Comparing Transcriptome Profiles of Saccharomyces Cerevisiae Cells Exposed to Cadmium Selenide/Zinc Sulfide and Indium Phosphide/Zinc Sulfide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quantum Dots
2.2. Growth Assay with Exposure to CdSe/ZnS and InP/ZnS QDs
2.3. Total RNA Extraction and Amplification of cDNA Libraries
2.4. Analysis of Sequencing Data
2.5. Quantitative Reverse Transcription (RT)-qPCR
2.6. Measurement of Reactive Oxygen Species
2.7. Confocal Microscopy Analysis
2.8. Statistical Analysis
3. Results
3.1. CdSe/ZnS QDs and InP/ZnS QDs Affect Normal Yeast Growth
3.2. RT-qPCR Validation of RNA-Seq Data
3.3. ROS Quantification in Response to CdSe/ZnS and InP/ZnS Exposure
3.4. DEGs Implicated in Cellular Trafficking
4. Discussion
4.1. Why Do InP/ZnS QDs Inhibit Proliferation?
4.2. CdSe/ZnS and InP/ZnS QDs Have Opposite Effects on ROS Generation
4.3. Comparing Gene Expression Profiles of Yeast Exposed to CdSe/ZnS and InP/ZnS QDs
4.4. Effects of CdSe/ZnS and InP/ZnS QDs on the Intracellular Trafficking of Vps10-GFP
4.5. Comparing the Biological Effects of CdSe/ZnS with Known Biological Effects of Cd in Saccharomyces Cerevisiae
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayupova, D.G.; Dobhal, G.; Laufersky, T.N.; Goreham, R.V. An In Vitro Investigation of Cytotoxic Effects of InP/Zns Quantum Dots with Different Surface Chemistries. Nanomaterials 2019, 9, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenthal, S.J.; Chang, J.C.; Kovtun, O.; McBride, J.R.; Tomlinson, I.D. Biocompatible quantum dots for biological applications. Chem. Biol. 2011, 18, 10–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, M.A.; Grandinetti, G.; Fichter, K.M. Synthesis of Cd-free InP/ZnS Quantum Dots Suitable for Biomedical Applications. J. Vis. Exp. 2016, e53684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, W.C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ankireddy, S.R.; Kim, J. Dopamine-functionalized InP/ZnS quantum dots as fluorescence probes for the detection of adenosine in microfluidic chip. Int. J. Nanomed. 2015, 10, 121–128. [Google Scholar]
- Gao, J.; Chen, K.; Luong, R.; Bouley, D.M.; Mao, H.; Qiao, T.; Gambhir, S.S.; Cheng, Z. A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett. 2012, 12, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Horstmann, C.; Kim, D.S.; Campbell, C.; Kim, K. Transcriptome Profile Alteration with Cadmium Selenide/Zinc Sulfide Quantum Dots in Saccharomyces cerevisiae. Biomolecules 2019, 9, 659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horstmann, C.; Campbell, C.; Kim, D.S.; Kim, K. Transcriptome profile with 20 nm silver nanoparticles in yeast. FEMS Yeast Res. 2019, 19. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Xu, Y.M.; Wu, D.D.; Yao, Y.; Liang, Z.L.; Tan, H.W.; Lau, A.T.Y. Acute and chronic cadmium telluride quantum dots-exposed human bronchial epithelial cells: The effects of particle sizes on their cytotoxicity and carcinogenicity. Biochem. Biophys. Res. Commun. 2018, 495, 899–903. [Google Scholar] [CrossRef]
- Wang, X.; Tian, J.; Yong, K.T.; Zhu, X.; Lin, M.C.; Jiang, W.; Li, J.; Huang, Q.; Lin, G. Immunotoxicity assessment of CdSe/ZnS quantum dots in macrophages, lymphocytes and BALB/c mice. J. Nanobiotechnol. 2016, 14, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Yang, C.; Liu, J.; Hu, R.; Hu, Y.; Chen, H.; Law, W.C.; Swihart, M.T.; Ye, L.; Wang, K.; et al. Effects of Cd-based Quantum Dot Exposure on the Reproduction and Offspring of Kunming Mice over Multiple Generations. Nanotheranostics 2017, 1, 23–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma-Hock, L.; Brill, S.; Wohlleben, W.; Farias, P.M.; Chaves, C.R.; Tenorio, D.P.; Fontes, A.; Santos, B.S.; Landsiedel, R.; Strauss, V.; et al. Short term inhalation toxicity of a liquid aerosol of CdS/Cd(OH)2 core shell quantum dots in male Wistar rats. Toxicol. Lett. 2012, 208, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Yong, K.T.; Liu, L.; Roy, I.; Hu, R.; Zhu, J.; Cai, H.; Law, W.C.; Liu, J.; Wang, K.; et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat. Nanotechnol. 2012, 7, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhu, T.; Chen, C.; Liu, Y. Right or left: The role of nanoparticles in pulmonary diseases. Int. J. Mol. Sci. 2014, 15, 17577–17600. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Wang, Y.; Kong, L.; Xue, Y.; Tang, M. Threshold Dose of Three Types of Quantum Dots (QDs) Induces Oxidative Stress Triggers DNA Damage and Apoptosis in Mouse Fibroblast L929 Cells. Int. J. Environ. Res. Public Health 2015, 12, 13435–13454. [Google Scholar] [CrossRef]
- Su, Y.; He, Y.; Lu, H.; Sai, L.; Li, Q.; Li, W.; Wang, L.; Shen, P.; Huang, Q.; Fan, C. The cytotoxicity of cadmium based, aqueous phase—Synthesized, quantum dots and its modulation by surface coating. Biomaterials 2009, 30, 19–25. [Google Scholar] [CrossRef]
- Oh, E.; Liu, R.; Nel, A.; Gemill, K.B.; Bilal, M.; Cohen, Y.; Medintz, Y.L. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat. Nanotechnol. 2016, 11, 479–486. [Google Scholar] [CrossRef]
- Chen, T.; Li, L.; Xu, G.; Wang, X.; Wang, J.; Chen, Y.; Jiang, W.; Yang, Z.; Lin, G. Cytotoxicity of InP/ZnS Quantum Dots With Different Surface Functional Groups Toward Two Lung-Derived Cell Lines. Front. Pharmacol. 2018, 9, 763. [Google Scholar] [CrossRef] [Green Version]
- Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N.M.; Nadeau, J.L. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. Nanoscale 2011, 3, 2552–2559. [Google Scholar] [CrossRef]
- Hussain, S.; Won, N.; Nam, J.; Bang, J.; Chung, H.; Kim, S. One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging. ChemPhysChem 2009, 10, 1466–1470. [Google Scholar] [CrossRef]
- Liu, J.; Hu, R.; Liu, J.; Zhang, B.; Wang, Y.; Liu, X.; Law, W.C.; Liu, L.; Ye, L.; Yong, K.T. Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models. Mater. Sci. Eng. C 2015, 57, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Mo, D.; Hu, L.; Zeng, G.; Chen, G.; Wan, J.; Yu, Z.; Huang, Z.; He, K.; Zhang, C.; Cheng, M. Cadmium-containing quantum dots: Properties, applications, and toxicity. Appl. Microbiol. Biotechnol. 2017, 101, 2713–2733. [Google Scholar] [CrossRef]
- Brunetti, V.; Chibli, H.; Fiammengo, R.; Galeone, A.; Malvindi, M.A.; Vecchio, G.; Cingolani, R.; Nadeau, J.L.; Pompa, P.P. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: In vitro and in vivo toxicity assessment. Nanoscale 2013, 5, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Ouyang, Q.; Hu, R.; Ding, Z.; Tian, J.; Yin, F.; Xu, G.; Chen, Q.; Wang, X.; Yong, K.R. In vivo toxicity assessment of non-cadmium quantum dots in BALB/c mice. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 341–350. [Google Scholar] [CrossRef]
- Hens, B.; Smothers, J.; Rizvanovic, H.; Patel, R.; Wu, Q.; Kim, K. The Future of Anticancer Drugs: A Cytotoxicity Assessment Study of CdSe/ZnS Quantum Dots. J. Nanotheran. 2020, 19, 20. [Google Scholar] [CrossRef]
- Davenport, V.; Horstmann, C.; Patel, R.; Wu, Q.; Kim, K. An assessment of InP/ZnS as potential anti-cancer therapy: Quantum dot treatment induces stress on HeLa cells. J. Nanotheran. 2021, 2, 16–32. [Google Scholar] [CrossRef]
- Moradas-Ferreira, P.; Costa, V. Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: Defences, damage and death. Redox Rep. 2000, 5, 277–285. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002, 12, 9–18. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Manshian, B.B.; Martens, T.F.; Kantner, K.; Braeckmans, K.; De Smedt, S.C.; Demeester, J.; Jenkins, G.J.S.; Parak, W.J.; Pelaz, B.; Doak, S.H.; et al. The role of intracellular trafficking of CdSe/ZnS QDs on their consequent toxicity profile. J. Nanobiotechnol. 2017, 15, 45. [Google Scholar] [CrossRef] [Green Version]
- Belyy, A.; Levanova, N.; Tabakova, I.; Rospert, S.; Belyi, Y. Ribosomal Protein Rps26 Influences 80S Ribosome Assembly in Saccharomyces cerevisiae. mSphere 2016, 1. [Google Scholar] [CrossRef] [Green Version]
- Venema, J.; Tollervey, D. Ribosome synthesis in Saccharomyces cerevisiae. Annu. Rev. Genet. 1999, 33, 261–311. [Google Scholar] [CrossRef]
- Mamnun, Y.M.; Schuller, C.; Kuchler, K. Expression regulation of the yeast PDR5 ATP-binding cassette (ABC) transporter suggests a role in cellular detoxification during the exponential growth phase. FEBS Lett. 2004, 559, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Wolfger, H.; Mamnun, Y.M.; Kuchler, K. The yeast Pdr15p ATP-binding cassette (ABC) protein is a general stress response factor implicated in cellular detoxification. J. Biol. Chem. 2004, 279, 11593–11599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Yen, J.; Kaiser, P.; Huang, L. Regulation of the 26S proteasome complex during oxidative stress. Sci. Signal. 2010, 3, ra88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stangier, M.M.; Kumar, A.; Chen, X.; Farcas, A.M.; Barral, Y.; Steinmetz, M.O. Structure-Function Relationship of the Bik1-Bim1 Complex. Structure 2018, 26, 607–618.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, M.; Van Leeuwen, J.; Boone, C.; Bretscher, A. Yeast Aim21/Tda2 both regulates free actin by reducing barbed end assembly and forms a complex with Cap1/Cap2 to balance actin assembly between patches and cables. Mol. Biol. Cell 2018, 29, 923–936. [Google Scholar] [CrossRef]
- Ma, M.; Burd, C.G. Retrograde trafficking and plasma membrane recycling pathways of the budding yeast Saccharomyces cerevisiae. Traffic 2020, 21, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Wysocki, R.; Tamas, M.J. How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol. Rev. 2010, 34, 925–951. [Google Scholar] [CrossRef] [Green Version]
Yeast Antioxidant Genes | Function | Cd Up-Reg. | Cd Down-Reg. | InP Up-Reg. | InP Down-Reg. |
---|---|---|---|---|---|
Primary Antioxidant Defenses | |||||
SOD1 (cytoplasmic superoxide dismutase) | Dis-mutation of superoxide radicals | x | SOD1 | x | x |
SOD2 (mitochondrial superoxide dismutase) | x | x | SOD2 | x | |
CTT1 (cytoplasmic catalase T) | Decomposition of hydrogen peroxide | x | x | CTT1 | x |
GPX1–GPX3 (glutathione peroxidases) | Reduction of hydrogen peroxide, Reduction of alkyl hydro-peroxides | x | GPX1, GPX2 | GPX1 | GPX2 |
TRX2 (cytoplasmic thioredoxin) | Reduction of hydrogen peroxide and alkyl hydro-peroxides | x | TRX2 | x | x |
TRX3 (mitochondrial thioredoxin) | x | TRX3 | x | x | |
COQ3 (ubiquinol) | Scavenging of perferryl, lipid, and lipid peroxyl radicals | x | x | COQ3 | x |
Table | |||||
OGG1 (8-oxoguanine glycosylase/lyases) | Excision of oxidized DNA bases | x | OGG1 | x | x |
APN1 (AP endonuclease) | Cleavage of apurinic/apyrimidinic (AP) sites, Generation of 3′-hydroxyl groups at AP sites | x | APN1 | APN1 | x |
GSH1 (glutathione) | Reduction of protein disulfides | GSH1 | x | x | x |
GRX2 (glutaredoxin) | Reduction of disulfides | x | x | GRX2 | x |
TRX2 (thioredoxin) | Reduction of protein disulfides, Reduction of oxidized glutathione | TRX2 | x | x | x |
GLR1 (glutathione reductase) | Reduction of oxidized glutathione | GLR1 | x | GLR1 | x |
TRR2 (mitochondrial thioredoxin reductase) | Reduction of oxidized thioredoxin | x | x | TRR2 | x |
ZWF (glucose-6-phosphate dehydrogenase) | Reduction of NADP+ to NADPH | x | x | ZWF1 | x |
UBI4 (polyubiquitin) | Tagging oxidized proteins for degradation by the 26S proteasome | UBI4 | x | UBI4 | x |
Complex | CdSe/ZnS-Treated | InP/ZnS-Treated |
---|---|---|
Upregulated Genes | ||
SNARE | x | NYV1, TLG2, SPO20, YPT7 |
Retromer | x | x |
Sorting Nexin | SNX41 | SNX4, SNX41 |
GARP | x | VPS52, VPS54 |
Downregulated genes | ||
SNARE | PEP12, VTI1, NYV1, YKT6, VAM3, VAM7, TLG1, TLG2, SSO1, SSO2, SEC9, SNC1, SNC2, SED5, GOS1, UFE1, USE1, SEC22, BOS1, BET1, VPS21 | PEP12, VAM7, SSO1, SNC2, SED5 |
Retromer | VPS5, VPS17. VPS29, VPS35 | VPS29 |
Sorting Nexin | SNX3, SNX4, MVP1 | x |
GARP | VPS51, VPS52, VPS53 | VPS51 |
Upregulated GO-Terms (CdSe/ZnS) | Genes in Figure 6A |
---|---|
Transmembrane transport/cellular homeostasis | YHK8, PDR5, and PDR15 |
Vacuole acidification | VMA2 and VMA16 |
Amino acid metabolic activity | ARG5, ARO8, ARG6, LEU1, LEU4, LEU9, and LYS1/9 |
Protein folding | KAR2 and EUG1 |
Trafficking within the trans-Golgi network | VPS41 and SNX41 |
Downregulated GO-Terms (CdSe/ZnS)-Downregulated) | Genes in Figure 6B |
---|---|
Endocytosis | MYO3, MYO5, CLC1, ARP2, ARP3, BZZ1, SCD5, BBC1, and GTS1 |
The Cvt pathway | ATG3, ATG4, ATG8, ATG12, ATG14, ATG15, ATG16, ATG17, ATG19, ATG20, ATG23, ATG27, ATG33, and ATG34 |
rRNA processing | MRM2, LAS1, UTP30, RPL9A, and KRR1 |
Proteasome assembly | PBA1 and ECM29 |
Metabolic activity | ATP3, ATP4, ATP5, ATP7, ATP12, ATP14, ATP15, ATP16, ATP18, ATP20, ATP22, MRP10, MRP19, and MTF2 |
Cell cycle regulation | CDC4, CDC7, CDC14, CDC15, CDC20, CDC28, CDC36, CDC37, CDC42, CDC45, CDC55, CDC123, and SIT4 |
Cellular trafficking | SNX3, SNX4, MVP1, VPS21, VPS51, VPS52, and VPS53 |
Upregulated GO-Terms (InP/ZnS) | Genes in Figure 6C |
---|---|
Endocytosis | LSB6, SDB17, YAP1801, CHC1, and ACT1 |
Peroxisome assembly | PEX3, PEX5, PEX7, PEX15, PEX17, PEX18, PEX19, PEX27, PEX29, and PEX32 |
Proteasome assembly and activity | ECM29, CDC34/53, HRT3, and DIA2 |
The Cvt pathway | ATG2, ATG4, ATG7, ATG8, ATG9, ATG10, ATG11, ATG13, ATG14, ATG17, ATG20, ATG21, ATG34, and VPS41 |
ETC | AIM31 and COX4, COX5B, COX6, COX7, COX9, COX12, COX13, and COX15 |
Oxido-reduction metabolic processes | GRX2 |
Downregulated GO-Terms (InP/ZnS) | Genes in Figure 6D |
---|---|
Endocytosis | MYO3, MYO5, ENT1, ARK1, and VRP1 |
rRNA processing | RRB1, KRR1, RPL1B, and YUH1 |
Translation | PRT1 and TIF1 |
The Cvt pathway | VPS36 |
Actin and microtubule growth | CAP2 and BIK1, respectively |
Vesicle fusion and protein targeting to the plasma membrane | SSO1, SNC2, and WSC4, respectively |
Cellular trafficking | SED5, VAM7, PEP12, VPS29, and VPS51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horstmann, C.; Kim, K. Comparing Transcriptome Profiles of Saccharomyces Cerevisiae Cells Exposed to Cadmium Selenide/Zinc Sulfide and Indium Phosphide/Zinc Sulfide. Genes 2021, 12, 428. https://doi.org/10.3390/genes12030428
Horstmann C, Kim K. Comparing Transcriptome Profiles of Saccharomyces Cerevisiae Cells Exposed to Cadmium Selenide/Zinc Sulfide and Indium Phosphide/Zinc Sulfide. Genes. 2021; 12(3):428. https://doi.org/10.3390/genes12030428
Chicago/Turabian StyleHorstmann, Cullen, and Kyoungtae Kim. 2021. "Comparing Transcriptome Profiles of Saccharomyces Cerevisiae Cells Exposed to Cadmium Selenide/Zinc Sulfide and Indium Phosphide/Zinc Sulfide" Genes 12, no. 3: 428. https://doi.org/10.3390/genes12030428
APA StyleHorstmann, C., & Kim, K. (2021). Comparing Transcriptome Profiles of Saccharomyces Cerevisiae Cells Exposed to Cadmium Selenide/Zinc Sulfide and Indium Phosphide/Zinc Sulfide. Genes, 12(3), 428. https://doi.org/10.3390/genes12030428