A Bibliometric and Citation Network Analysis of Myopia Genetics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Data Analysis
3. Results
3.1. Description of Publications
3.1.1. Language and Countries
3.1.2. Research Areas
3.1.3. Authors and Institutions
3.1.4. Journals
3.1.5. Keywords
3.2. The Most Cited Publications
3.3. Clustering
3.4. Core Publications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wan, L.; Deng, B.; Wu, Z.; Chen, X. Exome sequencing study of 20 patients with high myopia. PeerJ 2018, 6, e5552. [Google Scholar] [CrossRef]
- Zhang, Q. Genetics of Refraction and Myopia. Prog. Mol. Biol. Transl. Sci. 2015, 134, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, P.G.; Hewitt, A.W.; Hammond, C.J.; Mackey, D.A. The heritability of ocular traits. Surv. Ophthalmol. 2010, 55, 561–583. [Google Scholar] [CrossRef]
- Liew, S.H.; Elsner, H.; Spector, T.D.; Hammond, C.J. The first ‘‘classical’’ twin study? Analysis of refractive error using monozygotic and dizygotic twins published in 1922. Twin Res. Hum. Genet. 2005, 8, 198–200. [Google Scholar] [CrossRef] [Green Version]
- Ang, M.; Wong, T.Y. Updates on Myopia, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Tedja, M.S.; Haarman, A.E.G.; Meester-Smoor, M.A.; Kaprio, J.; Mackey, D.A.; Guggenheim, J.A.; Hammond, C.J.; Verhoeven, V.; Klaver, C. CREAM Consortium. IMI—Myopia Genetics Report. Investig. Ophthalmol. Vis. Sci. 2019, 60, M89–M105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshikawa, M.; Yamashiro, K.; Miyake, M.; Oishi, M.; Akagi-Kurashige, Y.; Kumagai, K.; Nakata, I.; Nakanishi, H.; Oishi, A.; Gotoh, N.; et al. Comprehensive replication of the relationship between myopia-related genes and refractive errors in a large Japanese cohort. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7343–7354. [Google Scholar] [CrossRef]
- Kiefer, A.K.; Tung, J.Y.; Do, C.B.; Hinds, D.A.; Mountain, J.L.; Francke, U.; Eriksson, N. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLoS Genet. 2013, 9, e1003299. [Google Scholar] [CrossRef] [Green Version]
- Tideman, J.W.L.; Fan, Q.; Polling, J.R.; Guo, X.; Yazar, S.; Khawaja, A.; Höhn, R.; Lu, Y.; Jaddoe, V.W.; Yamashiro, K.; et al. When do myopia genes have their effect? Comparison of genetic risks between children and adults. Genet. Epidemiol. 2016, 40, 756–766. [Google Scholar] [CrossRef] [Green Version]
- Tedja, M.S.; Wojciechowski, R.; Hysi, P.G.; Eriksson, N.; Furlotte, N.A.; Verhoeven, V.; Iglesias, A.I.; Meester-Smoor, M.A.; Tompson, S.W.; Fan, Q.; et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nat. Genet. 2018, 50, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Hysi, P.G.; Choquet, H.; Khawaja, A.P.; Wojciechowski, R.; Tedja, M.S.; Yin, J.; Simcoe, M.J.; Patasova, K.; Mahroo, O.A.; Thai, K.K.; et al. Meta-analysis of 542, 934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nat. Genet. 2020, 52, 401–407. [Google Scholar] [CrossRef]
- González, C.M. Análisis de citación y de redes sociales para el estudio del uso de revistas en centros de investigación: An approach to the development of collections. Ciência Inf. 2009, 38, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. CitNetExplorer: A new software tool for analyzing and visualizing citation networks. J. Informetr. 2014, 8, 802–823. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. Technol. 2006, 3, 359–377. [Google Scholar] [CrossRef] [Green Version]
- De Solla Price, D.J. Little Science, Big Science, 1st ed.; Columbia University Press: New York, NY, USA, 1963. [Google Scholar]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wesel, M. Evaluation by Citation: Trends in Publication Behavior, Evaluation Criteria, and the Strive for High Impact Publications. Sci. Eng. Ethics. 2016, 22, 199–225. [Google Scholar] [CrossRef] [Green Version]
- Curry, M.J.; Lillis, T. Multilingual Scholars and the Imperative to Publish in English: Negotiating Interests, Demands, and Rewards. Tesol. Q. 2004, 38, 663. [Google Scholar] [CrossRef]
- Lee, M.; Wu, Y.; Tsai, C. Research Trends in Science Education from 2003 to 2007: A content analysis of publications in selected journals. Int. J. Sci. Educ. 2009, 31, 1999–2020. [Google Scholar] [CrossRef]
- Aparicio-Martinez, P.; Perea-Moreno, A.J.; Martinez-Jimenez, M.P.; Redel-Macías, M.D.; Vaquero-Abellan, M.; Pagliari, C. A Bibliometric Analysis of the Health Field Regarding Social Networks and Young People. Int. J. Environ. Res. Public Health 2019, 16, 4024. [Google Scholar] [CrossRef] [Green Version]
- Verhoeven, V.J.M.; Hysi, P.G.; Wojciechowski, R.; Fan, Q.; Guggenheim, J.A.; Höhn, R.; MacGregor, S.; Hewitt, A.W.; Nag, A.; Cheng, C.Y.; et al. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat. Genet. 2013, 45, 314–318. [Google Scholar] [CrossRef]
- Wojciechowski, R. Nature and nurture: The complex genetics of myopia and refractive error. Clin. Genet. 2011, 79, 301–320. [Google Scholar] [CrossRef]
- Morgan, I.G. Myopia. Lancet 2012, 379, 1739–1748. [Google Scholar] [CrossRef]
- Nakanishi, H.; Yamada, R.; Gotoh, N.; Hayashi, H.; Yamashiro, K.; Shimada, N.; Ohno-Matsui, K.; Mochizuki, M.; Saito, M.; Iida, T.; et al. A genome-wide association analysis identified a novel susceptible locus for pathological myopia at 11q24.1. PLoS Genet. 2009, 5, e1000660. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.C.; Andrew, T.; Carbonaro, F.; Spector, T.D.; Hammond, C.J. Estimating Heritability and Shared Environmental Effects for Refractive Error in Twin and Family Studies. Investig. Ophthalmol. Vis. Sci. 2009, 50, 126–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Li, Y.; Zhang, D.; Zhang, H.; Li, Y.; Lu, F.; Liu, X.; He, F.; Gong, B.; Cai, L.; et al. Exome Sequencing Identifies ZNF644 Mutations in High Myopia. PLoS Genet. 2011, 7, e1002084. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Goh, L.; Khor, C.C.; Fan, Q.; Yu, M.; Han, S.; Sim, X.; Ong, R.T.; Wong, T.Y.; Vithana, E.N.; et al. Genome-Wide Association Studies Reveal Genetic Variants in CTNND2 for High Myopia in Singapore Chinese. Ophthalmology 2011, 118, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.W.; Ramamurthy, D.; Saw, S.M. Worldwide prevalence and risk factors for myopia. Ophthalmic. Physiol. Opt. 2012, 32, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Qu, J.; Zhang, D.; Zhao, P.; Zhang, Q.; Tam, P.; Sun, L.; Zuo, X.; Zhou, X.; Xiao, X.; et al. Genetic Variants at 13q12.12 Are Associated with High Myopia in the Han Chinese Population. Am. J. Hum. Genet. 2011, 88, 805–813. [Google Scholar] [CrossRef] [Green Version]
- Hornbeak, D.M.; Young, T.L. Myopia genetics: A review of current research and emerging trends. Curr. Opin. Ophthalmol. 2009, 20, 356–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, A.P.; Suktitipat, B.; Duggal, P. Heritability Analysis of Spherical Equivalent, Axial Length, Corneal Curvature, and Anterior Chamber Depth in the Beaver Dam Eye Study. Arch. Ophthalmol. 2009, 127, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Xiao, X.; Li, S.; Zhang, Q. Clinical and linkage study on a consanguineous Chinese family with autosomal recessive high myopia. Mol. Vis. 2009, 15, 312–318. [Google Scholar]
- Fan, Q.; Barathi, V.A.; Cheng, C.Y.; Zhou, X.; Meguro, A.; Nakata, I.; Khor, C.C.; Goh, L.K.; Li, Y.J.; Lim, W.; et al. Genetic Variants on Chromosome 1q41 Influence Ocular Axial Length and High Myopia. PLoS Genet. 2012, 8, e1002753. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.J.; Guggenheim, J.A.; Bulusu, A.; Metlapally, R.; Abbott, D.; Malecaze, F.; Calvas, P.; Rosenberg, T.; Paget, S.; Creer, R.C.; et al. An International Collaborative Family-Based Whole-Genome Linkage Scan for High-Grade Myopia. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3116–3127. [Google Scholar] [CrossRef] [PubMed]
- Aldahmesh, M.A.; Khan, A.O.; Alkuraya, H.; Adly, N.; Anazi, S.; Al-Saleh, A.A.; Mohamed, J.Y.; Hijazi, H.; Prabakaran, S.; Tacke, M.; et al. Mutations in LRPAP1 Are Associated with Severe Myopia in Humans. Am. J. Hum. Genet. 2013, 93, 313–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, T.L. Molecular genetics of human myopia: An update. Optom. Vis. Sci. 2009, 86, E8–E22. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Li, J.; Xiao, X.; Li, S.; Jia, X.; Sun, W.; Guo, X.; Zhang, Q. Detection of Mutations in LRPAP1, CTSH, LEPREL1, ZNF644, SLC39A5, and SCO2 in 298 Families with Early-Onset High Myopia by Exome Sequencing. Investig. Ophthalmol. Vis. Sci. 2014, 56, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Verhoeven, V.J.M.; Hysi, P.G.; Saw, S.M.; Vitart, V.; Mirshahi, A.; Guggenheim, J.A.; Cotch, M.F.; Yamashiro, K.; Baird, P.N.; Mackey, D.A.; et al. Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium. Hum. Genet. 2012, 131, 1467–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Huang, L.; Xu, Y.; Xiao, X.; Li, S.; Jia, X.; Gao, B.; Wang, P.; Guo, X.; Zhang, Q. Exome Sequencing on 298 Probands with Early-Onset High Myopia: Approximately One-Fourth Show Potential Pathogenic Mutations in RetNet Genes. Investig. Ophthalmol. Vis. Sci. 2015, 56, 8365–8372. [Google Scholar] [CrossRef] [Green Version]
- Prashar, A.; Hocking, P.M.; Erichsen, J.T.; Fan, Q.; Saw, S.M.; Guggenheim, J.A. Common determinants of body size and eye size in chickens from an advanced intercross line. Exp. Eye Res. 2009, 89, 42–48. [Google Scholar] [CrossRef]
- Martinez-Perez, C.; Alvarez-Peregrina, C.; Villa-Collar, C.; Sánchez-Tena, M.Á. Current State and Future Trends: A Citation Network Analysis of the Academic Performance Field. Int. J. Environ. Res. Public Health 2020, 17, 5352. [Google Scholar] [CrossRef]
- Nascimento, H.; Martinez-Perez, C.; Alvarez-Peregrina, C.; Sánchez-Tena, M.Á. Citations Network Analysis of Vision and Sport. Int. J. Environ. Res. Public Health 2020, 17, 7574. [Google Scholar] [CrossRef]
- Martinez-Perez, C.; Alvarez-Peregrina, C.; Villa-Collar, C.; Sánchez-Tena, M.Á. Citation Network Analysis of the Novel Coronavirus Disease 2019 (COVID-19). Int. J. Environ. Res. Public Health 2020, 17, 7690. [Google Scholar] [CrossRef] [PubMed]
- Risch, N.; Merikangas, K. The future of genetic studies of complex human diseases. Science 1996, 273, 1516–1517. [Google Scholar] [CrossRef] [Green Version]
- Hammond, C.J.; Andrew, T.; Mak, Y.T.; Spector, T.D. A susceptibility locus for myopia in the normal population is linked to the PAX6 gene region on chromosome 11: A genomewide scan of dizygotic twins. Am. J. Hum. Genet. 2004, 75, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Andrew, T.; Maniatis, N.; Carbonaro, F.; Liew, S.H.; Lau, W.; Spector, T.D.; Hammond, C.J. Identification and replication of three novel myopia common susceptibility gene loci on chromosome 3q26 using linkage and linkage disequilibrium mapping. PLoS Genet. 2008, 4, e1000220. [Google Scholar] [CrossRef] [Green Version]
- Ciner, E.; Ibay, G.; Wojciechowski, R.; Dana, D.; Holmes, T.N.; Bailey-Wilson, J.E.; Stambolian, D. Genome wide scan of African-American and white families for linkage to myopia. Am. J. Ophthalmol. 2009, 147, 512–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solouki, A.M.; Verhoeven, V.J.M.; van Duijn, C.M.; Verkerk, A.J.; Ikram, M.K.; Hysi, P.G.; Despriet, D.D.; van Koolwijk, L.M.; Ho, L.; Ramdas, W.D.; et al. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. Nat. Genet. 2010, 42, 897–901. [Google Scholar] [CrossRef] [Green Version]
- Hysi, P.G.; Young, T.L.; Mackey, D.A.; Andrew, T.; Fernández-Medarde, A.; Solouki, A.M.; Hewitt, A.W.; Macgregor, S.; Vingerling, J.R.; Li, Y.J.; et al. A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. Nat. Genet. 2010, 42, 902–905. [Google Scholar] [CrossRef] [PubMed]
- Myopia Institute. About the International Myopia Institute. Available online: https://myopiainstitute.org (accessed on 25 October 2020).
- Pozarickij, A.; Williams, C.; Hysi, P.G.; Guggenheim, J.A. UK Biobank Eye and Vision Consortium. Quantile regression analysis reveals widespread evidence for gene-environment or gene-gene interactions in myopia development. Commun. Biol. 2019, 2, 167. [Google Scholar] [CrossRef] [Green Version]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [Green Version]
- Stambolian, D.; Wojciechowski, R.; Oexle, K.; Pirastu, M.; Li, X.; Raffel, L.J.; Cotch, M.F.; Chew, E.Y.; Klein, B.; Klein, R.; et al. Meta-analysis of genome-wide association studies in five cohorts reveals common variants in RBFOX1, a regulator of tissue-specific splicing, associated with refractive error. Hum. Mol. Genet. 2013, 22, 2754–2764. [Google Scholar] [CrossRef] [Green Version]
- Biswal, A.K. An Absolute Index (Ab-index) to Measure a Researcher’s Useful Contributions and Productivity. PLoS ONE 2013, 8, e84334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napolitano, F.; Lorio, V.D.; Testa, F.; Tirozzi, A.; Reccia, M.G.; Lombardi, L.; Farina, O.; Simonelli, F.; Gianfrancesco, F.; Di Iorio, G.; et al. Autosomal-dominant myopia associated to a novel P4HA2 missense variant and defective collagen hydroxylation. Clin. Genet. 2018, 93, 982–991. [Google Scholar] [CrossRef]
- Zhao, F.; Wu, J.; Xue, A.; Su, Y.; Wang, X.; Lu, X.; Zhou, Z.; Qu, J.; Zhou, X. Exome sequencing reveals CCDC111 mutation associated with high myopia. Hum. Genet. 2013, 132, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, Y.; Chen, S.; Wu, Y.; Lin, S.; Duan, Y.; Zheng, K.; Zhang, L.; Gu, X.; Hong, W.; et al. A novel potentially causative variant of NDUFAF7 revealed by mutation screening in a Chinese family with pathologic myopia. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4182–4192. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Zhou, D.; Zhang, Z.; He, L.; Liu, Y.; Yang, Y. Exome sequencing identifies a novel UNC5D mutation in a severe myopic anisometropia family: A case report. Medicine 2017, 96, e7138. [Google Scholar] [CrossRef] [PubMed]
- Kloss, B.A.; Tompson, S.W.; Whisenhunt, K.N.; Quow, K.L.; Huang, S.J.; Pavelec, D.M.; Rosenberg, T.; Young, T.L. Exome sequence analysis of 14 families with high myopia. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1982–1990. [Google Scholar] [CrossRef] [Green Version]
- Tran-Viet, K.-N.; Powell, C.; Barathi, V.A.; Klemm, T.; Maurer-Stroh, S.; Limviphuvadh, V.; Soler, V.; Ho, C.; Yanovitch, T.; Schneider, G.; et al. Mutations in SCO2 are associated with autosomal-dominant high-grade myopia. Am. J. Hum. Genet. 2013, 92, 820–826. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Li, S.; Jia, X.; Guo, X.; Zhang, Q. X-linked heterozygous mutations in cause female limited early onset high myopia. Mol. Vis. 2016, 22, 1257–1266. [Google Scholar] [PubMed]
Country | Publications (%) | Centrality | Degree | Half-Life |
---|---|---|---|---|
The United States | 225 (31.18%) | 0.40 | 38 | 5.5 |
China | 208 (28.57%) | 0.02 | 19 | 6.5 |
England | 113 (15.52%) | 0.12 | 33 | 5.5 |
Australia | 107 (14.70%) | 0.19 | 33 | 5.5 |
Singapore | 53 (7.28%) | 0.05 | 25 | 5.5 |
Category | Frequency | Centrality | Degree | Half-Life |
---|---|---|---|---|
Ophthalmology | 437 | 0.16 | 16 | 5.5 |
Hereditary genetics | 138 | 0.05 | 15 | 7.5 |
Biochemistry molecular biology | 78 | 0.10 | 19 | 4.5 |
Science technology other topics | 53 | 0.08 | 3 | 7.5 |
Experimental medicine research | 31 | 0.00 | 29 | 5.5 |
General internal medicine | 25 | 0.00 | 3 | 6.5 |
Neurosciences neurology | 18 | 0.07 | 15 | 5.5 |
Pediatrics | 8 | 0.03 | 11 | 7.5 |
Pharmacology and pharmacy | 7 | 0.02 | 4 | 7.5 |
Psychology | 7 | 0.03 | 10 | 3.5 |
Author | Number of Publications | H Index | Total Citations | Citation Average | Centrality | Degree |
---|---|---|---|---|---|---|
Guggenheim JA | 48 | 33 | 4173 | 24.99 | 0.08 | 53 |
Hammond CJ | 43 | 16 | 991 | 23.05 | 0.02 | 29 |
Saw SM | 39 | 18 | 2047 | 52.49 | 0.04 | 48 |
Mackey DA | 38 | 15 | 792 | 20.84 | 0.03 | 33 |
Young TL | 38 | 22 | 1343 | 35.34 | 0.16 | 54 |
Hysi PG | 31 | 12 | 649 | 20.94 | 0.02 | 37 |
Klaver CCW | 30 | 13 | 590 | 19.67 | 0.02 | 38 |
Williams C | 30 | 14 | 623 | 20.77 | 0.02 | 41 |
Wojciechowski R | 30 | 16 | 923 | 30.77 | 0.00 | 15 |
Zhang QJ | 29 | 15 | 474 | 16.34 | 0.04 | 15 |
Category | Frequency | Centrality | Degree | Half Life |
---|---|---|---|---|
Sun Yat-sen University | 59 | 0.03 | 20 | 6.5 |
University of Melbourne | 56 | 0.04 | 40 | 4.5 |
Kings College London | 51 | 0.05 | 52 | 5.5 |
Cardiff University | 45 | 0.03 | 49 | 8.5 |
National University of Singapore | 42 | 0.04 | 58 | 5.5 |
University of Western Australia | 37 | 0.06 | 41 | 5.5 |
Erasmus MC | 36 | 0.03 | 64 | 5.5 |
National Human Genome Research Institute | 34 | 0.02 | 30 | 5.5 |
University College de Londres | 34 | 0.08 | 42 | 5.5 |
University of Pennsylvania | 33 | 0.01 | 31 | 3.5 |
Journal | Total Publications | Impact Factor (2019) | Quartile | SJR (SCImago Journal Rank) (2019) | Citations /Docs (2 years) | Total Citations (2019) | Centrality | H Index | Country |
---|---|---|---|---|---|---|---|---|---|
Investigative Ophthalmology & Visual Science | 113 | 3.47 | Q1 | 1.79 | 3.458 | 8592 | 0..00 | 209 | United States |
Molecular Vision | 45 | 2.20 | Q2 | 0.86 | 2.213 | 724 | 0.00 | 88 | United States |
Ophthalmic Genetics | 32 | 1.31 | Q4 | 0.63 | 1.336 | 411 | 0.00 | 38 | United Kingdom |
PLOS One | 21 | 2.74 | Q2 | 1.02 | 2.942 | 193,380 | 0.00 | 300 | United States |
Ophthalmology | 19 | 8.47 | Q1 | 4.41 | 8.476 | 6778 | 0.00 | 229 | Netherlands |
Scientific Reports | 19 | 3.99 | Q1 | 1.34 | 4.149 | 283,384 | 0.00 | 179 | United Kingdom |
Experimental Eye Research | 17 | 3.01 | Q1 | 1.14 | 3.233 | 2169 | 0.00 | 119 | United States |
Acta Ophthalmologica | 14 | 3.36 | Q1 | 1.42 | 3.304 | 2369 | 0.00 | 82 | United States |
British Journal of Ophthalmology | 14 | 3.61 | Q1 | 1.89 | 4.026 | 3591 | 0.00 | 146 | United Kingdom |
Optometry and Vision Science | 14 | 1.46 | Q3 | 0.89 | 1.789 | 1011 | 0.00 | 92 | United States |
Keyword | Frequency | Centrality | Degree | Total Link Strength |
---|---|---|---|---|
Myopia | 215 | 0.03 | 40 | 1394 |
Refractive error | 186 | 0.05 | 65 | 1397 |
Prevalence | 152 | 0.05 | 57 | 1053 |
Genome-wide association | 110 | 0.03 | 51 | 807 |
Genetics | 94 | 0.07 | 56 | 609 |
Susceptibility locus | 77 | 0.05 | 55 | 608 |
Risk factors | 77 | 0.04 | 54 | 581 |
High myopia | 73 | 0.06 | 56 | 485 |
Population | 73 | 0.05 | 55 | 484 |
Heritability | 70 | 0.02 | 36 | 488 |
Mutations | 68 | 0.04 | 35 | 329 |
Children | 67 | 0.03 | 40 | 432 |
Gene | 60 | 0.06 | 47 | 302 |
High-grade myopia | 54 | 0.07 | 64 | 446 |
Eye | 50 | 0.05 | 45 | 311 |
Axial length | 49 | 0.04 | 49 | 379 |
Association | 48 | 0.09 | 60 | 321 |
Form-deprivation myopia | 46 | 0.03 | 42 | 319 |
Ocular refraction | 45 | 0.03 | 47 | 377 |
Visual impairment | 44 | 0.06 | 55 | 358 |
Expression | 43 | 0.09 | 50 | 255 |
Variant | 39 | 0.05 | 38 | 38 |
Environment | 33 | 0.07 | 59 | 246 |
Eye growth | 33 | 0.04 | 48 | 227 |
Identification | 33 | 0.04 | 35 | 162 |
Outdoor activity | 32 | 0.02 | 41 | 250 |
Locus | 32 | 0.02 | 31 | 207 |
Linkage | 31 | 0.02 | 39 | 243 |
Family | 30 | 0.08 | 49 | 145 |
Epidemiology | 29 | 0.06 | 46 | 211 |
Cluster | Color | Main Keywords | Topic | % |
---|---|---|---|---|
1 | Red | mutations, gene, family, phenotype, identification | Genetic mutations | 27.53 |
2 | Green | prevalence, myopia, refractive error, genetics, risk factors | Prevalence of myopia in children and its risk factors | 17.96 |
3 | Blue | growth, eye growth, form-deprivation myopia, retina, expression | Axial length growth | 15.92 |
4 | Yellow | variants, macular degeneration, metanalysis, single nucleotide polymorphism, common variants, open-angle glaucoma | SNPs (Single Nucleotide Polymorphism) and genes related to myopia | 15.92 |
5 | Violet | genome-wide association, susceptibility locus, high-grade myopia, linkage, locus | Genome association | 10.61 |
Author | Title | Journal | Year | Citation index |
---|---|---|---|---|
Verhoeven et al. [21] | Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia | Nat Genet. 2013 Mar;45(3):314–8. | 2013 | 106 |
Wojciechowski et al. [22] | Nature and nurture: the complex genetics of myopia and refractive error | Clin Genet. 2011 Apr;79(4):301–20 | 2011 | 85 |
Kiefer et al. [8] | Genome-Wide Analysis Points to Roles for Extracellular Matrix Remodeling, the Visual Cycle, and Neuronal Development in Myopia | PLoS Genet. 2013;9(2):e1003299. | 2013 | 83 |
Morgan et al. [23] | Myopia | Lancet. 2012 May 5;379(9827):1739–48 | 2012 | 80 |
Nakanishi et al. [24] | A genome-wide association analysis identified a novel susceptible locus for pathological myopia at 11q24.1 | PLoS Genet. 2009 Sep;5(9):e1000660 | 2009 | 59 |
Lopes et al. [25] | Estimating Heritability and Shared Environmental Effects for Refractive Error in Twin and Family Studies | Invest Ophthalmol Vis Sci. 2009 Jan;50(1):126–31 | 2009 | 55 |
Shi et al. [26] | Exome Sequencing Identifies ZNF644 Mutations in High Myopia | PLoS Genet. 2011 Jun;7(6):e1002084. | 2011 | 54 |
Li et al. [27] | Genome-Wide Association Studies Reveal Genetic Variants in CTNND2 for High Myopia in Singapore Chinese | Ophthalmology. 2011 Feb;118(2):368–75 | 2011 | 47 |
Pan et al. [28] | Worldwide prevalence and risk factors for myopia | Ophthalmic Physiol Opt. 2012 Jan;32(1):3–16 | 2012 | 47 |
Shi et al. [29] | Genetic Variants at 13q12.12 are associated with high myopia in the Han Chinese population | Am J Hum Genet. 2011 Jun 10;88(6):805–813 | 2011 | 40 |
Hornbeak et al. [30] | Myopia genetics: a review of current research and emerging trends | Curr Opin Ophthalmol. 2009 Sep;20(5):356–62. | 2009 | 38 |
Klein et al. [31] | Heritability Analysis of Spherical Equivalent, Axial Length, Corneal Curvature, and Anterior Chamber Depth in the Beaver Dam Eye Study | Arch Ophthalmol. 2009 May;127(5):649–55. | 2009 | 38 |
Yang et al. [32] | Clinical and linkage study on a consanguineous Chinese family with autosomal recessive high myopia | Mol Vis. 2009;15:312–8 | 2009 | 36 |
Fan et al. [33] | Genetic Variants on Chromosome 1q41 Influence Ocular Axial Length and High Myopia | PLoS Genet. 2012;8(6):e1002753. | 2012 | 35 |
Li et al. [34] | An International Collaborative Family Based Whole-Genome Linkage Scan for High-Grade Myopia | Invest Ophthalmol Vis Sci. 2009 Jul;50(7):3116–27 | 2009 | 34 |
Tedja et al. [10] | Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error | Nat Genet. 2018 Jun;50(6):834–848. | 2018 | 34 |
Aldahmesh et al. [35] | Mutations in LRPAP1 Are Associated with Severe Myopia in Humans | Am J Hum Genet. 2013 Aug 8;93(2):313–20 | 2013 | 33 |
Young [36] | Molecular genetics of human myopia: an update | Optom Vis Sci. 2009 Jan;86(1):E8-E22 | 2009 | 31 |
Jiang et al. [37] | Detection of Mutations in LRPAP1, CTSH, LEPREL1, ZNF644, SLC39A5, and SCO2 in 298 Families with Early Onset High Myopia by Exome Sequencing | Invest Ophthalmol Vis Sci. 2014 Dec 18;56(1):339–45 | 2014 | 31 |
Verhoeven et al. [38] | Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium | Hum Genet. 2012 Sep;131(9):1467–80 | 2012 | 30 |
Main Cluster | Number of Publications | Number of Citation Links | Number of Citations Median (Range) | Number of Publications with ≥4 Citations | Number of Publications in the 100 Most Cited Publications |
---|---|---|---|---|---|
Group 1 | 379 | 2579 | 2 (0–107) | 308 | 93 |
Group 2 | 54 | 95 | 1 (0–18) | 0 | 5 |
Group 3 | 22 | 28 | 1 (0–10) | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez-Peregrina, C.; Martinez-Perez, C.; Villa-Collar, C.; Sánchez-Tena, M.Á. A Bibliometric and Citation Network Analysis of Myopia Genetics. Genes 2021, 12, 447. https://doi.org/10.3390/genes12030447
Alvarez-Peregrina C, Martinez-Perez C, Villa-Collar C, Sánchez-Tena MÁ. A Bibliometric and Citation Network Analysis of Myopia Genetics. Genes. 2021; 12(3):447. https://doi.org/10.3390/genes12030447
Chicago/Turabian StyleAlvarez-Peregrina, Cristina, Clara Martinez-Perez, Cesar Villa-Collar, and Miguel Ángel Sánchez-Tena. 2021. "A Bibliometric and Citation Network Analysis of Myopia Genetics" Genes 12, no. 3: 447. https://doi.org/10.3390/genes12030447
APA StyleAlvarez-Peregrina, C., Martinez-Perez, C., Villa-Collar, C., & Sánchez-Tena, M. Á. (2021). A Bibliometric and Citation Network Analysis of Myopia Genetics. Genes, 12(3), 447. https://doi.org/10.3390/genes12030447