First Bronze Age Human Mitogenomes from Calabria (Grotta Della Monaca, Southern Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Archaeological Context and Human Remains
2.2. Experimental Procedure
2.3. Ancient DNA Extraction
2.4. Library Preparation and Enrichment
2.5. Bioinformatic Analysis
2.6. Phylogenetic Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sazzini, M.; Ruscone, G.A.G.; Giuliani, C.; Sarno, S.; Quagliariello, A.; De Fanti, S.; Boattini, A.; Gentilini, D.; Fiorito, G.; Catanoso, M.; et al. Complex interplay between neutral and adaptive evolution shaped differential genomic background and disease susceptibility along the Italian peninsula. Sci. Rep. 2016, 6, 32513. [Google Scholar] [CrossRef] [Green Version]
- Capelli, C.; Brisighelli, F.; Scarnicci, F.; Arredi, B.; Caglia’, A.; Vetrugno, G.; Tofanelli, S.; Onofri, V.; Tagliabracci, A.; Paoli, G.; et al. Y chromosome genetic variation in the Italian peninsula is clinal and supports an admixture model for the Mesolithic–Neolithic encounter. Mol. Phylogenet. Evol. 2007, 44, 228–239. [Google Scholar] [CrossRef]
- Brisighelli, F.; Álvarez-Iglesias, V.; Fondevila, M.; Blanco-Verea, A.; Carracedo, Á.; Pascali, V.L.; Capelli, C.; Salas, A. Uniparental Markers of Contemporary Italian Population Reveals Details on Its Pre-Roman Heritage. PLoS ONE 2012, 7, e50794. [Google Scholar] [CrossRef] [Green Version]
- Boattini, A.; Martinez-Cruz, B.; Sarno, S.; Harmant, C.; Useli, A.; Sanz, P.; Yang-Yao, D.; Manry, J.; Ciani, G.; Luiselli, D.; et al. Uniparental Markers in Italy Reveal a Sex-Biased Genetic Structure and Different Historical Strata. PLoS ONE 2013, 8, e65441. [Google Scholar] [CrossRef] [Green Version]
- Di Gaetano, C.; Voglino, F.; Guarrera, S.; Fiorito, G.; Rosa, F.; Di Blasio, A.M.; Manzini, P.; Dianzani, I.; Betti, M.; Cusi, D.; et al. An Overview of the Genetic Structure within the Italian Population from Genome-Wide Data. PLoS ONE 2012, 7, e43759. [Google Scholar] [CrossRef]
- Sarno, S.; Boattini, A.; Carta, M.; Ferri, G.; Alù, M.; Yao, D.Y.; Ciani, G.; Pettener, D.; Luiselli, D. An Ancient Mediterranean Melting Pot: Investigating the Uniparental Genetic Structure and Population History of Sicily and Southern Italy. PLoS ONE 2014, 9, e96074. [Google Scholar] [CrossRef] [Green Version]
- Sarno, S.; Boattini, A.; Pagani, L.; Sazzini, M.; De Fanti, S.; Quagliariello, A.; Ruscone, G.A.G.; Guichard, E.; Ciani, G.; Bortolini, E.; et al. Ancient and recent admixture layers in Sicily and Southern Italy trace multiple migration routes along the Mediterranean. Sci. Rep. 2017, 7, 1984. [Google Scholar] [CrossRef]
- Fiorito, G.; Di Gaetano, C.; Guarrera, S.; Rosa, F.; Feldman, M.W.; Piazza, A.; Matullo, G. The Italian genome reflects the history of Europe and the Mediterranean basin. Eur. J. Hum. Genet. 2016, 24, 1056–1062. [Google Scholar] [CrossRef] [Green Version]
- Raveane, A.; Aneli, S.; Montinaro, F.; Athanasiadis, G.; Barlera, S.; Birolo, G.; Boncoraglio, G.; Di Blasio, A.M.; Di Gaetano, C.; Pagani, L.; et al. Population structure of modern-day Italians reveals patterns of ancient and archaic ancestries in Southern Europe. Sci. Adv. 2019, 5, eaaw3492. [Google Scholar] [CrossRef] [Green Version]
- Sazzini, M.; Abondio, P.; Sarno, S.; Gnecchi-Ruscone, G.A.; Ragno, M.; Giuliani, C.; De Fanti, S.; Ojeda-Granados, C.; Boattini, A.; Marquis, J.; et al. Genomic history of the Italian population recapitulates key evolutionary dynamics of both Continental and Southern Europeans. BMC Biol. 2020, 18, 51. [Google Scholar] [CrossRef]
- Sarno, S.; Petrilli, R.; Abondio, P.; De Giovanni, A.; Boattini, A.; Sazzini, M.; De Fanti, S.; Cilli, E.; Ciani, G.; Gentilini, D.; et al. Genetic history of Calabrian Greeks reveals ancient events and long term isolation in the Aspromonte area of Southern Italy. Sci. Rep. 2021, 11, 3045. [Google Scholar] [CrossRef]
- De Fanti, S.; Barbieri, C.; Sarno, S.; Sevini, F.; Vianello, D.; Tamm, E.; Metspalu, E.; Van Oven, M.; Hübner, A.; Sazzini, M.; et al. Fine Dissection of Human Mitochondrial DNA Haplogroup HV Lineages Reveals Paleolithic Signatures from European Glacial Refugia. PLoS ONE 2015, 10, e0144391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capocasa, M.; Anagnostou, P.; Bachis, V.; Battaggia, C.; Bertoncini, S.; Biondi, G.; Boattini, A.; Boschi, I.; Brisighelli, F.; Caló, C.M.; et al. Linguistic, geographic and genetic isolation: A collaborative study of Italian populations. J. Anthropol. Sci 2014, 92, 201–231. [Google Scholar] [PubMed]
- Cavazzuti, C.; Skeates, R.; Millard, A.R.; Nowell, G.; Peterkin, J.; Bernabò Brea, M.; Cardarelli, A.; Salzani, L. Flows of people in villages and large centres in Bronze Age Italy through strontium and oxygen isotopes. PLoS ONE 2019, 14, e0209693. [Google Scholar] [CrossRef]
- Cavazzuti, C.; Arena, A. The Bioarchaeology of Social Stratification in Bronze Age Italy. Arheo 2020, 37, 69–106. [Google Scholar]
- Iacono, F. Archaeology of Late Bronze Age Interaction and Mobility at the Gates of Europe: People, Things… and Networks around the Southern Adriatic Sea; Bloomsbury Academic: London, UK; New York, NY, USA, 2019; ISBN 978-1-350-03614-7. [Google Scholar]
- Vanzetti, A.; Tinè, V. La Calabria dal Neolitico all’età del ferro. In Museo dei Brettii e Degli Enotri. Catalogo Dell’esposizione; Rubbettino: Soveria Mannelli, Italy, 2014; pp. 40–43. ISBN 978-88-498-4233-3. (In Italian) [Google Scholar]
- Guzzo, P.G.; Peroni, R.; Bergonzi, G.; Cardarelli, A.; Vagnetti, L. Ricerche Sulla Protostoria Della SIBARITIDE, 1; Publications du Centre Jean Bérard: Napoli, Italy, 1982; ISBN 978-2-903189-17-4. (In Italian) [Google Scholar]
- Ardesia, V. La cultura di Rodì-Tindari-Vallelunga in Sicilia: Origini, diffusione e cronologia alla luce dei recenti studi. Parte 1. IpoTESI Preist. 2014, 6, 35–98. (In Italian) [Google Scholar] [CrossRef]
- Larocca, F. Grotta Della Monaca (Calabria, Italia Meridionale). Una Miniera Neolitica per l’estrazione Dell’ocra. Rubricatum Rev. Mus. Gavà 2012, 5, 249–256. (In Italian) [Google Scholar]
- Fu, Q.; Posth, C.; Hajdinjak, M.; Petr, M.; Mallick, S.; Fernandes, D.; Furtwängler, A.; Haak, W.; Meyer, M.; Mittnik, A.; et al. The genetic history of Ice Age Europe. Nature 2016, 534, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Posth, C.; Renaud, G.; Mittnik, A.; Drucker, D.G.; Rougier, H.; Cupillard, C.; Valentin, F.; Thevenet, C.; Furtwängler, A.; Wißing, C.; et al. Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe. Curr. Biol. 2016, 26, 827–833. [Google Scholar] [CrossRef] [Green Version]
- Emery, M.V.; Duggan, A.T.; Murchie, T.J.; Stark, R.J.; Klunk, J.; Hider, J.; Eaton, K.; Karpinski, E.; Schwarcz, H.P.; Poinar, H.N.; et al. Ancient Roman mitochondrial genomes and isotopes reveal relationships and geographic origins at the local and pan-Mediterranean scales. J. Archaeol. Sci. Rep. 2018, 20, 200–209. [Google Scholar] [CrossRef]
- Quarta, G.; LaRocca, F.; D’Elia, M.; Gaballo, V.; Macchia, M.; Palestra, G.; Calcagnile, L. Radiocarbon Dating the Exploitation Phases of the Grotta Della Monaca Cave in Calabria, Southern Italy: A Prehistoric Mine for the Extraction of Iron and Copper. Radiocarbon 2013, 55, 1246–1251. [Google Scholar] [CrossRef]
- Levato, C.; Larocca, F. The Prehistoric Iron Mine of Grotta Della Monaca (Calabria, Italy). Anthropol. Praehist. 2015, 126, 25–37. [Google Scholar]
- Caricola, I.; Breglia, F.; LaRocca, F.; Hamon, C.; Lemorini, C.; Giligny, F. Prehistoric exploitation of minerals resources. Experimentation and use-wear analysis of grooved stone tools from Grotta della Monaca (Calabria, Italy). Archaeol. Anthropol. Sci. 2020, 12, 259. [Google Scholar] [CrossRef]
- Larocca, F. La Miniera Pre-Protostorica di Grotta Della Monaca (Sant’Agata di Esaro—Cosenza); Centro Regionale di Speleologia “Enzo dei Medici”: Roseto Capo Spulico, Italy, 2005. (In Italian) [Google Scholar]
- Arena, F.; Larocca, F.; Onisto, N.; Gualdi-Russo, E. Il Sepolcreto Protostorico Di Grotta Della Monaca in Calabria. Aspetti Antropologici; Annali Dell’Università di Ferrara: Ferrara, Italy, 2013. (In Italian) [Google Scholar]
- Bietti Sestieri, A.M. L’Italia Nell’età del Bronzo e del Ferro. Dalle Palafitte a ROMOLO (2200-700 a.C.); Carocci Editore: Rome, Italy, 2010; ISBN 88-430-5207-1. (In Italian) [Google Scholar]
- Cocchi Genick, D. Criteri di Nomenclatura e di Terminologia Inerente Alla Definizione Delle Forme Vascolari del Neolitico/Eneolitico e del Bronzo/Ferro: Atti del Congresso di Lido di Camaiore, 26–29 Marzo 1998. Vol. 1; Octavo: Firenze, Italy, 1999; ISBN 978-88-8030-190-5. (In Italian) [Google Scholar]
- Larocca, F. Dal Pollino all’Orsomarso. L’uso funerario delle cavità naturali in età pre-protostorica. In Il Pollino. Barriera Naturale e Crocevia di Culture; Giornate Internazionali di Archeologia (San Lorenzo Bellizzi, 16–17 Aprile 2016); Colelli, C.E., Larocca, A., Eds.; Collana del Dipartimento di Studi Umanistici, Sezione Archeologia, Università della Calabria: Calabria, Italy, 2018; Volume Ricerche XII, pp. 13–27. (In Italian) [Google Scholar]
- Arena, F.; Gualdi-Russo, E. Taphonomy and Post-Depositional Movements of a Bronze Age Mass Grave in the Archaeological Site of Grotta Della Monaca; Annali dell’Università di Ferrara: Ferrara, Italy, 2014. (In Italian) [Google Scholar]
- Gamba, C.; Jones, E.R.; Teasdale, M.D.; McLaughlin, R.L.; Gonzalez-Fortes, G.; Mattiangeli, V.; Domboróczki, L.; Kővári, I.; Pap, I.; Anders, A.; et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 2014, 5, 5257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, H.B.; Damgaard, P.B.; Margaryan, A.; Stenderup, J.; Lynnerup, N.; Willerslev, E.; Allentoft, M.E. Comparing Ancient DNA Preservation in Petrous Bone and Tooth Cementum. PLoS ONE 2017, 12, e0170940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, A.; Poinar, H.N. Ancient DNA: Do It Right or Not at All. Science 2000, 289, 1139. [Google Scholar] [CrossRef]
- Gilbert, M.T.P.; Bandelt, H.-J.; Hofreiter, M.; Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. 2005, 20, 541–544. [Google Scholar] [CrossRef]
- Fulton, T.L. Setting up an Ancient DNA Laboratory. Methods Mol. Biol. 2012, 840, 1–11. [Google Scholar] [CrossRef]
- Fulton, T.L.; Shapiro, B. Setting up an Ancient DNA Laboratory. Methods Mol. Biol. 2019, 1963, 1–13. [Google Scholar] [CrossRef]
- Dabney, J.; Knapp, M.; Glocke, I.; Gansauge, M.-T.; Weihmann, A.; Nickel, B.; Valdiosera, C.; García, N.; Pääbo, S.; Arsuaga, J.-L.; et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA 2013, 110, 15758–15763. [Google Scholar] [CrossRef] [Green Version]
- Damgaard, P.B.; Margaryan, A.; Schroeder, H.; Orlando, L.; Willerslev, E.; Allentoft, M.E. Improving access to endogenous DNA in ancient bones and teeth. Sci. Rep. 2015, 5, 11184. [Google Scholar] [CrossRef] [Green Version]
- Cilli, E.; Gabanini, G.; Ciucani, M.M.; De Fanti, S.; Serventi, P.; Bazaj, A.; Sarno, S.; Ferri, G.; Fregnani, A.; Cornaglia, G.; et al. A multifaceted approach towards investigating childbirth deaths in double burials: Anthropology, paleopathology and ancient DNA. J. Archaeol. Sci. 2020, 122, 105219. [Google Scholar] [CrossRef]
- Carøe, C.; Gopalakrishnan, S.; Vinner, L.; Mak, S.S.T.; Sinding, M.H.S.; Samaniego, J.A.; Wales, N.; Sicheritz-Pontén, T.; Gilbert, M.T.P. Single-tube library preparation for degraded DNA. Methods Ecol. Evol. 2018, 9, 410–419. [Google Scholar] [CrossRef]
- Maricic, T.; Whitten, M.; Pääbo, S. Multiplexed DNA Sequence Capture of Mitochondrial Genomes Using PCR Products. PLoS ONE 2010, 5, e14004. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC. A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 22 April 2021).
- Schubert, M.; Lindgreen, S.; Orlando, L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Res. Notes 2016, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Andrews, R.M.; Kubacka, I.; Chinnery, P.F.; Lightowlers, R.N.; Turnbull, D.M.; Howell, N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 1999, 23, 147. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picard Toolkit. Available online: https://broadinstitute.github.io/picard/ (accessed on 22 April 2021).
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jónsson, H.; Ginolhac, A.; Schubert, M.; Johnson, P.L.F.; Orlando, L. mapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 2013, 29, 1682–1684. [Google Scholar] [CrossRef] [PubMed]
- Renaud, G.; Slon, V.; Duggan, A.T.; Kelso, J. Schmutzi: Estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 2015, 16, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namouchi, A. SnpToolkit. Available online: https://github.com/Amine-Namouchi/snpToolkit (accessed on 22 April 2021).
- Vianello, D.; Sevini, F.; Castellani, G.; Lomartire, L.; Capri, M.; Franceschi, C. HAPLOFIND: A New Method for High-Throughput mtDNA Haplogroup Assignment. Hum. Mutat. 2013, 34, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Weissensteiner, H.; Pacher, D.; Kloss-Brandstätter, A.; Forer, L.; Specht, G.; Bandelt, H.-J.; Kronenberg, F.; Salas, A.; Schönherr, S. HaploGrep 2: Mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 2016, 44, W58–W63. [Google Scholar] [CrossRef] [PubMed]
- Van Oven, M. PhyloTree Build 17: Growing the human mitochondrial DNA tree. Forensic Sci. Int. Genet. Suppl. Ser. 2015, 5, e392–e394. [Google Scholar] [CrossRef] [Green Version]
- DNA Alignment Software. Available online: https://www.fluxus-engineering.com/align.htm (accessed on 22 April 2021).
- Van Oven, M.; Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 2009, 30, E386–E394. [Google Scholar] [CrossRef]
- Network. Available online: https://www.fluxus-engineering.com/sharenet.htm (accessed on 22 April 2021).
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A. Figtree v1.4.2, A Graphical Viewer of Phylogenetic Trees. Available online: tree.bio.ed.ac.uk/software/figtree/ (accessed on 22 April 2021).
- Fernandes, D.M.; Mittnik, A.; Olalde, I.; Lazaridis, I.; Cheronet, O.; Rohland, N.; Mallick, S.; Bernardos, R.; Broomandkhoshbacht, N.; Carlsson, J.; et al. The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nat. Ecol. Evol. 2020, 4, 334–345. [Google Scholar] [CrossRef]
- Modi, A.; Tassi, F.; Susca, R.R.; Vai, S.; Rizzi, E.; Bellis, G.D.; Lugliè, C.; Gonzalez Fortes, G.; Lari, M.; Barbujani, G.; et al. Complete mitochondrial sequences from Mesolithic Sardinia. Sci. Rep. 2017, 7, 42869. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, A.; Sidore, C.; Achilli, A.; Angius, A.; Posth, C.; Furtwängler, A.; Brandini, S.; Capodiferro, M.R.; Gandini, F.; Zoledziewska, M.; et al. Mitogenome Diversity in Sardinians: A Genetic Window onto an Island’s Past. Mol. Biol. Evol. 2017, 34, 1230–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olalde, I.; Brace, S.; Allentoft, M.E.; Armit, I.; Kristiansen, K.; Booth, T.; Rohland, N.; Mallick, S.; Szécsényi-Nagy, A.; Mittnik, A.; et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 2018, 555, 190–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalano, G.; Lo Vetro, D.; Fabbri, P.F.; Mallick, S.; Reich, D.; Rohland, N.; Sineo, L.; Mathieson, I.; Martini, F. Late Upper Palaeolithic hunter-gatherers in the Central Mediterranean: New archaeological and genetic data from the Late Epigravettian burial Oriente C (Favignana, Sicily). Quat. Int. 2020, 537, 24–32. [Google Scholar] [CrossRef]
- Marcus, J.H.; Posth, C.; Ringbauer, H.; Lai, L.; Skeates, R.; Sidore, C.; Beckett, J.; Furtwängler, A.; Olivieri, A.; Chiang, C.W.K.; et al. Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nat. Commun. 2020, 11, 939. [Google Scholar] [CrossRef] [PubMed]
- Modi, A.; Catalano, G.; D’Amore, G.; Di Marco, S.; Lari, M.; Sineo, L.; Caramelli, D. Paleogenetic and morphometric analysis of a Mesolithic individual from Grotta d’Oriente: An oldest genetic legacy for the first modern humans in Sicily. Quat. Sci. Rev. 2020, 248, 106603. [Google Scholar] [CrossRef]
- Olalde, I.; Posth, C. Latest trends in archaeogenetic research of west Eurasians. Curr. Opin. Genet. Dev. 2020, 62, 36–43. [Google Scholar] [CrossRef]
- Pinhasi, R.; Fernandes, D.; Sirak, K.; Novak, M.; Connell, S.; Alpaslan-Roodenberg, S.; Gerritsen, F.; Moiseyev, V.; Gromov, A.; Raczky, P.; et al. Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone. PLoS ONE 2015, 10, e0129102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brotherton, P.; Haak, W.; Templeton, J.; Brandt, G.; Soubrier, J.; Jane Adler, C.; Richards, S.M.; Sarkissian, C.D.; Ganslmeier, R.; Friederich, S.; et al. Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nat. Commun. 2013, 4, 1764. [Google Scholar] [CrossRef] [Green Version]
- Brandt, G.; Haak, W.; Adler, C.J.; Roth, C.; Szécsényi-Nagy, A.; Karimnia, S.; Möller-Rieker, S.; Meller, H.; Ganslmeier, R.; Friederich, S.; et al. Ancient DNA Reveals Key Stages in the Formation of Central European Mitochondrial Genetic Diversity. Science 2013, 342, 257–261. [Google Scholar] [CrossRef] [Green Version]
- Hernández, C.L.; Dugoujon, J.M.; Novelletto, A.; Rodríguez, J.N.; Cuesta, P.; Calderón, R. The distribution of mitochondrial DNA haplogroup H in southern Iberia indicates ancient human genetic exchanges along the western edge of the Mediterranean. BMC Genet. 2017, 18, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Iglesias, V.; Mosquera-Miguel, A.; Cerezo, M.; Quintáns, B.; Zarrabeitia, M.T.; Cuscó, I.; Lareu, M.V.; García, O.; Pérez-Jurado, L.; Carracedo, Á.; et al. New Population and Phylogenetic Features of the Internal Variation within Mitochondrial DNA Macro-Haplogroup R0. PLoS ONE 2009, 4, e5112. [Google Scholar] [CrossRef] [PubMed]
- Soares, P.; Achilli, A.; Semino, O.; Davies, W.; Macaulay, V.; Bandelt, H.-J.; Torroni, A.; Richards, M.B. The Archaeogenetics of Europe. Curr. Biol. 2010, 20, R174–R183. [Google Scholar] [CrossRef] [Green Version]
- Torroni, A.; Bandelt, H.-J.; D’Urbano, L.; Lahermo, P.; Moral, P.; Sellitto, D.; Rengo, C.; Forster, P.; Savontaus, M.-L.; Bonné-Tamir, B.; et al. mtDNA Analysis Reveals a Major Late Paleolithic Population Expansion from Southwestern to Northeastern Europe. Am. J. Hum. Genet. 1998, 62, 1137–1152. [Google Scholar] [CrossRef] [Green Version]
- Torroni, A.; Bandelt, H.-J.; Macaulay, V.; Richards, M.; Cruciani, F.; Rengo, C.; Martinez-Cabrera, V.; Villems, R.; Kivisild, T.; Metspalu, E.; et al. A Signal, from Human mtDNA, of Postglacial Recolonization in Europe. Am. J. Hum. Genet. 2001, 69, 844–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achilli, A.; Rengo, C.; Magri, C.; Battaglia, V.; Olivieri, A.; Scozzari, R.; Cruciani, F.; Zeviani, M.; Briem, E.; Carelli, V.; et al. The Molecular Dissection of mtDNA Haplogroup H Confirms That the Franco-Cantabrian Glacial Refuge Was a Major Source for the European Gene Pool. Am. J. Hum. Genet. 2004, 75, 910–918. [Google Scholar] [CrossRef]
- Pereira, L. High-resolution mtDNA evidence for the late-glacial resettlement of Europe from an Iberian refugium. Genome Res. 2005, 15, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, P.; Ermini, L.; Thomson, N.; Mormina, M.; Rito, T.; Röhl, A.; Salas, A.; Oppenheimer, S.; Macaulay, V.; Richards, M.B. Correcting for Purifying Selection: An Improved Human Mitochondrial Molecular Clock. Am. J. Hum. Genet. 2009, 84, 740–759. [Google Scholar] [CrossRef] [Green Version]
- Lipson, M.; Szécsényi-Nagy, A.; Mallick, S.; Pósa, A.; Stégmár, B.; Keerl, V.; Rohland, N.; Stewardson, K.; Ferry, M.; Michel, M.; et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 2017, 551, 368–372. [Google Scholar] [CrossRef]
- Mathieson, I.; Lazaridis, I.; Rohland, N.; Mallick, S.; Patterson, N.; Roodenberg, S.A.; Harney, E.; Stewardson, K.; Fernandes, D.; Novak, M.; et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 2015, 528, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Mathieson, I.; Alpaslan-Roodenberg, S.; Posth, C.; Szécsényi-Nagy, A.; Rohland, N.; Mallick, S.; Olalde, I.; Broomandkhoshbacht, N.; Candilio, F.; Cheronet, O.; et al. The genomic history of southeastern Europe. Nature 2018, 555, 197–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernabò Brea, L. La Sicilia Prima dei Greci; Il Saggiatore: Milano, Italy, 1961. (In Italian) [Google Scholar]
- Bietti Sestieri, A.M. Implicazioni Del Concetto Di Territorio in Situazioni Culturali Complesse: Le Isole Eolie Nell’età Del Bronzo. Dialoghi Archeol. 1982, 2, 39–60. (In Italian) [Google Scholar]
- Cazzella, A.; Recchia, G. Malta, Sicily, Aeolian Islands and southern Italy during the Bronze Age: The meaning of a changing relationship. In Exchange Networks and Local Transformation: Interaction and Local Change in Europe and the Mediterranean from the Bronze Age to the Iron Age; Oxbow: Oxford, UK, 2013; pp. 80–91. [Google Scholar]
- Pacciarelli, M.; Scarano, T.; Crispino, A. The Transition between the Copper and Bronze Ages in Southern Italy and Sicily. In Proceedings of the 7th Archaeological Conference of Central Germany, Halle, Germany, 23–26 October 2014; Landesmuseums für Vorgeschichte Halle: Halle, Germany, 2015. [Google Scholar]
- Gori, M.; Revello Lami, M.; Pintucci, A. Editorial: Practices, Representations and Meanings of Human Mobility in Archaeology. Ex Novo 2018, 3, 1–6. [Google Scholar] [CrossRef]
- Marino, S. Across the Strait. New evidence on cultural interconnections and exchanges between Calabria and Sicily during the early Bronze Age. J. Archaeol. Sci. Rep. 2020, 29, 102164. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontani, F.; Cilli, E.; Arena, F.; Sarno, S.; Modi, A.; De Fanti, S.; Andrews, A.J.; Latorre, A.; Abondio, P.; Larocca, F.; et al. First Bronze Age Human Mitogenomes from Calabria (Grotta Della Monaca, Southern Italy). Genes 2021, 12, 636. https://doi.org/10.3390/genes12050636
Fontani F, Cilli E, Arena F, Sarno S, Modi A, De Fanti S, Andrews AJ, Latorre A, Abondio P, Larocca F, et al. First Bronze Age Human Mitogenomes from Calabria (Grotta Della Monaca, Southern Italy). Genes. 2021; 12(5):636. https://doi.org/10.3390/genes12050636
Chicago/Turabian StyleFontani, Francesco, Elisabetta Cilli, Fabiola Arena, Stefania Sarno, Alessandra Modi, Sara De Fanti, Adam Jon Andrews, Adriana Latorre, Paolo Abondio, Felice Larocca, and et al. 2021. "First Bronze Age Human Mitogenomes from Calabria (Grotta Della Monaca, Southern Italy)" Genes 12, no. 5: 636. https://doi.org/10.3390/genes12050636
APA StyleFontani, F., Cilli, E., Arena, F., Sarno, S., Modi, A., De Fanti, S., Andrews, A. J., Latorre, A., Abondio, P., Larocca, F., Lari, M., Caramelli, D., Gualdi-Russo, E., & Luiselli, D. (2021). First Bronze Age Human Mitogenomes from Calabria (Grotta Della Monaca, Southern Italy). Genes, 12(5), 636. https://doi.org/10.3390/genes12050636