Clinical Implementation of Expanded Carrier Screening in Pregnant Women at Early Gestational Weeks: A Chinese Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Clinical Practice
2.2. Panel Design
2.3. Next-Generation Sequencing and Complementary Gene Tests
2.4. Variant Interpretation and Data Analysis
3. Results
3.1. Population Demographics
3.2. Disease Carrier Rates
3.3. Estimated Yield of ECS Panel
3.4. Sequential Testing of Male Partners
3.5. At-Risk Couples and Results-Guided Behaviors:
4. Discussion
4.1. Would a Larger-Size ECS Panel Be Better?
4.2. The Patients’ Attitudes towards ECS and Influential Factors
4.3. Issues to Consider for Counselling
4.4. Limitations and Outlook
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethics Approval
References
- Johansen Taber, K.A.; Beauchamp, K.A.; Lazarin, G.A.; Muzzey, D.; Arjunan, A.; Goldberg, J.D. Clinical utility of expanded carrier screening: Results-guided actionability and outcomes. Genet. Med. 2019, 21, 1041–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingsmore, S. Comprehensive carrier screening and molecular diagnostic testing for recessive childhood diseases. PLoS Curr. 2012, 4, e4f9877ab8ffa9. [Google Scholar] [CrossRef] [PubMed]
- Ghiossi, C.E.; Goldberg, J.D.; Haque, I.S.; Lazarin, G.A.; Wong, K.K. Clinical Utility of Expanded Carrier Screening: Reproductive Behaviors of At-Risk Couples. J. Genet. Couns. 2018, 27, 616–625. [Google Scholar] [CrossRef] [Green Version]
- Antonarakis, S.E. Carrier screening for recessive disorders. Nat. Rev. Genet. 2019, 20, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Lazarin, G.A.; Haque, I.S. Expanded carrier screening: A review of early implementation and literature. Semin. Perinatol. 2016, 40, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Gross, S.J.; Pletcher, B.A.; Monaghan, K.G.; Professional, P.; Guidelines, C. Carrier screening in individuals of Ashkenazi Jewish descent. Genet. Med. 2008, 10, 54–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, C.J.; Dinwiddie, D.L.; Miller, N.A.; Hateley, S.L.; Ganusova, E.E.; Mudge, J.; Langley, R.J.; Zhang, L.; Lee, C.C.; Schilkey, F.D.; et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci. Transl. Med. 2011, 3, 65ra64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Committee on Genetics. Committee Opinion No. 690: Carrier Screening in the Age of Genomic Medicine. Obstet. Gynecol. 2017, 129, e35–e40. [Google Scholar] [CrossRef]
- Haque, I.S.; Lazarin, G.A.; Kang, H.P.; Evans, E.A.; Goldberg, J.D.; Wapner, R.J. Modeled Fetal Risk of Genetic Diseases Identified by Expanded Carrier Screening. JAMA 2016, 316, 734–742. [Google Scholar] [CrossRef] [Green Version]
- Lazarin, G.A.; Haque, I.S.; Nazareth, S.; Iori, K.; Patterson, A.S.; Jacobson, J.L.; Marshall, J.R.; Seltzer, W.K.; Patrizio, P.; Evans, E.A.; et al. An empirical estimate of carrier frequencies for 400+ causal Mendelian variants: Results from an ethnically diverse clinical sample of 23,453 individuals. Genet. Med. 2013, 15, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, K.A.; Muzzey, D.; Wong, K.K.; Hogan, G.J.; Karimi, K.; Candille, S.I.; Mehta, N.; Mar-Heyming, R.; Kaseniit, K.E.; Kang, H.P.; et al. Systematic design and comparison of expanded carrier screening panels. Genet. Med. 2018, 20, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Xiang, J.; Fan, C.; Asan; Shang, X.; Zhang, X.; Chen, Y.; Zhu, B.; Cai, W.; Chen, S.; et al. Pilot study of expanded carrier screening for 11 recessive diseases in China: Results from 10,476 ethnically diverse couples. Eur. J. Hum. Genet. 2019, 27, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Lau, Y.L.; Chan, L.C.; Chan, Y.Y.; Ha, S.Y.; Yeung, C.Y.; Waye, J.S.; Chui, D.H. Prevalence and genotypes of alpha- and beta-thalassemia carriers in Hong Kong–implications for population screening. N. Engl. J. Med. 1997, 336, 1298–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, K.Y.; Lee, C.P.; Tang, M.H.; Lau, E.T.; Ng, L.K.; Lee, Y.P.; Chan, H.Y.; Ma, E.S.; Chan, V. Cost-effectiveness of prenatal screening for thalassaemia in Hong Kong. Prenat. Diagn. 2004, 24, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Xu, X. Update in the genetics of thalassemia: What clinicians need to know. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 39, 3–15. [Google Scholar] [CrossRef]
- Choy, K.W.; Cao, Y.; Lam, S.T.; Lo, F.M.; Morton, C.C.; Leung, T.Y. Target-enriched massively parallel sequencing for genetic diagnosis of hereditary hearing loss in patients with normal array CGH result. Hong Kong Med. J. 2018, 24 (Suppl. 3), 11–14. [Google Scholar]
- Edwards, J.G.; Feldman, G.; Goldberg, J.; Gregg, A.R.; Norton, M.E.; Rose, N.C.; Schneider, A.; Stoll, K.; Wapner, R.; Watson, M.S. Expanded carrier screening in reproductive medicine-points to consider: A joint statement of the American College of Medical Genetics and Genomics, American College of Obstetricians and Gynecologists, National Society of Genetic Counselors, Perinatal Quality Foundation, and Society for Maternal-Fetal Medicine. Obstet. Gynecol. 2015, 125, 653–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazarin, G.A.; Hawthorne, F.; Collins, N.S.; Platt, E.A.; Evans, E.A.; Haque, I.S. Systematic Classification of Disease Severity for Evaluation of Expanded Carrier Screening Panels. PLoS ONE 2014, 9, e114391. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Henneman, L.; Borry, P.; Chokoshvili, D.; Cornel, M.C.; van El, C.G.; Forzano, F.; Hall, A.; Howard, H.C.; Janssens, S.; Kayserili, H.; et al. Responsible implementation of expanded carrier screening. Eur. J. Hum. Genet. 2016, 24, e1–e12. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Oza, A.M.; Del Castillo, I.; Duzkale, H.; Matsunaga, T.; Pandya, A.; Kang, H.P.; Mar-Heyming, R.; Guha, S.; Moyer, K.; et al. Consensus interpretation of the p.Met34Thr and p.Val37Ile variants in GJB2 by the ClinGen Hearing Loss Expert Panel. Genet. Med. 2019, 21, 2442–2452. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.H.; Gregg, A.R. Estimating yields of prenatal carrier screening and implications for design of expanded carrier screening panels. Genet. Med. 2019, 21, 1940–1947. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, X.; He, B.; Cai, N.; Li, W.; Lou, C.; Xin, S.; Wu, Q.; Yu, W.; Qiang, R. Mutation analysis of the phenylalanine hydroxylase gene and prenatal diagnosis of phenylketonuria in Shaanxi, China. J. Pediatr. Endocrinol. Metab. 2017, 30, 1305–1310. [Google Scholar] [CrossRef]
- Choi, R.; Lee, J.; Park, H.D.; Park, J.E.; Kim, Y.H.; Ki, C.S.; Lee, S.Y.; Song, J.; Kim, J.W.; Lee, D.H. Reassessing the significance of the PAH c.158G>A (p.Arg53His) variant in patients with hyperphenylalaninemia. J. Pediatr. Endocrinol. Metab. 2017, 30, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Wienke, S.; Brown, K.; Farmer, M.; Strange, C. Expanded carrier screening panels-does bigger mean better? J. Community Genet. 2014, 5, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grody, W.W.; Thompson, B.H.; Gregg, A.R.; Bean, L.H.; Monaghan, K.G.; Schneider, A.; Lebo, R.V. ACMG position statement on prenatal/preconception expanded carrier screening. Genet. Med. 2013, 15, 482–483. [Google Scholar] [CrossRef] [Green Version]
- Xi, Y.; Chen, G.; Lei, C.; Wu, J.; Zhang, S.; Xiao, M.; Zhang, W.; Zhang, Y.; Sun, X. Expanded carrier screening in Chinese patients seeking the help of assisted reproductive technology. Mol. Genet. Genom. Med. 2020, 8, e1340. [Google Scholar] [CrossRef]
- Pereira, N.; Wood, M.; Luong, E.; Briggs, A.; Galloway, M.; Maxwell, R.A.; Lindheim, S.R. Expanded genetic carrier screening in clinical practice: A current survey of patient impressions and attitudes. J. Assist. Reprod. Genet. 2019, 36, 709–716. [Google Scholar] [CrossRef]
- Holtkamp, K.C.A.; Mathijssen, I.B.; Lakeman, P.; van Maarle, M.C.; Dondorp, W.J.; Henneman, L.; Cornel, M.C. Factors for successful implementation of population-based expanded carrier screening: Learning from existing initiatives. Eur. J. Public Health 2017, 27, 372–377. [Google Scholar] [CrossRef] [Green Version]
- Bordbar, E.; Taghipour, M.; Zucconi, B.E. Reliability of Different RBC Indices and Formulas in Discriminating between beta-Thalassemia Minor and other Microcytic Hypochromic Cases. Mediterr. J. Hematol. Infect. Dis. 2015, 7, e2015022. [Google Scholar] [CrossRef] [Green Version]
- Kraft, S.A.; Duenas, D.; Wilfond, B.S.; Goddard, K.A.B. The evolving landscape of expanded carrier screening: Challenges and opportunities. Genet. Med. 2019, 21, 790–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fridman, H.; Behar, D.M.; Carmi, S.; Levy-Lahad, E. Preconception carrier screening yield: Effect of variants of unknown significance in partners of carriers with clinically significant variants. Genet. Med. 2020, 22, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yan, C.; Ji, K.; Lin, P.; Chi, L.; Zhao, X.; Zhao, Y. Adult-onset Krabbe disease in two generations of a Chinese family. Ann. Transl. Med. 2018, 6, 174. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, L.; Bruque, C.D.; Fernandez, C.S.; Benavides-Mori, B.; Delea, M.; Kolomenski, J.E.; Espeche, L.D.; Buzzalino, N.D.; Nadra, A.D.; Dain, L. CYP21A2 mutation update: Comprehensive analysis of databases and published genetic variants. Hum. Mutat. 2018, 39, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Zarrilli, F.; Coppola, A.; Schiavulli, M.; Cimino, E.; Elce, A.; Rescigno, G.; Castaldo, G.; Amato, F. Haemophilia A: The consequences of de novo mutations. Two case reports. Blood Transfus. 2018, 16, 392–393. [Google Scholar] [CrossRef]
- Chan, O.Y.M.; Leung, T.Y.; Cao, Y.; Shi, M.M.; Kwan, A.H.W.; Chung, J.P.W.; Choy, K.W.; Chong, S.C. Expanded carrier screening using next-generation sequencing of 123 Hong Kong Chinese families: A pilot study. Hong Kong Med. J. Available online: https://doi.org/10.12809/hkmj208486 (accessed on 19 February 2021).
- Press, R.D.; Eickelberg, G.; McDonald, T.J.; Halley, J.; Long, T.; Tafe, L.J.; Weck, K.E. Highly accurate molecular genetic testing for HFE hereditary hemochromatosis: Results from 10 years of blinded proficiency surveys by the College of American Pathologists. Genet. Med. 2016, 18, 1206–1213. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Anderson, B.; Redman, J.; Milunsky, A.; Buller, A.; McGinniss, M.J.; Quan, F.; Anguiano, A.; Huang, S.; Hantash, F.; et al. CFTR 5T variant has a low penetrance in females that is partially attributable to its haplotype. Genet. Med. 2006, 8, 339–345. [Google Scholar] [CrossRef] [Green Version]
Diseases | Inheritance Mode | Classification | Genes | No. of Cases (n) | Carrier Rate | Carrier Rate (1 in) |
---|---|---|---|---|---|---|
Alpha thalassemia | AR | Severe or profound | HBA1/HBA2 | 103 | 7.80% | 12.8 |
Beta thalassemia | AR | Severe | HBB | 30 | 2.27% | 44.0 |
Autosomal recessive deafness 1A | AR | Moderate | GJB2 | 22 | 1.67% | 60.0 |
Autosomal recessive deafness 4 with enlarged vestibular aqueduct | AR | Moderate | SLC26A4 | 27 | 2.04% | 48.9 |
Phenylketonuria | AR | Severe | PAH | 30 | 2.27% | 44.0 |
Wilson’s Disease | AR | Severe | ATP7B | 22 | 1.67% | 60.0 |
Spinal muscular atrophy | AR | Profound | SMN1 | 21 | 1.59% | 62.9 |
Glycogen storage disease type II | AR | Profound | GAA | 15 | 1.14% | 88.1 |
Hemophilia A | X-LR | Severe | F8 | 3 | 0.23% | 440.3 |
Duchenne muscular dystrophy | X-LR | Severe | DMD | 1 | 0.08% | 1321.0 |
Hemophilia B | X-LR | Severe | F9 | 0 | 0.00% | NA |
Conditions | Gene | Estimated GCRs |
---|---|---|
Alpha thalassemia | HBA1/HBA2 | 7.76% |
Beta thalassemia | HBB | 2.25% |
Autosomal recessive deafness 1A | GJB2 | 1.66% |
Autosomal recessive deafness 4 with enlarged vestibular aqueduct | SLC26A4 | 2.03% |
Phenylketonuria | PAH | 2.18% |
Wilson’s disease | ATP7B | 1.65% |
Spinal muscular atrophy | SMN1 | 1.59% |
Glycogen Storage Disease type II | GAA | 1.13% |
Reasons | Percentage | Carrier Conditions of the Pregnant Women (No. of Subjects) |
---|---|---|
Partner has been tested before | 48.30% (71/147) | Thalassemias (69), DFNB4 (1), both alpha thalassemia and spinal muscular atrophy (1) |
Can accept an affected baby | 10.20% (15/147) | Phenylketonuria (2), DFNB1/4 (13) |
No risk of Hb Bart syndrome | 25.85% (38/147) | Alpha 3.7 (27), alpha 4.2 (11) |
Others (high cost, no interest, consideration of other evaluations, etc.) | 8.16% (12/147) | Alpha thalassemia (2), DFNB1(2), phenylketonuria (4), Wilson’s disease (2), glycogen storage disease type II (2) |
NA | 7.48% (11/147) | Thalassemias (2), DFNB4 (2), phenylketonuria (2), Wilson’s disease (1), spinal muscular atrophy (1), both Wilson’s disease and alpha thalassemia (1), glycogen storage disease type II (2) |
Conditions | Inheritance Mode | Gene | Variant Type of Mother | Variant Type of Father | Prenatal Diagnosis | Affected Pregnancy | Decision | Pregnancy Outcome |
---|---|---|---|---|---|---|---|---|
Alpha thalassemia | AR | HBA1/HBA2 | SEA | SEA | No | NA | Keep pregnancy | NA |
Beta thalassemia | AR | HBB | c.126_129delCTTT | c.79G>A | No | NA | Keep pregnancy | Live birth |
Phenylketonuria | AR | PAH | c.158G>A | c.158G>A | Yes | Yes | Keep pregnancy | Live birth |
Spinal muscular atrophy | AR | SMN1 | Exon 7 deletion | Exon 7 deletion | Yes | Yes | TOP | TOP |
Hemophilia A | X-LR | F8 | c.3637delA | NA | Yes | Yes | TOP | TOP |
Hemophilia A | X-LR | F8 | c.1569G>T | NA | No | NA | Keep pregnancy | Live birth |
Hemophilia A* | X-LR | F8 | Intron 22 inversion | NA | No | No | Keep pregnancy | Live birth |
Dystrophinopathies | X-LR | DMD | EX49 DEL | NA | Yes | No | Keep pregnancy | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; Liauw, A.L.; Tong, S.; Zheng, Y.; Leung, T.Y.; Chong, S.C.; Cao, Y.; Lau, T.K.; Choy, K.W.; Chung, J.P.W. Clinical Implementation of Expanded Carrier Screening in Pregnant Women at Early Gestational Weeks: A Chinese Cohort Study. Genes 2021, 12, 496. https://doi.org/10.3390/genes12040496
Shi M, Liauw AL, Tong S, Zheng Y, Leung TY, Chong SC, Cao Y, Lau TK, Choy KW, Chung JPW. Clinical Implementation of Expanded Carrier Screening in Pregnant Women at Early Gestational Weeks: A Chinese Cohort Study. Genes. 2021; 12(4):496. https://doi.org/10.3390/genes12040496
Chicago/Turabian StyleShi, Mengmeng, Angeline Linna Liauw, Steve Tong, Yu Zheng, Tak Yeung Leung, Shuk Ching Chong, Ye Cao, Tze Kin Lau, Kwong Wai Choy, and Jacqueline P. W. Chung. 2021. "Clinical Implementation of Expanded Carrier Screening in Pregnant Women at Early Gestational Weeks: A Chinese Cohort Study" Genes 12, no. 4: 496. https://doi.org/10.3390/genes12040496
APA StyleShi, M., Liauw, A. L., Tong, S., Zheng, Y., Leung, T. Y., Chong, S. C., Cao, Y., Lau, T. K., Choy, K. W., & Chung, J. P. W. (2021). Clinical Implementation of Expanded Carrier Screening in Pregnant Women at Early Gestational Weeks: A Chinese Cohort Study. Genes, 12(4), 496. https://doi.org/10.3390/genes12040496