLM, DESEq2, edgeR |
MAPTest [20] | maximum average power testings; k component latent mixture gaussian negative binomial model in a finite structure | w/ two conditions | longitudinally measured two series time course; at least two replicates and three time points per condition are needed; balanced design | T(4,6,10), R(3,6), C(2) | DESeq2, splineTimeR, Next maSigPro-GLM, ImpluseDE |
TimeMeter [64] | dynamic time warping algorithm; metrices for similar temporal patterns; progression advance scores | w/o conditions | comparative method for two single-series time course data; no parameters for dispersion and biological replicates | T(9,16,26), R(NA), C(NA) | |
PairGP [61] | non-stationary Gaussain process; exponentiated quadratic kernel; | w/ two ore more conditions | longitudinal time course with paired multi-group conditions | T(9),R(3), C(2,3,4) | base model w/o pairing effect |
GPrank [81] | Gaussian process; radial basis kernel; logarithm of Bayes Factor for two models | w/o condition | balanced/unbalanced single-series time course | T(10), R(0–3), C(NA) | |
Dream [60] | linear mixed model; limma/voom-incorporated Bioconductor package; multiple random effects: Kenward-Roger approximation for small samples; | w/ two or more conditions | longitudinally meausred multi-series of time course data | R(2–4) Individuals(4–50) | DESeq2, limm/voom, macau2 |
rmRNAseq [82] | genelized linear model; voom-incorporated R package; continuous autoregressive correlation; parametric bootstrap; residual maximum likelihood; | w/ two or more conditions | longitudinally measured multi-series of time course data | T(4), R(4), C(2) | edgeR, DESeq2, splineTimeR, ImpulseDE2 |
Comparative study [36] | comparison of dynamic gene-wise testing tools | data sets w/ two conditions | next maSigpro, DyNB, EBSeq-HMM, ngsp, lmms, splineTimeR, ImpulseDE2, | T( >=4), R(3), C(2) |
Dynamic Tools in Periodicity | Method | Exeternal Factors at a Time | Experimental Design | Competiting Methods |
---|---|---|---|---|
JTK_CYCLE [74] | Jonckheere_Terpstra Kendal’s statistics | w/o condition | single series periodical time course | COSOPT, Fisher’s G test |
MetaCycle [17] | meta tool among ARSER, JTK_CYCLE, LS | w/o condition | single series periodical time course | |
RAIN [102] | umbrella alternatives for steep rise and slow falling, or vice versa | w/o condition | single series periodical time course | JTK_CYCLE |
DODR [103] | parametric and non-parametric non-gaussian measurement for noise | w/ two conditions | two series periodical time course | |
LimoRhyde [101] | cosinor regression | w/ two or more conditions | two or multi-series time course | DODR |
Tools | Features |
---|---|
ARSyN [113] | microarray dynamic time course data; batch-free expression data after removal of unwanted biases; both known and unknown batch factors; multiple batch factors |
Combat-Seq/Combat [55] | microarray and RNA-Seq static and dynamic time course data; known batch factors; batch-free data after removal of unwanted biases; multiple batch sources |
RUV-Seq [46] | RNA-Seq static data; both known and unknown batch factors; estimates of batch effects; user-defined k value for hidden factors |
svaseq/sva [52,91] | microarray and RNA-Seq static data; both known and unknown batch factors: estimates of batch effects |
gPCA [90] | microarray and RNA-Seq static data with one known batch factor; |
Harman [58] | microarray and RNA-Seq static and dynamic data w/ one known batch factor |
MMD-ResNet [89] | static and dynamic RNA-Seq or other types of omics data w/ both known and unknown batch source |
Coherent Gene-to-Gene Dynamic Methods | Method | Exeternal Factors at a Time | Experimental Design | Competiting Methods |
---|---|---|---|---|
Tcgsaseq [8,11] | variance component score; linear mixed effects model; permutation test | w/o condition | single series of longitudinally measured time course | voom-Roast, Roast, edgeR-Roast |
FunPat [23] | best fitted model selection for each gene; linear model-based clustering; integration with the given gene ontology and pathway information | w/o condition | single- or multi-series of time course | edgR, maSigPro, FPCA; HC, k-means, MBC |
DPGP [116] | inferene of time-varying trajectories; Dirichlet prior mixture models; Gaussian process | w/o condition | single series of time course | HC, k-means, Mclust, SplineCluster, GIMM, BHC |
LPWC [117] | lag-penalized weighted correlation; Gaussian penalty score; | w/ two conditions | single-series of time course | HC, k-means, DTW w/ HC, STS w/ HC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, V.-K.S.; Li, R.W. Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data. Genes 2021, 12, 352. https://doi.org/10.3390/genes12030352
Oh V-KS, Li RW. Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data. Genes. 2021; 12(3):352. https://doi.org/10.3390/genes12030352
Chicago/Turabian StyleOh, Vera-Khlara S., and Robert W. Li. 2021. "Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data" Genes 12, no. 3: 352. https://doi.org/10.3390/genes12030352
APA StyleOh, V. -K. S., & Li, R. W. (2021). Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data. Genes, 12(3), 352. https://doi.org/10.3390/genes12030352