Spt4 Promotes Pol I Processivity and Transcription Elongation
Abstract
:1. Introduction
2. Methods
2.1. NET-seq Experiments
2.2. Data Analysis
3. Results
3.1. NET-Seq Experiments Reproducibly Determine the Occupancy of Pol I on the rDNA Template during Transcription
3.2. The Occupancy Pattern of Pol I during Transcription Differs in WT and spt4△ Yeast Strains
3.3. Deletion of SPT4 Results in Sequence-Specific Effects on Transcription by Pol I
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herr, A.J.; Jensen, M.B.; Dalmay, T.; Baulcombe, D.C. RNA Polymerase IV Directs Silencing of Endogenous DNA. Science 2005, 308, 118–120. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Law, J.A. RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II’s rules. Curr. Opin. Plant Biol. 2015, 27, 154–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodfellow, S.J.; Zomerdijk, J.C.B.M. Basic Mechanisms in RNA Polymerase I Transcription of the Ribosomal RNA Genes. Cholest. Bind. Cholest. Transp. Proteins 2013, 61, 211–236. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Najmi, S.M.; Schneider, D.A. Transcription factors that influence RNA polymerases I and II: To what extent is mechanism of action conserved? Biochim. Biophys. Acta BBA Bioenergy 2017, 1860, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Paule, M.R. Survey and Summary Transcription by RNA polymerases I and III. Nucleic Acids Res. 2000, 28, 1283–1298. [Google Scholar] [CrossRef] [Green Version]
- Orphanides, G.; Lagrange, T.; Reinberg, D. The general transcription factors of RNA polymerase II. Genes Dev. 1996, 10, 2657–2683. [Google Scholar] [CrossRef] [Green Version]
- Turowski, T.W.; Tollervey, D. Transcription by RNA polymerase III: Insights into mechanism and regulation. Biochem. Soc. Trans. 2016, 44, 1367–1375. [Google Scholar] [CrossRef]
- Han, Y.; He, Y. Eukaryotic transcription initiation machinery visualized at molecular level. Transcription 2016, 7, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Kwak, H.; Lis, J.T. Control of Transcriptional Elongation. Annu. Rev. Genet. 2013, 47, 483–508. [Google Scholar] [CrossRef] [Green Version]
- Porrua, O.; Libri, D. Transcription termination and the control of the transcriptome: Why, where and how to stop. Nat. Rev. Mol. Cell Biol. 2015, 16, 190–202. [Google Scholar] [CrossRef]
- Friedrich, J.K.; Panov, K.; Cabart, P.; Russell, J.; Zomerdijk, J.C.B.M. TBP-TAF Complex SL1 Directs RNA Polymerase I Pre-initiation Complex Formation and Stabilizes Upstream Binding Factor at the rDNA Promoter. J. Biol. Chem. 2005, 280, 29551–29558. [Google Scholar] [CrossRef] [Green Version]
- Nikolov, D.B.; Burley, S.K. RNA polymerase II transcription initiation: A structural view. Proc. Natl. Acad. Sci. USA 1997, 94, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, R.; Rivetti, C.; Acker, J.; Dieci, G. Distinct roles of transcription factors TFIIIB and TFIIIC in RNA polymerase III transcription reinitiation. Proc. Natl. Acad. Sci. USA 2004, 101, 13442–13447. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, A.C.; Sullivan, G.J.; McStay, B. UBF Binding In Vivo Is Not Restricted to Regulatory Sequences within the Vertebrate Ribosomal DNA Repeat. Mol. Cell. Biol. 2002, 22, 657–658. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.X.; Smith, E.R.; Shilatifard, A. Born to run: Control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 2018, 19, 464–478. [Google Scholar] [CrossRef] [PubMed]
- Burnol, A.-F.; Margottin, F.; Huet, J.; Almouzni, G.; Prioleau, M.-N.; Méchali, M.; Sentenac, A. TFIIIC relieves repression of U6 snRNA transcription by chromatin. Nat. Cell Biol. 1993, 362, 475–477. [Google Scholar] [CrossRef]
- Jansa, P.; Grummt, I. Mechanism of transcription termination: PTRF interacts with the largest subunit of RNA polymerase I and dissociates paused transcription complexes from yeast and mouse. Mol. Genet. Genom. 1999, 262, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Kuehner, J.N.; Pearson, E.L.; Moore, C. Unravelling the means to an end: RNA polymerase II transcription termination. Nat. Rev. Mol. Cell Biol. 2011, 12, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Arimbasseri, A.G.; Rijal, K.; Maraia, R.J. Transcription termination by the eukaryotic RNA polymerase III. Biochim. Biophys. Acta BBA Bioenergy 2013, 1829, 318–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cormack, B.P.; Struhl, K. The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell 1992, 69, 685–696. [Google Scholar] [CrossRef]
- Winston, F.; Chaleff, D.T.; Valent, B.; Fink, G.R. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 1984, 107, 179–197. [Google Scholar] [CrossRef]
- Wada, T.; Takagi, T.; Yamaguchi, Y.; Ferdous, A.; Imai, T.; Hirose, S.; Sugimoto, S.; Yano, K.; Hartzog, G.A.; Winston, F.; et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 1998, 12, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Hartzog, G.A.; Wada, T.; Handa, H.; Winston, F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 1998, 12, 357–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winston, F.; Carlson, M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 1992, 8, 387–391. [Google Scholar] [CrossRef]
- Hartzog, G.A.; Fu, J. The Spt4–Spt5 complex: A multi-faceted regulator of transcription elongation. Biochim. Biophys. Acta BBA Bioenergy 2013, 1829, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Core, L.J.; Waterfall, J.J.; Gilchrist, D.A.; Fargo, D.C.; Kwak, H.; Adelman, K.; Lis, J.T. Defining the Status of RNA Polymerase at Promoters. Cell Rep. 2012, 2, 1025–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crickard, J.B.; Lee, J.; Lee, T.-H.; Reese, J.C. The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome. Nucleic Acids Res. 2017, 45, 6362–6374. [Google Scholar] [CrossRef] [Green Version]
- Blythe, A.J.; Yazar-Klosinski, B.; Webster, M.W.; Chen, E.; Vandevenne, M.; Bendak, K.; Mackay, J.P.; Hartzog, G.A.; Vrielink, A. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein. Protein Sci. 2016, 25, 1710–1721. [Google Scholar] [CrossRef] [Green Version]
- Klein, B.J.; Bose, D.; Baker, K.J.; Yusoff, Z.M.; Zhang, X.; Murakami, K.S. RNA polymerase and transcription elongation factor Spt4/5 complex structure. Proc. Natl. Acad. Sci. USA 2010, 108, 546–550. [Google Scholar] [CrossRef] [Green Version]
- Schneider, D.A.; French, S.L.; Osheim, Y.N.; Bailey, A.O.; Vu, L.; Dodd, J.; Yates, J.R.; Beyer, A.L.; Nomura, M. RNA polymerase II elongation factors Spt4p and Spt5p play roles in transcription elongation by RNA polymerase I and rRNA processing. Proc. Natl. Acad. Sci. USA 2006, 103, 12707–12712. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.J.; Sikes, M.L.; Zhang, Y.; French, S.L.; Salgia, S.; Beyer, A.L.; Nomura, M.; Schneider, D.A. The Transcription Elongation Factor Spt5 Influences Transcription by RNA Polymerase I Positively and Negatively. J. Biol. Chem. 2011, 286, 18816–18824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Churchman, L.S.; Weissman, J.S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nat. Cell Biol. 2011, 469, 368–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, A.M.; Engel, K.L.; Giles, K.E.; Petit, C.M.; Schneider, D.A. NETSeq reveals heterogeneous nucleotide incorporation by RNA polymerase I. Proc. Natl. Acad. Sci. USA 2018, 115, E11633–E11641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scull, C.E.; Clarke, A.M.; Lucius, A.L.; Schneider, D.A. Downstream sequence-dependent RNA cleavage and pausing by RNA polymerase I. J. Biol. Chem. 2020, 295, 1288–1299. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Isolation of DNA Fragments from Polyacrylamide Gels by the Crush and Soak Method. Cold Spring Harb. Protoc. 2006, 2006. [Google Scholar] [CrossRef] [Green Version]
- Pertea, G. Fqtrim: Filtering and Trimming Next Generation Sequencing Reads; Johns Hopkins University CCB: Baltimore, MD, USA, 2018; Available online: https://ccb.jhu.edu/software/fqtrim/ (accessed on 14 July 2020).
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics: Cambridge, UK, 2010. [Google Scholar]
- Engel, S.R.; Dietrich, F.S.; Fisk, D.G.; Binkley, G.; Balakrishnan, R.; Costanzo, M.C.; Dwight, S.S.; Hitz, B.C.; Karra, K.; Nash, R.S.; et al. The Reference Genome Sequence ofSaccharomyces cerevisiae: Then and Now. G3 Genes Genomes Genet. 2014, 4, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [Green Version]
- Wagih, O. ggseqlogo: A versatile R package for drawing sequence logos. Bioinformatics 2017, 33, 3645–3647. [Google Scholar] [CrossRef] [Green Version]
- Nettling, M.; Treutler, H.; Grau, J.; Keilwagen, J.; Posch, S.; Grosse, I. DiffLogo: A comparative visualization of sequence motifs. BMC Bioinform. 2015, 16, 387. [Google Scholar] [CrossRef]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Rondón, A.G.; García-Rubio, M.; González-Barrera, S.; Aguilera, A. Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO J. 2003, 22, 612–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turowski, T.W.; Petfalski, E.; Goddard, B.D.; French, S.L.; Helwak, A.; Tollervey, D. Nascent Transcript Folding Plays a Major Role in Determining RNA Polymerase Elongation Rates. Mol. Cell 2020, 79, 488–503.e11. [Google Scholar] [CrossRef] [PubMed]
- Ehara, H.; Kujirai, T.; Fujino, Y.; Shirouzu, M.; Kurumizaka, H.; Sekine, S.-I. Structural insight into nucleosome transcription by RNA polymerase II with elongation factors. Science 2019, 363, 744–747. [Google Scholar] [CrossRef]
- Merz, K.; Hondele, M.; Goetze, H.; Gmelch, K.; Stoeckl, U.; Griesenbeck, J. Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. Genes Dev. 2008, 22, 1190–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, H.S.; Kawauchi, J.; Braglia, P.; Alen, C.M.; Kent, N.A.; Proudfoot, N.J. RNA polymerase I in yeast transcribes dynamic nucleosomal rDNA. Nat. Struct. Mol. Biol. 2007, 14, 123–130. [Google Scholar] [CrossRef]
- Adelman, K.; Lis, J.T. Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans. Nat. Rev. Genet. 2012, 13, 720–731. [Google Scholar] [CrossRef] [Green Version]
- Saunders, A.; Core, L.J.; Lis, J.T. Breaking barriers to transcription elongation. Nat. Rev. Mol. Cell Biol. 2006, 7, 557–567. [Google Scholar] [CrossRef]
Strain | Description |
---|---|
Wild-Type (WT) | ade2-1 ura3-1 trp1-1 leu2-3, 112 his3-11,15 can1-100 RPA135-(HA)3- (His)7::TRP1mx6 rpa190Δ::HIS3Mx6 carrying pRS315-RPA190 |
spt4△ | ade2-1 ura3-1 trp1-1 leu2-3, 112 his3-11,15 can1-100 RPA135-(HA)3-(his)7::URA3mx6 spt4△::HIS3 |
Rep. | Forward | Reverse |
---|---|---|
1 | CAAGCAGAAGACGGCATACGAGATcagcctcgTCCGACGATCATTGATGGTGCC | AATGATACGGCGACCACCGAGATCTACACtagatcgcCGTCTCTTCTGCGGATGACTCG |
2 | CAAGCAGAAGACGGCATACGAGATtgcctcttTCCGACGATCATTGATGGTGCC | AATGATACGGCGACCACCGAGATCTACACtagatcgcCGTCTCTTCTGCGGATGACTCG |
3 | CAAGCAGAAGACGGCATACGAGATtcctctacTCCGACGATCATTGATGGTGCC | AATGATACGGCGACCACCGAGATCTACACtagatcgcCGTCTCTTCTGCGGATGACTCG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huffines, A.K.; Edwards, Y.J.K.; Schneider, D.A. Spt4 Promotes Pol I Processivity and Transcription Elongation. Genes 2021, 12, 413. https://doi.org/10.3390/genes12030413
Huffines AK, Edwards YJK, Schneider DA. Spt4 Promotes Pol I Processivity and Transcription Elongation. Genes. 2021; 12(3):413. https://doi.org/10.3390/genes12030413
Chicago/Turabian StyleHuffines, Abigail K., Yvonne J. K. Edwards, and David A. Schneider. 2021. "Spt4 Promotes Pol I Processivity and Transcription Elongation" Genes 12, no. 3: 413. https://doi.org/10.3390/genes12030413
APA StyleHuffines, A. K., Edwards, Y. J. K., & Schneider, D. A. (2021). Spt4 Promotes Pol I Processivity and Transcription Elongation. Genes, 12(3), 413. https://doi.org/10.3390/genes12030413