Genome-Wide Analyses Reveal Genetic Convergence of Prolificacy between Goats and Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Phenotypes and Sample Collection
2.2. Whole-Genome Single Nucleotide Polymorphism (SNP)
2.3. Population Structure
2.4. Selective Sweeps
2.5. Ovarian RNA-Seq
2.6. Identification of Genetic Convergence
3. Results and Discussion
3.1. Population Structure
3.2. Convergent PSGs Linked to LS
3.3. Convergent DEGs Associated with LS
3.4. Convergent Biological Pathways
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LS | litter size |
LG | low-yield group |
HG | high-yield group |
FP | follicular phase |
LP | luteal phase |
PSGs | positively selected genes |
DEGs | differentially expressed genes |
GO | gene ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
ko | KEGG ontology |
YSD | Yunshang black goats for DNA sequencing |
YSR | Yunshang black goats for mRNA sequencing |
FIN | Finnsheep |
ROM | Romanov sheep |
STH | Small Tailed Han sheep |
Fst_RMS | root mean square of fixation index (Fst) |
nSL | number of segregating sites by length |
References
- Xu, S.S.; Gao, L.; Xie, X.L.; Ren, Y.L.; Shen, Z.Q.; Wang, F.; Shen, M.; Eyϸórsdóttir, E.; Hallsson, J.H.; Kiseleva, T.; et al. Genome-wide association analyses highlight the potential for different genetic mechanisms for litter size among sheep breeds. Front. Genet. 2018, 9, 118. [Google Scholar] [CrossRef]
- Tao, L.; He, X.Y.; Jiang, Y.T.; Lan, R.; Li, M.; Li, Z.M.; Yang, W.F.; Hong, Q.H.; Chu, M.X. Combined approaches to reveal genes associated with litter size in Yunshang black goats. Anim. Genet. 2020, 51, 924–934. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Pan, Z.; Di, R.; Liu, Q.; Hu, W.; Guo, X.; He, X.; Gan, S.; Wang, X.; Chu, M. Whole genome sequencing reveals the effects of recent artificial selection on litter size of Bamei mutton sheep. Animals 2021, 11, 157. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Zhang, T.; Chen, Q.M.; Zhang, R.Q.; Li, L.; Cheng, S.F.; Shen, W.; Lei, C.Z. Genomic signatures of selection associated with litter size trait in Jining Gray goat. Front. Genet. 2020, 11, 286. [Google Scholar] [CrossRef] [PubMed]
- Demars, J.; Fabre, S.; Sarry, J.; Rossetti, R.; Gilbert, H.; Persani, L.; Tosser-Klopp, G.; Mulsant, P.; Nowak, Z.; Drobik, W. Genome-wide association studies identify two novel BMP15 mutations responsible for an atypical hyperprolificacy phenotype in sheep. PLoS Genet. 2013, 9, e1003482. [Google Scholar] [CrossRef]
- Lai, F.N.; Zhai, H.L.; Cheng, M.; Ma, J.Y.; Cheng, S.F.; Ge, W.; Zhang, G.L.; Wang, J.J.; Zhang, R.Q.; Wang, X. Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus). Sci. Rep. 2016, 6, 38096. [Google Scholar] [CrossRef]
- Wang, K.; Liu, X.; Qi, T.; Hui, Y.; Yan, H.; Qu, L.; Lan, X.; Pan, C. Whole-genome sequencing to identify candidate genes for litter size and to uncover the variant function in goats (Capra hircus). Genomics 2021, 113, 142–150. [Google Scholar] [CrossRef]
- Hua, G.H.; Chen, S.L.; Ai, J.T.; Yang, L.G. None of polymorphism of ovine fecundity major genes FecB and FecX was tested in goat. Anim. Reprod. Sci. 2008, 108, 279–286. [Google Scholar] [CrossRef]
- Mulsant, P.; Lecerf, F.; Fabre, S.; Schibler, L.; Monget, P.; Lanneluc, I.; Pisselet, C.; Riquet, J.; Monniaux, D.; Callebaut, I.; et al. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes. Proc. Natl. Acad. Sci. USA 2001, 98, 5104–5109. [Google Scholar] [CrossRef] [Green Version]
- Alberto, F.J.; Boyer, F.; Orozco-terWengel, P.; Streeter, I.; Servin, B.; de Villemereuil, P.; Benjelloun, B.; Librado, P.; Biscarini, F.; Colli, L.; et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 2018, 9, 813. [Google Scholar] [CrossRef]
- Wu, D.-D.; Yang, C.-P.; Wang, M.-S.; Dong, K.-Z.; Yan, D.-W.; Hao, Z.-Q.; Fan, S.-Q.; Chu, S.-Z.; Shen, Q.-S.; Jiang, L.-P.; et al. Convergent genomic signatures of high-altitude adaptation among domestic mammals. Nat. Sci. Rev. 2019, 7, 952–963. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mckenna, A.; Hanna, M.G.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.M.; Garimella, K.; Altshuler, D.S.; Gabriel, S.; Daly, M. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.R.; Albers, C.A.; Banks, E.; Depristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef]
- Turner, S.D. qqman: An R package for visualizing GWAS results using QQ and manhattan plots. bioRxiv 2014. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.Y.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Kovaka, S.; Zimin, A.V.; Pertea, G.M.; Razaghi, R.; Salzberg, S.L.; Pertea, M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019, 20, 278. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrer-Admetlla, A.; Liang, M.; Korneliussen, T.; Nielsen, R. On detecting incomplete soft or hard selective sweeps using haplotype structure. Mol. Biol. Evol. 2014, 31, 1275–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Rochus, C.M.; Jonas, E.; Johansson, A.M. Population structure of five native sheep breeds of Sweden estimated with high density SNP genotypes. BMC Genet. 2020, 21, 27. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Liu, W.-P.; Cheng, L.-G.; Li, H.-J.; Wu, H.; Liu, Y.-H.; Chen, C.; Xiao, X.; Li, M.; Wang, G.-D.; et al. Whole genome analyses reveal significant convergence in obsessive-compulsive disorder between humans and dogs. Sci. Bull. 2021, 66, 187–196. [Google Scholar] [CrossRef]
- Kuberan, B.; Lech, M.; Borjigin, J.; Rosenberg, R.D. Light-induced 3-O-sulfotransferase expression alters pineal heparan sulfate fine structure: A surprising link to circadian rhythm. J. Biol. Chem. 2004, 279, 5053–5054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Royo, A.; Alabart, J.L.; Sarto, P.; Serrano, M.; Lahoz, B.; Folch, J.; Calvo, J.H. Genome-wide association studies for reproductive seasonality traits in Rasa Aragonesa sheep breed. Theriogenology 2017, 99, 21–29. [Google Scholar] [CrossRef]
- Coster, A.; Madsen, O.; Heuven, H.C.; Dibbits, B.; Groenen, M.A.; van Arendonk, J.A.; Bovenhuis, H. The imprinted gene DIO3 is a candidate gene for litter size in pigs. PLoS ONE 2012, 7, e31825. [Google Scholar] [CrossRef] [Green Version]
- Klüppel, M.; Vallis, K.A.; Wrana, J.L. A high-throughput induction gene trap approach defines C4ST as a target of BMP signaling. Mech. Dev. 2002, 118, 77–89. [Google Scholar] [CrossRef]
- Klüppel, M.; Wight, T.N.; Chan, C.; Hinek, A.; Wrana, J.L. Maintenance of chondroitin sulfation balance by chondroitin-4-sulfotransferase 1 is required for chondrocyte development and growth factor signaling during cartilage morphogenesis. Development 2005, 132, 3989–4003. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, S.; Feferman, L.; Tobacman, J.K. Regulation of chondroitin-4-sulfotransferase (CHST11) expression by opposing effects of arylsulfatase B on BMP4 and Wnt9A. Biochim. Biophys. Acta 2015, 1849, 342–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira-Ferrer, L.; Heßling, A.; Trillsch, F.; Mahner, S.; Milde-Langosch, K. Prognostic impact of chondroitin-4-sulfotransferase CHST11 in ovarian cancer. Tumor Biol. 2015, 36, 9023–9030. [Google Scholar] [CrossRef] [PubMed]
- Farkas, S.A.; Sorbe, B.G.; Nilsson, T.K. Epigenetic changes as prognostic predictors in endometrial carcinomas. Epigenetics 2017, 12, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Wang, K.; Zhou, J.; Chen, D.; Yang, Q.; Yang, X.; Liu, Y.; Feng, B.; Jiang, A.; Shen, L.; et al. GWAS on imputed whole-genome resequencing from genotyping-by-sequencing data for farrowing interval of different parities in pigs. Front. Genet. 2019, 10, 1012. [Google Scholar] [CrossRef]
- Forsyth, R.; Gunay-Aygun, M. Bardet-Biedl syndrome overview. In GeneReviews(®); Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Stephens, K., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Weihbrecht, K.; Goar, W.A.; Carter, C.S.; Sheffield, V.C.; Seo, S. Genotypic and phenotypic characterization of the Sdccag8Tn(sb-Tyr)2161B.CA1C2Ove mouse model. PLoS ONE 2018, 13, e0192755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Airik, R.; Schueler, M.; Airik, M.; Cho, J.; Ulanowicz, K.A.; Porath, J.D.; Hurd, T.W.; Bekker-Jensen, S.; Schrøder, J.M.; Andersen, J.S.; et al. SDCCAG8 interacts with RAB effector proteins RABEP2 and ERC1 and is required for Hedgehog signaling. PLoS ONE 2016, 11, e0156081. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Z.; Ding, R.; Peng, L.; Wu, J.; Ye, Y.; Zhou, S.; Wang, X.; Quan, J.; Zheng, E.; Cai, G.; et al. Genome-wide association analyses identify known and novel loci for teat number in Duroc pigs using single-locus and multi-locus models. BMC Genom. 2020, 21, 344. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, G.; Li, Y.-P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016, 4, 16009. [Google Scholar] [CrossRef]
- Abdoli, R.; Zamani, P.; Mirhoseini, S.Z.; Ghavi Hossein-Zadeh, N.; Nadri, S. A review on prolificacy genes in sheep. Reprod. Domest. Anim. 2016, 51, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, L.; Wu, T.; Feng, Y.; Ding, Y.; Ye, P.; Yin, Z. Transcriptomic analysis of ovaries from pigs with high and low litter size. PLoS ONE 2015, 10, e0139514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokharel, K.; Peippo, J.; Honkatukia, M.; Seppala, A.; Rautiainen, J.; Ghanem, N.; Hamama, T.M.; Crowe, M.A.; Andersson, M.; Li, M.H.; et al. Integrated ovarian mRNA and miRNA transcriptome profiling characterizes the genetic basis of prolificacy traits in sheep (Ovis aries). BMC Genom. 2018, 19, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Zhang, B.; Chu, M.; Wang, P.; Feng, T.; Cao, G.; Di, R.; Fang, L.; Huang, D.; Tang, Q. Polymorphism of insulin-like growth factor 1 gene and its association with litter size in Small Tail Han sheep. Mol. Biol. Rep. 2012, 39, 9801–9807. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.; Venkatachalapathy, T.; Aravindakshan, T.; Raghavan, K.C. Molecular cloning, SNP detection and association analysis of 5′ flanking region of the goat IGF1 gene with prolificacy. Anim. Reprod. Sci. 2016, 167, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-Q.; Tan, Y.; Zhang, B.-Y.; Chu, M.-X.; Deng, L.-M.; Fan, Q.; Liu, C.-X. DNA polymorphisms of 5′-flanking region of insulin-like growth factor 1 gene and their association with reproduction traits in goats. Agric. Sci. China 2011, 10, 1609–1617. [Google Scholar] [CrossRef]
- Hatzirodos, N.; Hummitzsch, K.; Irving-Rodgers, H.F.; Rodgers, R.J. Transcriptome profiling of the theca interna in transition from small to large antral ovarian follicles. PLoS ONE 2014, 9, e97489. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.G.; Hwang, J.H.; Park, D.H.; Kim, T.W.; Kang, D.G.; Kang, K.H.; Kim, I.-S.; Park, H.C.; Na, C.-S.; Ha, J. Identification of differentially expressed genes associated with litter size in Berkshire pig placenta. PLoS ONE 2016, 11, e0153311. [Google Scholar] [CrossRef]
- Oh, J.W.; Kim, S.K.; Cho, K.C.; Kim, M.S.; Suh, C.S.; Lee, J.R.; Kim, K.P. Proteomic analysis of human follicular fluid in poor ovarian responders during in vitro fertilization. Proteomics 2017, 17, 1600333. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, X.; Tan, Z.; Ning, C.; Xing, K.; Yang, T.; Pan, Y.; Sun, D.; Wang, C. Genome-wide association study of piglet uniformity and farrowing interval. Front. Genet. 2017, 8, 194. [Google Scholar] [CrossRef] [Green Version]
- Padua, M.B.; Hansen, P.J. Evolution and function of the uterine serpins (SERPINA14). Am. J. Reprod. Immunol. 2010, 64, 265–274. [Google Scholar] [CrossRef]
- Ulbrich, S.E.; Frohlich, T.; Schulke, K.; Englberger, E.; Waldschmitt, N.; Arnold, G.J.; Reichenbach, H.D.; Reichenbach, M.; Wolf, E.; Meyer, H.H.D.; et al. Evidence for estrogen-dependent uterine serpin (SERPINA14) expression during estrus in the bovine endometrial glandular epithelium and lumen. Biol. Reprod. 2009, 81, 795–805. [Google Scholar] [CrossRef] [Green Version]
- Rohit, K.; Ramteke, P.W.; Amar, N.; Singh, S.P. Role of candidate genes in regulation of embryonic survival and maternal recognition of pregnancy in farm animals. Vet. World 2013, 6, 280–284. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.-S.; Lee, J.-H.; Jung, N.-C.; Choi, S.-Y.; Park, S.-Y.; Yoo, J.-Y.; Song, J.-Y.; Seo, H.G.; Lee, H.S.; Lim, D.-S. Rsad2 is necessary for mouse dendritic cell maturation via the IRF7-mediated signaling pathway. Cell Death Dis. 2018, 9, 823. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Xiang, M.; Hu, X.; Yu, J.; Xia, Y.; Tao, B.; Zhao, S. Duplex quantitative polymerase chain reaction of ISG15 and RSAD2 increases accuracy of early pregnancy diagnosis in dairy cows. Ann. Anim. Sci. 2019, 19, 383–401. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, Y.; Yao, W.; Li, Q.; Liu, H.; Pan, Z. Initiation of follicular atresia: Gene networks during early atresia in pig ovaries. Reproduction 2018, 156, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Livera, G.; Xie, F.; Garcia, M.A.; Jaiswal, B.; Chen, J.; Law, E.; Storm, D.R.; Conti, M. Inactivation of the mouse adenylyl cyclase 3 gene disrupts male fertility and spermatozoon function. Mol. Endocrinol. 2005, 19, 1277–1290. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, F.; Feng, X.; Yang, H.; Zhu, A.; Pang, J.; Han, L.; Zhang, T.; Yao, X.; Wang, F. Genome-wide analysis of DNA methylation profiles on sheep ovaries associated with prolificacy using whole-genome Bisulfite sequencing. BMC Genom. 2017, 18, 759. [Google Scholar] [CrossRef]
- Sironen, A.I.; Uimari, P.; Serenius, T.; Mote, B.; Rothschild, M.; Vilkki, J. Effect of polymorphisms in candidate genes on reproduction traits in Finnish pig populations. J. Anim. Sci. 2010, 88, 821–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Population 1 | Average Litter Size (Mean ± SD) | p-Value 2 | |
---|---|---|---|
Low-Yield Group | High-Yield Group | ||
YSD | 1.32 ± 0.19 (n = 20) | 3.00 ± 0.38 (n = 20) | 5.16 × 10−8 |
YSR | 1.75 ± 0.26 (n = 10) | 3.30 ± 0.35 (n = 10) | 1.21 × 10−4 |
FIN | 1.66 ± 0.33 (n = 9) | 3.59 ± 0.41 (n = 10) | 2.76 × 10−4 |
ROM | 1.53 ± 0.25 (n = 9) | 3.13 ± 0.17 (n = 10) | 2.01 × 10−4 |
STH | 1.00 ± 0.00 (n = 6) | 2.89 ± 0.17 (n = 6) | 2.22 × 10−3 |
Term | Name | −lg(p) | Gene | ||
---|---|---|---|---|---|
Sheep | Goat | Sheep | Goat | ||
hsa04012 | ErbB signaling pathway | 3.92 | 2.18 | CBL PIK3CA MAPK10 KCNH8 NRG4 | CAMK2B GRB2 MAPK10 SRC AKT3 |
ko04380 | Osteoclast differentiation | 3.27 | 2.89 | MAPK14 NFATC2 PIK3CA MAPK10 TGFB2 | FCGR2A FCGR2B FCGR3A FCGR3B GRB2 MAPK10 TEC AKT3 |
hsa04380 | Osteoclast differentiation | 3.14 | 2.72 | MAPK14 NFATC2 PIK3CA MAPK10 TGFB2 | FCGR2A FCGR2B FCGR3A FCGR3B GRB2 MAPK10 TEC AKT3 RHBDF2 |
ko04012 | ErbB signaling pathway | 3.01 | 2.34 | CBL PIK3CA MAPK10 NRG4 | CAMK2B GRB2 MAPK10 SRC AKT3 |
hsa04926 | Relaxin signaling pathway | 2.29 | 2.13 | MAPK14 PIK3CA MAPK10 CREB5 | ADCY3 GNG5 GRB2 MMP9 MAPK10 SRC AKT3 |
Term | Name | −lg(p) | Gene | ||
---|---|---|---|---|---|
Goat | Sheep | Goat | Sheep | ||
Protein kinase B signaling | GO:0043491 | 2.99 | 2.58 | TCF7L2 IGFBP5 RPS6KB2 MYOC LOC102175889 | IGF1 KIT LOX TRK2 PKHD1 |
Antigen processing and presentation | ko04612 | 2.08 | 3.86 | PDIA3 CREB1 CALR NFYC | HLA-A HLA-BLA-C HLA-F |
Regulation of viral genome replication | GO:0045069 | 2.25 | 6.15 | RSAD2 VAPA | IFIT1 MX1 ISG15 RSAD2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, L.; He, X.; Jiang, Y.; Liu, Y.; Ouyang, Y.; Shen, Y.; Hong, Q.; Chu, M. Genome-Wide Analyses Reveal Genetic Convergence of Prolificacy between Goats and Sheep. Genes 2021, 12, 480. https://doi.org/10.3390/genes12040480
Tao L, He X, Jiang Y, Liu Y, Ouyang Y, Shen Y, Hong Q, Chu M. Genome-Wide Analyses Reveal Genetic Convergence of Prolificacy between Goats and Sheep. Genes. 2021; 12(4):480. https://doi.org/10.3390/genes12040480
Chicago/Turabian StyleTao, Lin, Xiaoyun He, Yanting Jiang, Yufang Liu, Yina Ouyang, Yezhen Shen, Qionghua Hong, and Mingxing Chu. 2021. "Genome-Wide Analyses Reveal Genetic Convergence of Prolificacy between Goats and Sheep" Genes 12, no. 4: 480. https://doi.org/10.3390/genes12040480
APA StyleTao, L., He, X., Jiang, Y., Liu, Y., Ouyang, Y., Shen, Y., Hong, Q., & Chu, M. (2021). Genome-Wide Analyses Reveal Genetic Convergence of Prolificacy between Goats and Sheep. Genes, 12(4), 480. https://doi.org/10.3390/genes12040480