Functional Analysis of Alkaline Phosphatase in Whitefly Bemisia tabaci (Middle East Asia Minor 1 and Mediterranean) on Different Host Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Set Collections and B. tabaci ALP Sequences Annotations
2.2. Phylogenetic Analysis, Conserved Domain Prediction, and dN/dS Values for Orthologous ALP Pairs Calculation
2.3. Insect Rearing
2.4. RNA Isolation and Real-Time Quantitative Reverse Transcription PCR (qRT-PCR)
2.5. ALP Activity Assays
2.6. Statistical Methods
3. Results
3.1. Identification of ALP Gene Family Members in MEAM1 and MED Whiteflies
3.2. Phylogenetic Analysis of MEAM1 and MED Whiteflies ALPs Compared with Other Insects
3.3. Conserved Protein Domain, Amino Acid Sequence Analysis of MEAM1 and MED Whiteflies ALPs
3.4. Expression Profiles of ALP Genes in MEAM1 and MED Whiteflies Fed on Cotton and Tobacco Plants
3.5. ALPs Activities Analysis in MEAM1 and MED Whiteflies Fed on Cotton and Tobacco Plants
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McComb, R.B.; Bowers, G.N., Jr.; Posen, S. Alkaline Phosphatase; Plenum Press: New York, NY, USA; London, UK, 1979. [Google Scholar]
- Sharma, U.; Pal, D.; Prasad, R. Alkaline phosphatase: An overview. Indian J. Clin. Biochem. 2014, 29, 269–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millán, J.L. Alkaline phosphatases: Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2006, 2, 335–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishihara, R. Studies on the malpighian tubles of the silkworm, Bombyx mori L. III Phosphatases in the malpighian tubules. J. Sericult. Sci. Jpn. 1957, 26, 23–28. [Google Scholar]
- Chang, W.S.; Zachow, K.R.; Bentley, D. Expression of epithelial alkaline phosphatase in segmentally iterated bands during grasshopper limb morphogenesis. Development 1993, 118, 651–663. [Google Scholar] [CrossRef]
- Itoh, M.; Kanamori, Y.; Takao, M.; Eguchi, M. Cloning of soluble alkaline phosphatase cDNA and molecular basis of the polymorphic nature in alkaline phosphatase isozymes of Bombyx mori midgut. Insect Biochem. Mol. Biol. 1999, 29, 121–129. [Google Scholar] [CrossRef]
- Yang, M.Y.; Wang, Z.; MacPherson, M.; Dow, J.A.; Kaiser, K. A novel Drosophila alkaline phosphatase specific to the ellipsoid body of the adult brain and the lower Malpighian (renal) tubule. Genetics 2000, 154, 285–297. [Google Scholar] [CrossRef]
- Arenas, I.; Bravo, A.; Soberón, M.; Gómez, I. Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. J. Biol. Chem. 2010, 285, 12497–12503. [Google Scholar] [CrossRef] [Green Version]
- Wright, T.R. The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster. Adv. Genet. 1987, 24, 127–222. [Google Scholar] [CrossRef]
- Rauschenbach, I.Y.; Chentsova, N.A.; Alekseev, A.A.; Gruntenko, N.E.; Adonyeva, N.V.; Karpova, E.K.; Komarova, T.N.; Vasiliev, V.G.; Bownes, M. Dopamine and octopamine regulate 20-hydroxyecdysone level in vivo in Drosophila. Arch. Insect Biochem. Physiol. 2007, 65, 95–102. [Google Scholar] [CrossRef]
- Rauschenbach, I.Y.; Bogomolova, E.V.; Gruntenko, N.E.; Adonyeva, N.V.; Chentsova, N.A. Effects of juvenile hormone and 20-hydroxyecdysone on alkaline phosphatase activity in Drosophila under normal and heat stress conditions. J. Insect Physiol. 2007, 53, 587–591. [Google Scholar] [CrossRef]
- Rauschenbach, I.Y.; Bogomolova, E.V.; Karpova, E.K.; Adonyeva, N.V.; Faddeeva, N.V.; Menshanov, P.N.; Gruntenko, N.E. Mechanisms of age-specific regulation of dopamine metabolism by juvenile hormone and 20-hydroxyecdysone in Drosophila females. J. Comp. Physiol. B 2011, 181, 19–26. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S.; Yang, B.; Liu, Z. Characterization of soluble and membrane-bound alkaline phosphatase in Nilaparvata lugens and their potential relation to development and insecticide resistance. Arch. Insect Biochem. Physiol. 2011, 78, 30–45. [Google Scholar] [CrossRef]
- Li, H.; Pan, H.; Tao, Y.; Jiang, D.; Zhang, Y.; Chu, D. Species identification of indigenous Bemisia tabaci in agricultural areas in China. Acta Pharmacol. Sin. 2016, 43, 84–90. [Google Scholar] [CrossRef]
- Alemandri, V.; Vaghi Medina, C.G.; Dumón, A.D.; Argüello Caro, E.B.; Mattio, M.F.; García Medina, S.; López Lambertini, P.M.; Truol, G. Three members of the Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species complex occur sympatrically in argentine horticultural crops. J. Econ. Èntomol. 2015, 108, 405–413. [Google Scholar] [CrossRef]
- Chu, D.; Zhang, Y.J.; Cong, B.; Xu, B.Y.; Wu, Q.J. Identification for Yunnan Q-biotype Bemisia tabaci population. Kun Chong Zhi Shi 2005, 42, 59–62. [Google Scholar]
- Liu, S.S.; De Barro, P.J.; Xu, J.; Luan, J.B.; Zang, L.S.; Ruan, Y.M.; Wan, F.H. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 2007, 318, 1769–1772. [Google Scholar] [CrossRef]
- Rao, Q.; Luo, C.; Zhang, H.; Guo, X.; Devine, G. Distribution and dynamics of Bemisia tabaci invasive biotypes in central China. Bull. Entomol. Res. 2010, 101, 81–88. [Google Scholar] [CrossRef]
- Perring, T.M. The Bemisia tabaci species complex. Crop. Prot. 2001, 20, 725–737. [Google Scholar] [CrossRef]
- Liu, B.; Yan, F.; Chu, D.; Pan, H.; Jiao, X.; Xie, W.; Wu, Q.; Wang, S.; Xu, B.; Zhou, X.; et al. Difference in feeding behaviors of two invasive whiteflies on host plants with different suitability: Implication for competitive displacement. Int. J. Biol. Sci. 2012, 8, 697–706. [Google Scholar] [CrossRef]
- Pan, H.; Li, X.; Ge, D.; Wang, S.; Wu, Q.; Xie, W.; Jiao, X.; Chu, D.; Liu, B.; Xu, B.; et al. Factors affecting population dynamics of maternally transmitted endosymbionts in Bemisia tabaci. PLoS ONE 2012, 7, e30760. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.B.; Liu, Y.Q.; Qin, L.; Xu, J.; Li, F.F.; Liu, S.S. Competitive displacement between two invasive whiteflies: Insecticide application and host plant effects. Bull. Entomol. Res. 2013, 103, 344–353. [Google Scholar] [CrossRef]
- Funk, C.J. Alkaline phosphatase activity in whitefly salivary glands and saliva. Arch. Insect Biochem. Physiol. 2001, 46, 165–174. [Google Scholar] [CrossRef]
- Yan, Y.; Peng, L.; Liu, W.X.; Wan, F.H.; Harris, M.K. Host plant effects on alkaline phosphatase activity in the whiteflies, Bemisia tabaci Biotype B and Trialeurodes vaporariorum. J. Insect Sci. 2011, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Poddar, N.; Sabtharishi, S. Alkaline phosphatase activity in developmental stages of Asia I and Asia II-1 populations of whitefly, Bemisia tabaci (Gennadius). Curr. Sci. 2016, 110, 25–2016. [Google Scholar] [CrossRef]
- Nathan, S.S. Effects of Melia azedarach on nutritional physiology and enzyme activities of the rice leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Pestic. Biochem. Physiol. 2006, 84, 98–108. [Google Scholar] [CrossRef]
- Nathan, S.S.; Choi, M.Y.; Paik, C.H.; Seo, H.Y. Food consumption, utilization, and detoxification enzyme activity of the rice leaffolder larvae after treatment with Dysoxylum triterpenes. Pestic. Biochem. Physiol. 2007, 88, 260–267. [Google Scholar] [CrossRef]
- Xie, W.; Chen, C.; Yang, Z.; Guo, L.; Yang, X.; Wang, D.; Chen, M.; Huang, J.; Wen, Y.; Zeng, Y.; et al. Genome sequencing of the sweetpotato whitefly Bemisia tabaci MED/Q. GigaScience 2017, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Hasegawa, D.K.; Kaur, N.; Kliot, A.; Pinheiro, P.V.; Luan, J.; Stensmyr, M.C.; Zheng, Y.; Liu, W.; Sun, H.; et al. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 2016, 14, 1–15. [Google Scholar] [CrossRef]
- Yin, C.; Shen, G.; Guo, D.; Wang, S.; Ma, X.; Xiao, H.; Liu, J.; Zhang, Z.; Liu, Y.; Zhang, Y.; et al. InsectBase: A resource for insect genomes and transcriptomes. Nucleic Acids Res. 2016, 44, D801–D807. [Google Scholar] [CrossRef] [Green Version]
- Marchler-Bauer, A.; Derbyshire, M.K.; Gonzales, N.R.; Lu, S.; Chitsaz, F.; Geer, L.Y.; Geer, R.C.; He, J.; Gwadz, M.; Hurwitz, D.I.; et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015, 43, D222–D226. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018, 46, D493–D496. [Google Scholar] [CrossRef]
- Bjellqvist, B.; Hughes, G.J.; Pasquali, C.; Paquet, N.; Ravier, F.; Sanchez, J.C.; Frutiger, S.; Hochstrasser, D. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 1993, 14, 1023–1031. [Google Scholar] [CrossRef]
- Yu, C.S.; Chen, Y.C.; Lu, C.H.; Hwang, J.K. Prediction of protein subcellular localization. Proteins 2006, 64, 643–651. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; Von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef]
- Pierleoni, A.; Martelli, P.L.; Casadio, R. PredGPI: A GPI-anchor predictor. BMC Bioinform. 2008, 9, 392. [Google Scholar] [CrossRef] [Green Version]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.R.; Wang, C.; Wang, X.W.; Qian, L.X.; Chi, Y.; Liu, S.S.; Liu, Y.Q.; Wang, X.W. The functions of caspase in whitefly Bemisia tabaci apoptosis in response to ultraviolet irradiation. Insect Mol. Biol. 2018, 27, 739–751. [Google Scholar] [CrossRef]
- Wang, X.R.; Wang, C.; Ban, F.X.; Zhu, D.T.; Liu, S.S.; Wang, X.W. Genome-wide identification and characterization of HSP gene superfamily in whitefly (Bemisia tabaci) and expression profiling analysis under temperature stress. Insect Sci. 2019, 26, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Koonin, E.V. Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 2005, 39, 309–338. [Google Scholar] [CrossRef] [Green Version]
- Suyama, M.; Torrents, D.; Bork, P. PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006, 34, W609–W612. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.W.; Luan, J.B.; Li, J.M.; Su, Y.L.; Xia, J.; Liu, S.S. Transcriptome analysis and comparison reveal divergence between two invasive whitefly cryptic species. BMC Genom. 2011, 12, 458. [Google Scholar] [CrossRef] [Green Version]
- Eguchi, M.; Azuma, M.; Yamamoto, H.; Takeda, S. Genetically defined membrane-bound and soluble alkaline phosphatases of the silkworm: Their discrete localization and properties. Prog. Clin. Boil. Res. 1990, 344, 267–287. [Google Scholar]
- Azuma, M.; Eguchi, M. Discrete localization of distinct alkaline phosphatase isozymes in the cell surface of silkworm midgut epithelium. J. Exp. Zool. 1989, 251, 108–112. [Google Scholar] [CrossRef]
- Okada, N.; Azuma, M.; Eguchi, M. Alkaline phosphatase isozymes in the midgut of silkworm: Purification of high pH-stable microvillus and labile cytosolic enzymes. J. Comp. Physiol. B 1989, 159, 123–130. [Google Scholar] [CrossRef]
- Azuma, M.; Takeda, S.; Yamamoto, H.; Endo, Y.; Eguchi, M. Goblet cell alkaline phosphatase in silkworm midgut epithelium: Its entity and role as an ATPase. J. Exp. Zool. 1991, 258, 294–302. [Google Scholar] [CrossRef]
- Eguchi, M. Alkaline phosphatase isozymes in insects and comparison with mammalian enzyme. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1995, 111, 151–162. [Google Scholar] [CrossRef]
- Chu, N.; Guo, N.; Tao, Y.; Jiang, D.; Li, J.; Zhang, Y. Evidence for rapid spatiotemporal changes in genetic structure of an alien whitefly during initial invasion. Sci. Rep. 2014, 4, 4396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caccia, S.; Moar, W.J.; Chandrashekhar, J.; Oppert, C.; Anilkumar, K.J.; Jurat-Fuentes, J.L.; Ferré, J. Association of Cry1Ac toxin resistance in Helicoverpa zea (Boddie) with increased alkaline phosphatase levels in the midgut lumen. Appl. Environ. Microbiol. 2012, 78, 5690–5698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Order | Species | ALP Gene Number |
---|---|---|
Coleoptera | Tribolium castaneum | 3 |
Diptera | Aedes aegypti | 5 |
Drosophila melanogaster | 15 | |
Hemiptera | Nilaparvata lugens | 2 |
Acyrthosiphon pisum | 5 | |
Bemisia tabaci MEAM1 | 5 | |
Bemisia tabaci MED | 9 | |
Hymenoptera | Nasonia vitripennis | 2 |
Apis mellifera | 3 | |
Lepidoptera | Bombyx mori | 4 |
Heliothis virescens | 5 |
Species Complex | Gene Name | Gene Identifier | CDS | AA | pI | Mw (kDa) | Predicted Subcellular Location | Signal Peptide |
---|---|---|---|---|---|---|---|---|
Bemisia tabaci MEAM1 | BtALP1-B | Bta06445 | 2784 | 927 | 5.97 | 103.45 | Cytoplasmic | _ |
BtALP2-B | Bta07544 | 1782 | 593 | 8.09 | 64.795 | Periplasmic | N 1–26 | |
BtALP3-B | Bta09616 | 1608 | 535 | 5.93 | 58.02 | Periplasmic | N 1–22 | |
BtALP4-B | Bta14984 | 1686 | 561 | 5.83 | 61.157 | Periplasmic | N 1–23 | |
BtALP5-B | Bta14395 | 1671 | 556 | 5.56 | 61.122 | Extracellular | N 1–17 | |
Bemisia tabaci MED | BtALP1-Q | BTA023249.1 | 2037 | 678 | 6.67 | 75.832 | Periplasmic | _ |
BtALP2-Q | BTA018369.1 | 1926 | 641 | 7.26 | 70.873 | Periplasmic | N 1–23 | |
BtALP3-Q | BTA023373.1 | 1323 | 440 | 6.24 | 48.033 | Extracellular | _ | |
BtALP4-Q | BTA003226.1 | 1491 | 496 | 6.26 | 54.505 | Extracellular/Cytoplasmic | _ | |
BtALP5-Q | BTA006612.1 | 1572 | 523 | 6.64 | 56.565 | Periplasmic | _ | |
BtALP6-Q | BTA027509.1 | 1185 | 394 | 5.27 | 42.659 | Extracellular/Periplasmic | _ | |
BtALP7-Q | BTA017150.1 | 336 | 111 | 6.57 | 11.941 | Cytoplasmic | _ | |
BtALP8-Q | BTA001657.1 | 1662 | 553 | 5.95 | 60.476 | Periplasmic | N 1–26 | |
BtALP9-Q | BTA024811.1 | 1467 | 488 | 5.64 | 53.675 | Extracellular |
Ortholog 1 | Ortholog 2 | dN | dS | dN/dS |
---|---|---|---|---|
BtALP2-B | BtALP5-Q | 0.1349 | 0.3704 | 0.364 |
BtALP4-B | BtALP8-Q | 0.0396 | 0.1236 | 0.321 |
BtALP5-B | BtALP9-Q | 0.002 | 0.0195 | 0.1 |
BtALP3-B | BtALP6-Q | 0.0158 | 0.0789 | 0.2 |
BtALP1-B | BtALP4-Q | 0.0021 | 0.0342 | 0.061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, W.-H.; Zou, C.; Qian, L.-X.; Wang, C.; Wang, X.-W.; Liu, Y.-Q.; Wang, X.-R. Functional Analysis of Alkaline Phosphatase in Whitefly Bemisia tabaci (Middle East Asia Minor 1 and Mediterranean) on Different Host Plants. Genes 2021, 12, 497. https://doi.org/10.3390/genes12040497
Han W-H, Zou C, Qian L-X, Wang C, Wang X-W, Liu Y-Q, Wang X-R. Functional Analysis of Alkaline Phosphatase in Whitefly Bemisia tabaci (Middle East Asia Minor 1 and Mediterranean) on Different Host Plants. Genes. 2021; 12(4):497. https://doi.org/10.3390/genes12040497
Chicago/Turabian StyleHan, Wen-Hao, Chi Zou, Li-Xin Qian, Chao Wang, Xiao-Wei Wang, Yin-Quan Liu, and Xin-Ru Wang. 2021. "Functional Analysis of Alkaline Phosphatase in Whitefly Bemisia tabaci (Middle East Asia Minor 1 and Mediterranean) on Different Host Plants" Genes 12, no. 4: 497. https://doi.org/10.3390/genes12040497
APA StyleHan, W. -H., Zou, C., Qian, L. -X., Wang, C., Wang, X. -W., Liu, Y. -Q., & Wang, X. -R. (2021). Functional Analysis of Alkaline Phosphatase in Whitefly Bemisia tabaci (Middle East Asia Minor 1 and Mediterranean) on Different Host Plants. Genes, 12(4), 497. https://doi.org/10.3390/genes12040497