Causal Associations between Serum Urea and Cancer: A Mendelian Randomization Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Sources
2.2. Genetic Association with Outcomes
2.3. Selection of Instrumental Variables
2.4. Statistical Methods
3. Results
3.1. Association of Urea Variants with RCC, BRCA, and PC
3.2. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MR | Mendelian Randomization |
BRCA | Breast Cancer |
PCa | Prostate Cancer |
RCC | Renal Cell Carcinoma |
SNP | Single Nucleotide Polymorphism |
GWAS | Genome-Wide Association Studies |
IVW | Inverse-Variance Weighted |
IV | Instrumental Variable |
References
- Padala, S.A.; Barsouk, A.; Thandra, K.C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of Renal Cell Carcinoma. World J. Oncol. 2020, 11, 79–87. [Google Scholar] [CrossRef]
- Tsuchida, S.; Sugawara, H.; Harata, T.; Yamaguchi, O.; Arai, S. Diagnosis, treatment and prognosis of renal cell carcinoma. Tohoku J. Exp. Med. 1974, 113, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volpe, A.; Patard, J.J. Prognostic factors in renal cell carcinoma. World J. Urol. 2010, 28, 319–327. [Google Scholar] [CrossRef]
- Zimpfer, A.; Glass, A.; Zettl, H.; Maruschke, M.; Hakenberg, O.W.; Erbersdobler, A. Renal cell carcinoma diagnosis and prognosis within the context of the WHO classification 2016. Der Urol. Ausg. A 2019, 58, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Santoni, M.; De Tursi, M.; Felici, A.; Lo Re, G.; Ricotta, R.; Ruggeri, E.M.; Sabbatini, R.; Santini, D.; Vaccaro, V.; Milella, M. Management of metastatic renal cell carcinoma patients with poor-risk features: Current status and future perspectives. Expert Rev. Anticancer Ther. 2013, 13, 697–709. [Google Scholar] [CrossRef]
- Bennett, N.C.; Rajandram, R.; Ng, K.L.; Gobe, G.C. Evaluation of steroid hormones and their receptors in development and progression of renal cell carcinoma. J. Kidney Cancer VHL 2014, 1, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, W.; Sun, Y.; Guo, C.; Hu, G.; Wang, M.; Zheng, J.; Lin, W.; Huang, Q.; Li, G.; Zheng, J.; et al. LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor(AR)/miRNA-143-3p signals. Cell Death Differ. 2017, 24, 1502–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanker, A.B.; Sudhan, D.R.; Arteaga, C.L. Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell 2020, 37, 496–513. [Google Scholar] [CrossRef]
- Collins, L.C.; Cole, K.S.; Marotti, J.D.; Hu, R.; Schnitt, S.J.; Tamimi, R.M. Androgen receptor expression in breast cancer in relation to molecular phenotype: Results from the Nurses’ Health Study. Mod. Pathol. 2011, 24, 924–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kono, M.; Fujii, T.; Lim, B.; Karuturi, M.S.; Tripathy, D.; Ueno, N.T. Androgen Receptor Function and Androgen Receptor-Targeted Therapies in Breast Cancer: A Review. JAMA Oncol. 2017, 3, 1266–1273. [Google Scholar] [CrossRef]
- Dai, C.; Heemers, H.; Sharifi, N. Androgen Signaling in Prostate Cancer. Cold Spring Harb. Perspect. Med. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copeland, B.T.; Pal, S.K.; Bolton, E.C.; Jones, J.O. The androgen receptor malignancy shift in prostate cancer. Prostate 2018, 78, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Hung, R.J.; Moore, L.; Boffetta, P.; Feng, B.J.; Toro, J.R.; Rothman, N.; Zaridze, D.; Navratilova, M.; Bencko, V.; Janout, V.; et al. Family history and the risk of kidney cancer: A multicenter case-control study in Central Europe. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1287–1290. [Google Scholar] [CrossRef] [Green Version]
- Kawashima, A.; Young, S.W.; Takahashi, N.; King, B.F.; Atwell, T.D. Inherited renal carcinomas. Abdom. Radiol. 2016, 41, 1066–1078. [Google Scholar] [CrossRef]
- Gago-Dominguez, M.; Yuan, J.M.; Castelao, J.E.; Ross, R.K.; Yu, M.C. Family history and risk of renal cell carcinoma. Cancer Epidemiol. Biomark. Prev 2001, 10, 1001–1004. [Google Scholar]
- Chen, T.; Fallah, M.; Sundquist, K.; Liu, H.; Hemminki, K. Risk of subsequent cancers in renal cell carcinoma survivors with a family history. Eur. J. Cancer 2014, 50, 2108–2118. [Google Scholar] [CrossRef] [PubMed]
- Chow, W.H.; Dong, L.M.; Devesa, S.S. Epidemiology and risk factors for kidney cancer. Nat. Rev. Urol. 2010, 7, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Scelo, G.; Larose, T.L. Epidemiology and Risk Factors for Kidney Cancer. J. Clin. Oncol. 2018, 36, 3574. [Google Scholar] [CrossRef]
- Dickerson, A.S.; Lee, J.S.; Keshava, C.; Hotchkiss, A.; Persad, A.S. Assessment of Health Effects of Exogenous Urea: Summary and Key Findings. Curr. Environ. Health Rep. 2018, 5, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ran, J.; Jiang, T. Urea. Sub-Cell. Biochem. 2014, 73, 7–29. [Google Scholar] [CrossRef]
- Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 2013, 37, 658–665. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; Daniel, R.M.; Butterworth, A.S.; Thompson, S.G.; Consortium, E.P.-I. Network Mendelian randomization: Using genetic variants as instrumental variables to investigate mediation in causal pathways. Int. J. Epidemiol. 2015, 44, 484–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davey Smith, G.; Paternoster, L.; Relton, C. When Will Mendelian Randomization Become Relevant for Clinical Practice and Public Health? JAMA 2017, 317, 589–591. [Google Scholar] [CrossRef] [Green Version]
- Lawlor, D.A.; Harbord, R.M.; Sterne, J.A.; Timpson, N.; Davey Smith, G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat. Med. 2008, 27, 1133–1163. [Google Scholar] [CrossRef]
- Palmer, T.M.; Lawlor, D.A.; Harbord, R.M.; Sheehan, N.A.; Tobias, J.H.; Timpson, N.J.; Davey Smith, G.; Sterne, J.A. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat. Methods Med. Res. 2012, 21, 223–242. [Google Scholar] [CrossRef] [Green Version]
- Thio, C.H.L.; Reznichenko, A.; van der Most, P.J.; Kamali, Z.; Vaez, A.; Smit, J.H.; Penninx, B.; Haller, T.; Mihailov, E.; Metspalu, A.; et al. Genome-Wide Association Scan of Serum Urea in European Populations Identifies Two Novel Loci. Am. J. Nephrol. 2019, 49, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Laskar, R.S.; Muller, D.C.; Li, P.; Machiela, M.J.; Ye, Y.; Gaborieau, V.; Foll, M.; Hofmann, J.N.; Colli, L.; Sampson, J.N.; et al. Sex specific associations in genome wide association analysis of renal cell carcinoma. Eur. J. Hum. Genet. EJHG 2019, 27, 1589–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michailidou, K.; Beesley, J.; Lindstrom, S.; Canisius, S.; Dennis, J.; Lush, M.J.; Maranian, M.J.; Bolla, M.K.; Wang, Q.; Shah, M.; et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat. Genet. 2015, 47, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, F.R.; Al Olama, A.A.; Berndt, S.I.; Benlloch, S.; Ahmed, M.; Saunders, E.J.; Dadaev, T.; Leongamornlert, D.; Anokian, E.; Cieza-Borrella, C.; et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 2018, 50, 928–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamat, M.A.; Blackshaw, J.A.; Young, R.; Surendran, P.; Burgess, S.; Danesh, J.; Butterworth, A.S.; Staley, J.R. PhenoScanner V2: An expanded tool for searching human genotype-phenotype associations. Bioinformatics 2019, 35, 4851–4853. [Google Scholar] [CrossRef] [Green Version]
- Staley, J.R.; Blackshaw, J.; Kamat, M.A.; Ellis, S.; Surendran, P.; Sun, B.B.; Paul, D.S.; Freitag, D.; Burgess, S.; Danesh, J.; et al. PhenoScanner: A database of human genotype-phenotype associations. Bioinformatics 2016, 32, 3207–3209. [Google Scholar] [CrossRef] [Green Version]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgess, S.; Thompson, S.G.; Collaboration, C.C.G. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 2011, 40, 755–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; Thompson, S.G. Erratum to: Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 391–392. [Google Scholar] [CrossRef] [Green Version]
- Yavorska, O.O.; Burgess, S. MendelianRandomization: An R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 2017, 46, 1734–1739. [Google Scholar] [CrossRef]
- Cade, J.F.; Pain, M.C. Lung function in provoked asthma: Responses to inhaled urea, methacholine and isoprenaline. Clin. Sci. 1972, 43, 759–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Far, M.; El Naggar, M.; Elkhawaga, O.A.; Yahya, R.; Allam, A.; Khalifa, A. Carcinoembryonic antigen, α-fetoprotein, and prostate-specific antigen in the sera of industrial workers exposed to phenol, formaldehyde, urea, and mixed vapors. Inhal. Toxicol. 2006, 18, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Marsh, G.M.; Gula, M.J.; Youk, A.O.; Cassidy, L.D. Bladder cancer among chemical workers exposed to nitrogen products and other substances. Am. J. Ind. Med. 2002, 42, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Opelz, G.; Dohler, B.; Susal, C. Analysis of positive kidney, heart, and liver transplant crossmatches reported to the Collaborative Transplant Study. Hum. Immunol. 2009, 70, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Willig, S.P. Kidney anatomy and physiology. Biomed. Instrum. Technol. 1993, 27, 342–344. [Google Scholar]
- Hutchens, M.P.; Dunlap, J.; Hurn, P.D.; Jarnberg, P.O. Renal ischemia: Does sex matter? Anesth. Analg. 2008, 107, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Langer, W.J.; Devish, K.; Lane, P.H. Compensatory kidney growth in estrogen receptor-α null mice. Am. J. Physiol.-Ren. Physiol. 2006, 290, F319–F323. [Google Scholar] [CrossRef] [PubMed]
- Kultz, D.; Chakravarty, D. Hyperosmolality in the form of elevated NaCl but not urea causes DNA damage in murine kidney cells. Proc. Natl. Acad. Sci. USA 2001, 98, 1999–2004. [Google Scholar] [CrossRef] [Green Version]
- Oppenheim, J.J.; Fishbein, W.N. Induction of chromosome breaks in cultured normal human leukocytes by potassium arsenite, hydroxyurea and related compounds. Cancer Res. 1965, 25, 980–985. [Google Scholar] [PubMed]
Outcome. | SNPs | Consortium | Total Population | Cases/Controls | Ethnicity | References |
---|---|---|---|---|---|---|
Total BRCA | 6 | BCAC | 89,677 | 46,785/42,892 | European | Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. PubMed id: 25751625 |
Overall PCa | 6 | PRATICAL | 140,254 | 79,148/61,106 | European | Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. PubMed id: 29892016 |
RCC in female | 6 | IARC | 5087 | 1992/3095 | European | Sex-specific associations in genome-wide association analysis of renal cell carcinoma PubMed id: 31231134 |
RCC in male | 6 | IARC | 8143 | 3227/4916 | European | Sex-specific associations in genome-wide association analysis of renal cell carcinoma. PubMed id: 31231134 |
SNP | Chromosome | Type | Nearby Gene | Serum Urea | |||
---|---|---|---|---|---|---|---|
EA | β | SE | p-Value | ||||
rs914615 | 1 | Intronic | THBS3 | A | 0.068 | 0.012 | 4 × 10−9 |
rs4686914 | 3 | Intergenic | LPP | T | –0.107 | 0.013 | 3 × 10−17 |
rs998394 | 3 | ncRNA/intronic | ADAMTS9-AS2 | A | –0.058 | 0.011 | 4 × 10−7 |
rs11954639 | 5 | Intergenic | PTGER4 | T | –0.168 | 0.027 | 6 × 10−10 |
rs2503107 | 6 | Intronic | RSPO3 | C | –0.065 | 0.013 | 5 × 10−7 |
rs2003313 | 11 | intergenic | POU2AF1 | T | –0.073 | 0.012 | 1 × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Li, J.; Qu, Z.; Yang, Z.; Jia, X.; Lin, Y.; He, Q.; Zhang, L.; Luo, Y. Causal Associations between Serum Urea and Cancer: A Mendelian Randomization Study. Genes 2021, 12, 498. https://doi.org/10.3390/genes12040498
Sun Y, Li J, Qu Z, Yang Z, Jia X, Lin Y, He Q, Zhang L, Luo Y. Causal Associations between Serum Urea and Cancer: A Mendelian Randomization Study. Genes. 2021; 12(4):498. https://doi.org/10.3390/genes12040498
Chicago/Turabian StyleSun, Yandi, Jingjia Li, Zihao Qu, Ze Yang, Xueyao Jia, Yindan Lin, Qian He, Lihong Zhang, and Yan Luo. 2021. "Causal Associations between Serum Urea and Cancer: A Mendelian Randomization Study" Genes 12, no. 4: 498. https://doi.org/10.3390/genes12040498
APA StyleSun, Y., Li, J., Qu, Z., Yang, Z., Jia, X., Lin, Y., He, Q., Zhang, L., & Luo, Y. (2021). Causal Associations between Serum Urea and Cancer: A Mendelian Randomization Study. Genes, 12(4), 498. https://doi.org/10.3390/genes12040498