MicroRNA Changes in Gastric Carcinogenesis: Differential Dysregulation during Helicobacter pylori and EBV Infection
Abstract
:1. Introduction
2. Dysregulation of miRNAs in GC: Significance and Critical Roles as Diagnostic or Prognostic Biomarkers in Biopsies and in Human Plasma
3. Importance of miRNAs in GC: Critical Roles in Tumorigenesis and Tumor Spreading, and as Molecular Targets
4. Roles of miRNA Dysregulation in H. pylori-Induced Gastric Adenocarcinoma
Importance of EBV Infection for GC Development
5. Research Perspective Given Functional Importance of H. pylori- and EBV-Induced Changes in GC Acting Synergistically
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer (Oxf. Engl.) 2013, 49, 1374–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malvezzi, M.; Carioli, G.; Bertuccio, P.; Boffetta, P.; Levi, F.; La Vecchia, C.; Negri, E. European cancer mortality predictions for the year 2019 with focus on breast cancer. Ann. Oncol. 2019, 30, 781–787. [Google Scholar] [CrossRef] [Green Version]
- Shukla, P.J.; Pavoor, R.S.K.; Barreto, G.S. Gastric cancer in Europe. Br. J. Surg. 2008, 95, 406–408. [Google Scholar]
- Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; Van De Velde, C.J.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; et al. Perioperative Chemotherapy versus Surgery Alone for Resectable Gastroesophageal Cancer. N. Engl. J. Med. 2006, 355, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uemura, N.; Okamoto, S.; Yamamoto, S.; Matsumura, N.; Yamaguchi, S.; Yamakido, M.; Taniyama, K.; Sasaki, N.; Schlemper, R.J. Helicobacter pyloriInfection and the Development of Gastric Cancer. N. Engl. J. Med. 2001, 345, 784–789. [Google Scholar] [CrossRef]
- Iizasa, H.; Nanbo, A.; Nishikawa, J.; Jinushi, M.; Yoshiyama, H. Epstein-Barr Virus (EBV)-associated Gastric Carcinoma. Viruses 2012, 4, 3420–3439. [Google Scholar] [CrossRef] [Green Version]
- Cancer Genome Atlas Research Network, Integrated genomic characterization of oesophageal carcinoma. Nature 2017, 541, 169–175. [CrossRef] [Green Version]
- Teresa, F.; Serra, N.; Capra, G.; Mascarella, C.; Gagliardi, C.; Di Carlo, P.; Cannella, S.; Simonte, M.R.; Lipari, D.; Sciortino, M.; et al. Helicobacter pylori and Epstein–Barr Virus Infection in Gastric Diseases: Correlation with IL-10 and IL1RN Polymorphism. J. Oncol. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fasciana, T.; Capra, G.; Calà, C.; Zambuto, S.; Mascarella, C.; Colomba, C.; Di Carlo, P.; Giammanco, A. Helicobacter pylori and Epstein-Barr Co-Infection in Gastric Disease. PhOL 2017, 1, 73–82. [Google Scholar]
- Cech, T.R.; Steitz, J.A. The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones. Cell 2014, 157, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Nana-Sinkam, S.P.; Fabbri, M.; Croce, C.M. MicroRNAs in cancer: Personalizing diagnosis and therapy. Ann. N. Y. Acad. Sci. 2010, 1210, 25–33. [Google Scholar] [CrossRef]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nat. Cell Biol. 2005, 435, 834–838. [Google Scholar] [CrossRef]
- Büssing, I.; Slack, F.J.; Grosshans, H. let-7 microRNAs in development, stem cells and cancer. Trends Mol. Med. 2008, 14, 400–409. [Google Scholar] [CrossRef]
- Lu, F.; Weidmer, A.; Liu, C.G.; Volinia, S.; Croce, C.M.; Lieberman, P.M. Epstein-Barr virus-induced miR-155 attenuates NF-kappaB signaling and stabilizes latent virus persistence. J. Virol. 2008, 82, 10436–10443. [Google Scholar] [CrossRef] [Green Version]
- Rokhlin, O.W.; Scheinker, V.S.; Taghiyev, A.F.; Bumcrot, D.; A Glover, R.; Cohen, M.B. MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer. Cancer Biol. Ther. 2008, 7, 1288–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.G.; Li, J.F.; Yu, B.Q.; Zhu, Z.G.; Liu, B.Y.; Yan, M. microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol. Rep. 2012, 27, 1019–1026. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.-X.; Huang, X.-F.; Shao, Q.; Huang, M.-Y.; Deng, L.; Wu, Q.-L.; Zeng, Y.-X.; Shao, J.-Y. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 2008, 14, 2348–2360. [Google Scholar] [CrossRef] [Green Version]
- Lo, S.-S.; Hung, P.-S.; Chen, J.-H.; Tu, H.-F.; Fang, W.-L.; Chen, C.-Y.; Chen, W.-T.; Gong, N.-R.; Wu, C.-W. Overexpression of miR-370 and downregulation of its novel target TGFβ-RII contribute to the progression of gastric carcinoma. Oncogene 2011, 31, 226–237. [Google Scholar] [CrossRef] [Green Version]
- ZiaSarabi, P.; Sorayayi, S.; Hesari, A.; Ghasemi, F. Circulating microRNA-133, microRNA-17 and microRNA-25 in serum and its potential diagnostic value in gastric cancer. J. Cell. Biochem. 2019, 120, 12376–12381. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-L.; Ren, L.-F.; Wang, H.-P.; Bai, Z.-T.; Zhang, L.; Meng, W.-B.; Zhu, K.-X.; Ding, F.-H.; Miao, L.; Yan, J.; et al. Plasma microRNAs as potential new biomarkers for early detection of early gastric cancer. World J. Gastroenterol. 2019, 25, 1580–1591. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhu, W.; Li, H.; Wen, W.; Cheng, W.; Wang, F.; Wu, Y.; Qi, L.; Fan, Y.; Chen, Y.; et al. Diagnostic value of a plasma microRNA signature in gastric cancer: A microRNA expression analysis. Sci. Rep. 2015, 5, 11251. [Google Scholar] [CrossRef]
- Tsukamoto, Y.; Nakada, C.; Noguchi, T.; Tanigawa, M.; Nguyen, L.T.; Uchida, T.; Hijiya, N.; Matsuura, K.; Fujioka, T.; Seto, M.; et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res. 2010, 70, 2339–2349. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Xu, Y.; Zhang, W.; Deng, Y.; Si, M.; Du, Y.; Yao, H.; Liu, X.; Ke, Y.; Si, J.; et al. MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res. 2010, 20, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jin, J.; Liu, Y.; Huang, Z.; Deng, Y.; You, T.; Zhou, T.; Si, J.; Zhuo, W. Snail-Regulated MiR-375 Inhibits Migration and Invasion of Gastric Cancer Cells by Targeting JAK2. PLoS ONE 2014, 9, e99516. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.; Amar, L.; Godde, D.; Prinz, C. Extensive screening of microRNA populations identifies hsa-miR-375 and hsa-miR-133a-3p as selective markers for human rectal and colon cancer. Oncotarget 2018, 9, 27256–27267. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Akiyama, Y.; Otsubo, T.; Shimada, S.; Yuasa, Y. Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis 2010, 31, 777–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krebs, L.T.; Xue, Y.; Norton, C.R.; Shutter, J.R.; Maguire, M.; Sundberg, J.P.; Gallahan, D.; Closson, V.; Kitajewski, J.; Callahan, R.; et al. Notch signaling is essential for vascular morphogenesis in mice. Genome Res. 2000, 14, 1343–1352. [Google Scholar]
- Guo, M.-M.; Hu, L.-H.; Wang, Y.-Q.; Chen, P.; Huang, J.-G.; Lu, N.; He, J.-H.; Liao, C.-G. miR-22 is down-regulated in gastric cancer, and its overexpression inhibits cell migration and invasion via targeting transcription factor Sp1. Med. Oncol. 2013, 30. [Google Scholar] [CrossRef]
- Gao, P.; Xing, A.-Y.; Zhou, G.-Y.; Zhang, T.-G.; Zhang, J.-P.; Gao, C.; Li, H.; Shi, D.-B. The molecular mechanism of microRNA-145 to suppress invasion–metastasis cascade in gastric cancer. Oncogene 2012, 32, 491–501. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Xiao, Z.; Wu, W.K.; Wang, M.H.; To, K.F.; Chen, Y.; Yang, W.; Li, M.S.; Shin, V.Y.; Tong, J.H.; et al. Epigenetic Silencing of miR-490-3p Reactivates the Chromatin Remodeler SMARCD1 to Promote Helicobacter pylori–Induced Gastric Carcinogenesis. Cancer Res. 2015, 75, 754–765. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liu, X.; Jin, H.; Guo, X.; Xia, L.; Chen, Z.; Bai, M.; Liu, J.; Shang, X.; Wu, K.; et al. MiR-206 inhibits gastric cancer proliferation in part by repressing cyclinD2. Cancer Lett. 2013, 332, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Guo, L.; Ji, J.; Zhang, J.; Zhang, J.; Chen, X.; Cai, Q.; Li, J.; Gu, Q.; Liu, B.; et al. miRNA-331-3p directly targets E2F1 and induces growth arrest in human gastric cancer. Biochem. Biophys. Res. Commun. 2010, 398, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Xie, Y.; Zhang, H.; Wu, Y. miR-107 targets cyclin-dependent kinase 6 expression, induces cell cycle G1 arrest and inhibits invasion in gastric cancer cells. Med. Oncol. 2011, 29, 856–863. [Google Scholar] [CrossRef]
- Zhang, C.-Z.; Han, L.; Zhang, A.-L.; Fu, Y.-C.; Yue, X.; Wang, G.-X.; Jia, Z.-F.; Pu, P.-Y.; Zhang, Q.-Y.; Kang, C.-S. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer 2010, 10, 367. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.-H.; Lin, C.; Liu, C.-C.; Jiang, W.-W.; Huang, M.-Z.; Liu, X.; Guo, W.-J. MiR-616-3p promotes angiogenesis and EMT in gastric cancer via the PTEN/AKT/mTOR pathway. Biochem. Biophys. Res. Commun. 2018, 501, 1068–1073. [Google Scholar] [CrossRef] [PubMed]
- Velho, S.; Fernandes, M.S.; Leite, M.; Figueiredo, C.; Seruca, R. Causes and consequences of microsatellite instability in gastric carcinogenesis. World J. Gastroenterol. 2014, 20, 16433–16442. [Google Scholar] [CrossRef] [PubMed]
- Menoyo, A.; Alazzouzi, H.; Espín, E.; Armengol, M.; Yamamoto, H.; Schwartz, S. Somatic mutations in the DNA damage-response genes ATR and CHK1 in sporadic stomach tumors with microsatellite instability. Cancer Res. 2001, 61, 7727–7730. [Google Scholar] [PubMed]
- Zhu, E.-D.; Li, N.; Li, B.-S.; Li, W.; Zhang, W.-J.; Mao, X.-H.; Guo, G.; Zou, Q.-M.; Xiao, B. miR-30b, Down-Regulated in Gastric Cancer, Promotes Apoptosis and Suppresses Tumor Growth by Targeting Plasminogen Activator Inhibitor. PLoS ONE 2014, 9, e106049. [Google Scholar] [CrossRef]
- Kiga, K.; Mimuro, H.; Suzuki, M.; Shinozaki-Ushiku, A.; Kobayashi, T.; Sanada, T.; Kim, M.; Ogawa, M.; Iwasaki, Y.W.; Kayo, H.; et al. Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection. Nat. Commun. 2014, 5, 4497. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Li, Z.; Zhang, X.; Yin, K.; Wang, W.; Xu, Z.; Li, B.; Zhang, L.; Xu, J.; Sun, G.; et al. MiR-422a regulates cellular metabolism and malignancy by targeting pyruvate dehydrogenase kinase 2 in gastric cancer. Cell Death Dis. 2018, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Chen, J.; Xie, C.; Shao, L.; Xu, Z.; Zhang, L. microRNA-1228⁎ impairs the pro-angiogenic activity of gastric cancer cells by targeting macrophage migration inhibitory factor. Life Sci. 2017, 180, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Ghaedi, K.; Adami, B.; Tabatabaeian, H.; Talebi, A.; Azadeh, M.; Dehdashtian, E. miR-146a is deregulated in gastric cancer. J. Cancer Res. Ther. 2018, 15, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Xu, X.; Xiao, B.; Zhu, E.D.; Li, B.S.; Liu, Z.; Tang, B.; Zou, Q.M.; Liang, H.P.; Mao, X.H.H. pylori related proinflammatory cytokines contribute to the induction of miR-146a in human gastric epithelial cells. Mol. Biol. Rep. 2012, 39, 4655–4661. [Google Scholar] [CrossRef]
- Ning, T.; Zhang, H.; Wang, X.; Li, S.; Zhang, L.; Deng, T.; Zhou, L.; Wang, X.; Liu, R.; Bai, M.; et al. miR-221 and miR-222 synergistically regulate hepatocyte growth factor activator inhibitor type 1 to promote cell proliferation and migration in gastric cancer. Tumor Biol. 2017, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, L.P.; Lau, N.C.; Garrett-Engele, P.; Grimson, A.; Schelter, J.M.; Castle, J.; Bartel, D.P.; Linsley, P.S.; Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nat. Cell Biol. 2005, 433, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Fassan, M.; Saraggi, D.; Balsamo, L.; Cascione, L.; Castoro, C.; Coati, I.; De Bernard, M.; Farinati, F.; Guzzardo, V.; Valeri, N.; et al. Let-7c down-regulation in Helicobacter pylori-related gastric carcinogenesis. Oncotarget 2015, 7, 4915–4924. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Feng, J.; Zhi, X.; Tang, J.; Li, Z.; Xu, Y.; Yang, L.; Hu, Z.; Xu, Z. Let-7b inhibits cell proliferation, migration, and invasion through targeting Cthrc1 in gastric cancer. Tumor Biol. 2014, 36, 3221–3229. [Google Scholar] [CrossRef]
- Matsushima, K.; Isomoto, H.; Inoue, N.; Nakayama, T.; Hayashi, T.; Nakayama, M.; Nakao, K.; Hirayama, T.; Kohno, S. MicroRNA signatures in Helicobacter pylori-infected gastric mucosa. Int. J. Cancer 2010, 128, 361–370. [Google Scholar] [CrossRef]
- Ye, F.; Tang, C.; Shi, W.; Qian, J.; Xiao, S.; Gu, M.; Dang, Y.; Liu, J.; Chen, Y.; Shi, R.; et al. A MDM2-dependent positive-feedback loop is involved in inhibition of miR-375 and miR-106b induced by Helicobacter pylori lipopolysaccharide. Int. J. Cancer 2015, 136, 2120–2131. [Google Scholar] [CrossRef]
- Käbisch, R.; Mejías-Luque, R.; Gerhard, M.; Prinz, C. Involvement of Toll-Like Receptors on Helicobacter pylori-Induced Immunity. PLoS ONE 2014, 9, e104804. [Google Scholar] [CrossRef]
- Li, N.; Wang, J.; Yu, W.; Dong, K.; You, F.; Si, B.; Tang, B.; Zhang, Y.; Wang, T.; Qiao, B. MicroRNA-146a inhibits the inflammatory responses induced by interleukin-17A during the infection of Helicobacter pylori. Mol. Med. Rep. 2018, 19, 1388–1395. [Google Scholar] [CrossRef] [Green Version]
- Fassi Fehri, L.; Koch, M.; Belogolova, E.; Khalil, H.; Bolz, C.; Kalali, B.; Mollenkopf, H.J.; Beigier-Bompadre, M.; Karlas, A.; Schneider, T.; et al. Helicobacter pylori induces miR-155 in T cells in a cAMP-Foxp3-dependent manner. PLoS ONE 2010, 5, e9500. [Google Scholar] [CrossRef] [Green Version]
- Macsween, K.F.; Crawford, D.H. Epstein-Barr virus-recent advances. Lancet Infect. Dis. 2003, 3, 131–140. [Google Scholar] [CrossRef]
- Cohen, J.I. Epstein-Barr virus infection. N. Engl. J. Med. 2000, 343, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-B.; Zhang, H.; Zhang, J.-P.; Li, Y.; Zhao, B.; Feng, G.-K.; Du, Y.; Xiong, D.; Zhong, Q.; Liu, W.-L.; et al. Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells. Nat. Commun. 2015, 6, 6240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, K.; Jia, K.; Lv, H.; Wang, S.-Q.; Wu, Y.; Lei, H.; Chen, X. EBV-Positive Gastric Cancer: Current Knowledge and Future Perspectives. Front. Oncol. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Cosmopoulos, K.; Pegtel, M.; Hopmans, E.; Murray, P.; Middeldorp, J.; Shapiro, M.; Thorley-Lawson, D.A. A Novel Persistence Associated EBV miRNA Expression Profile Is Disrupted in Neoplasia. PLoS Pathog. 2011, 7, e1002193. [Google Scholar] [CrossRef] [Green Version]
- Murphy, G.; Pfeiffer, R.; Camargo, M.C.; Rabkin, C.S. Meta-analysis Shows That Prevalence of Epstein–Barr Virus-Positive Gastric Cancer Differs Based on Sex and Anatomic Location. Gastroenterology 2009, 137, 824–833. [Google Scholar] [CrossRef] [Green Version]
- Caetano, B.F.R.; Jorge, B.A.S.; Müller-Coan, B.G.; de Oliveira, D.E. Epstein-Barr virus microRNAs in the pathogenesis of human cancers. Cancer Lett. 2021, 499, 14–23. [Google Scholar] [CrossRef]
- Pfeffer, S.; Zavolan, M.; Grässer, F.A.; Chien, M.; Russo, J.J.; Ju, J.; John, B.; Enright, A.J.; Marks, D.; Sander, C.; et al. Identification of Virus-Encoded MicroRNAs. Science 2004, 304, 734–736. [Google Scholar] [CrossRef]
- Tsai, C.-Y.; Liu, Y.Y.; Liu, K.-H.; Hsu, J.-T.; Cheng-Tang, C.; Chiu, C.-T.; Yeh, T.-S. Comprehensive profiling of virus microRNAs of Epstein-Barr virus-associated gastric carcinoma: Highlighting the interactions of ebv-Bart9 and host tumor cells. J. Gastroenterol. Hepatol. 2017, 32, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Edwards, R.H.; Marquitz, A.R.; Raab-Traub, N. Epstein-Barr Virus BART MicroRNAs Are Produced from a Large Intron prior to Splicing. J. Virol. 2008, 82, 9094–9106. [Google Scholar] [CrossRef] [Green Version]
- Busson, P.; Keryer, C.; Ooka, T.; Corbex, M. EBV-associated nasopharyngeal carcinomas: From epidemiology to virus-targeting strategies. Trends Microbiol. 2004, 12, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Pfuhl, T.; Motsch, N.; Barth, S.; Nicholls, J.; Grasser, F.; Meister, G. Identification of Novel Epstein-Barr Virus MicroRNA Genes from Nasopharyngeal Carcinomas. J. Virol. 2009, 83, 3333–3341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, K.; Sekizuka, T.; Uehara, T.; Hishima, T.; Mine, S.; Fukumoto, H.; Sato, Y.; Hasegawa, H.; Kuroda, M.; Katano, H. Next-generation sequencing of miRNAs in clinical samples of Epstein-Barr virus-associated B-cell lymphomas. Cancer Med. 2017, 6, 605–618. [Google Scholar] [CrossRef] [PubMed]
- Lo, A.K.-F.; Dawson, C.W.; Jin, D.-Y.; Lo, K.-W. The pathological roles of BART miRNAs in nasopharyngeal carcinoma. J. Pathol. 2012, 227, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Baer, R.; Bankier, A.T.; Biggin, M.D.; Deininger, P.L.; Farrell, P.J.; Gibson, T.J.; Hatfull, G.; Hudson, G.S.; Satchwell, S.C.; Séguin, C.; et al. DNA sequence and expression of the B95-8 Epstein—Barr virus genome. Nat. Cell Biol. 1984, 310, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Fukayama, M. Epstein-Barr virus and gastric carcinoma. Pathol. Int. 2010, 60, 337–350. [Google Scholar] [CrossRef]
- Hooykaas, M.J.G.; Van Gent, M.; Soppe, J.A.; Kruse, E.; Boer, I.G.J.; Van Leenen, D.; Koerkamp, M.J.A.G.; Holstege, F.C.P.; Ressing, M.E.; Wiertz, E.J.H.J.; et al. EBV MicroRNA BART16 Suppresses Type I IFN Signaling. J. Immunol. 2017, 198, 4062–4073. [Google Scholar] [CrossRef] [Green Version]
- Skinner, C.M.; Ivanov, N.S.; Barr, S.A.; Chen, Y.; Skalsky, R.L. An Epstein-Barr Virus MicroRNA Blocks Interleukin-1 (IL-1) Signaling by Targeting IL-1 Receptor 1. J. Virol. 2017, 91, e00530-17. [Google Scholar] [CrossRef] [Green Version]
- Lorusso, F.; Caleca, M.P.; Bellavia, C.; Pistoia, D.; Gallina, S.; Speciale, R.; Dispenza, F.; Fasciana, T.; Capra, G. The EBV-DNA Can be Used as a Diagnostic and Follow-up Parameter of the Rhinopharyngeal Tumors in the Non-Endemic Population of the Western Sicily. Indian J. Otolaryngol. Head Neck Surg. 2019, 71, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Mollenkopf, H.-J.; Klemm, U.; Meyer, T.F. Induction of microRNA-155 is TLR- and type IV secretion system-dependent in macrophages and inhibits DNA-damage induced apoptosis. Proc. Natl. Acad. Sci. USA 2012, 109, E1153–E1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prinz, C.; Weber, D. MicroRNA (miR) dysregulation during Helicobacter pylori-induced gastric inflammation and cancer development: Critical importance of miR-55. Oncotarget 2020, 11, 894–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, B.; Liu, Z.; Li, B.; Tang, B.; Li, W.; Guo, G.; Shi, Y.; Wang, F.; Wu, Y.; Tong, W.; et al. Induction of microRNA-155 duringHelicobacter pyloriInfection and Its Negative Regulatory Role in the Inflammatory Response. J. Infect. Dis. 2009, 200, 916–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tili, E.; Michaille, J.-J.; Cimino, A.; Costinean, S.; Dumitru, C.D.; Adair, B.; Fabbri, M.; Alder, H.; Liu, C.G.; Calin, G.A.; et al. Modulation of miR-155 and miR-125b Levels following Lipopolysaccharide/TNF-α Stimulation and Their Possible Roles in Regulating the Response to Endotoxin Shock. J. Immunol. 2007, 179, 5082–5089. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Z.; Li, Y.; Zang, A. MicroRNA and signaling pathways in gastric cancer. Cancer Gene Ther. 2014, 21, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Krump, N.A.; You, J. Molecular mechanisms of viral oncogenesis in humans. Nat. Rev. Genet. 2018, 16, 684–698. [Google Scholar] [CrossRef]
Downregulated miRNAs in GC and Potential Targets | Importance | |
---|---|---|
miR-22 | Downregulation seems to activate oncogenic gene Sp1 [28]. | Promotes cell migration and invasion in GC cell lines. |
miR-30b | Downregulation targets plasminogen activator inhibitor [38]. | Reduced apoptosis of cancer cells. |
miR-107 | Tumor-suppressor functions by targeting CDK6 [33]. | Expression inhibits proliferation and induction of G1 cell cycle arrest; promotes invasion of GC cells. |
miR-145 | Inhibits N-cadherin protein translation and acts via downregulation of matrix metallopeptidase 9 [29], downregulation of potential tumor suppressor [30]. | Hypermethylation leads to miRNA downregulation, which is associated with increased tumor growth and spreading. |
miR-181c | Targets genes such as NOTCH4 and KRAS [26]. | Downregulation in tumors leads to increased growth of GC cell lines. |
miR-206 | A potential tumor suppressor targeting cyclin D2 (CCND2) [31]. | Countereffect: miR-206 suppresses GC cell proliferation, reducing cell growth and colony-forming abilities. |
miR-210 | Alters CpG methylation [39]. | Downregulation enhances growth of GC cells. |
miR-331-3p | A potential tumor suppressor in GC; directly targets E2F1 [32]. | Downregulation enhances growth of GC cells. |
miR-370 | Inhibits expression of transforming growth factor-β receptor II [18]. | Downregulation associated with more advanced nodal metastasis and a higher clinical stage of GC. |
miR-375 | Acts as tumor suppressor by targeting JAK2 oncogene [22,23,24]. | Downregulated in GC cells, reduces cell viability via caspase-mediated apoptosis pathway through downregulation of PDK1. |
miR-422 | Targets pyruvate dehydrogenase kinase 2 (PDK 2) [40]. | Downregulation of miR-422 enhances tumor growth. |
miR-490 | Downregulation of potential tumor suppressor [30]. | Enhances tumor growth. |
miR-490-3p [30] | miR-490-3p suppresses growth and metastasis in cell lines by targeting SMARCD1 [30]. | Prognostic biomarker due to close correlation with shorter patient survival independent of TNM staging. |
miR-1228 | Targets macrophage migration inhibitory factor [41]. | Downregulated in GC; impairs the proangiogenic activity of GC cells. |
Upregulated miRNAs in GC and Potential Targets | Importance | |
miR-21 | Affects microsatellite instability (MSI); significantly associated with poor tumor differentiation [16]. | miR-21 overexpression promotes GC cell growth, invasion, and migration in vitro; prognostic marker for local invasion, and lymph-node metastasis. |
miR-107 | Upregulated in gastric cancer [12]. | Continuing upregulation from normal mucosa, adenoma, and cancer. |
miR-146a | Gastric tumors and chronic gastric inflammation show miR-146a overexpression [42,43]. | miR-146a dysregulation may promote gastric tumorigenesis and metastasis. |
miR-221 and miR-616-3p | Direct modulation of PTEN [34]. | Upregulated in GC cells, affecting angiogenesis and invasion. |
miR-222 | Inhibition of hepatocyte growth factor and activator-inhibitor type 1 protein expression [44]. | Overexpression of miR-221 and miR-222 promotes cell proliferation and migration. |
miR-300 | Upregulated in gastrointestinal cancer [12]. | Continuing upregulation from normal mucosa, adenoma, and cancer. |
Dysregulated miRNA during H. pylori Infection | Roles and Functions of Involved miRNAs | Dysregulated miRNA during EBV Infection | Roles and Functions of Involved miRNAs |
---|---|---|---|
BamHI-A region rightward transcript (BART)-miRNA dysregulation reported during Type 1 latent infections relevant to GC development. | BART-miRNAs are divided into two subsets [61]; miRNA-BART2-5p and miRNA-BART2-3p are reported to be the rear members of these two subgroups, and may affect bcl2-dependent pathways [67]. | ||
miRNA-BART16 [69,70] | Targets and regulates CREB binding, a transcriptional coactivator in the interferon signaling pathway (IFN); facilitates latent EBV infection by inhibiting IFN Type I-induced antiviral response. | ||
miR-155 [74] | Involved in immune response; bacterial lipopolysaccharide (LPS) exposure induces miR-155 expression in immune cells; potential role as diagnostic marker; increased expression upon H. pylori infection and in gastric adenocarcinoma. | miR-155 [14,15] | Dysregulation of miR-155 enables persistence of EBV in immune cells; miR-155 regulation is dependent on activator protein 1 (AP-1) pathway in B cells [14,15]. |
Let-7b [47] Let-7c [46] | Correlates with inflammatory process, tumor stage, and lymphatic metastasis in H. pylori-induced gastric adenocarcinoma. | ||
miR-106b [49] | Inhibition of miR-106b associated with STAT3 signaling, a key molecule during H. pylori-induced immune responses; varies with inflammatory scores and cancer development. | ||
miR-146a [42,43] | Gastric tumors and chronic gastric inflammation show miR-146a overexpression. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prinz, C.; Mese, K.; Weber, D. MicroRNA Changes in Gastric Carcinogenesis: Differential Dysregulation during Helicobacter pylori and EBV Infection. Genes 2021, 12, 597. https://doi.org/10.3390/genes12040597
Prinz C, Mese K, Weber D. MicroRNA Changes in Gastric Carcinogenesis: Differential Dysregulation during Helicobacter pylori and EBV Infection. Genes. 2021; 12(4):597. https://doi.org/10.3390/genes12040597
Chicago/Turabian StylePrinz, Christian, Kemal Mese, and David Weber. 2021. "MicroRNA Changes in Gastric Carcinogenesis: Differential Dysregulation during Helicobacter pylori and EBV Infection" Genes 12, no. 4: 597. https://doi.org/10.3390/genes12040597
APA StylePrinz, C., Mese, K., & Weber, D. (2021). MicroRNA Changes in Gastric Carcinogenesis: Differential Dysregulation during Helicobacter pylori and EBV Infection. Genes, 12(4), 597. https://doi.org/10.3390/genes12040597