Genetic Confirmation and Identification of Novel Variants for Glanzmann Thrombasthenia and Other Inherited Platelet Function Disorders: A Study by the Korean Pediatric Hematology Oncology Group (KPHOG)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Data Collection
2.2. NGS
2.3. Genes of Primary Interest
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jung, N.; Shim, Y.J. Current knowledge on inherited platelet function disorders. Clin. Pediatr. Hematol. Oncol. 2020, 27, 1–13. [Google Scholar] [CrossRef]
- Shim, Y.J. Genetic classification and confirmation of inherited platelet disorders and current status in Korea. Korean J. Pediatr. 2019, 63, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurden, A.T.; Fiore, M.; Nurden, P.; Pillois, X. Glanzmann thrombasthenia: A review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood 2011, 118, 5996–6005. [Google Scholar] [CrossRef] [PubMed]
- Botero, J.P.; Lee, K.; Branchford, B.R.; Bray, P.F.; Freson, K.; Lambert, M.P.; Luo, M.; Mohan, S.; Ross, J.E.; Bergmeier, W.; et al. Glanzmann thrombasthenia: Genetic basis and clinical correlates. Haematologica 2020, 105, 888–894. [Google Scholar] [CrossRef] [Green Version]
- Bastida Bermejo, J.M.; Hernández-Rivas, J.M.; González-Porras, J.R. Novel approaches for diagnosing inherited platelet disorders. Med. Clin. 2017, 148, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Park, K.J.; Chung, H.S.; Lee, K.O.; Park, I.A.; Kim, S.H.; Kim, H.J. Novel and recurrent mutations of ITGA2B and ITGB3 genes in Korean patients with Glanzmann thrombasthenia. Pediatr. Blood Cancer 2012, 59, 335–338. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Nair, S.; Li, J.; Mitchell, W.B.; Mohanty, D.; Coller, B.S.; French, D.L. Two new beta3 integrin mutations in Indian patients with Glanzmann thrombasthenia: Localization of mutations affecting cysteine residues in integrin beta3. Thromb. Haemost. 2002, 88, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Sandrock-Lang, K.; Oldenburg, J.; Wiegering, V.; Halimeh, S.; Santoso, S.; Kurnik, K.; Fischer, L.; Tsakiris, D.A.; Sigl-Kraetzig, M.; Brand, B.; et al. Characterisation of patients with Glanzmann thrombasthenia and identification of 17 novel mutations. Thromb. Haemost. 2015, 113, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Gresele, P. Diagnosis of inherited platelet function disorders: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2015, 13, 314–322. [Google Scholar] [CrossRef]
- Tanaka, S.; Hayashi, T.; Terada, C.; Hori, Y.; Han, K.S.; Ahn, H.S.; Bourre, F.; Tani, Y. Glanzmann’s thrombasthenia due to a point mutation within intron 10 results in aberrant splicing of the beta3 gene. J. Thromb. Haemost. 2003, 1, 2427–2433. [Google Scholar] [CrossRef]
- Ambo, H.; Kamata, T.; Handa, M.; Kawai, Y.; Oda, A.; Murata, M.; Takada, Y.; Ikeda, Y. Novel point mutations in the alphaIIb subunit (Phe289-->Ser, Glu324-->Lys and Gln747-->Pro) causing thrombasthenic phenotypes in four Japanese patients. Br. J. Haematol. 1998, 102, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Yamamoto, K.; Miyazaki, S.; Jung, S.M.; Moroi, M.; Aoki, N. Molecular basis for Glanzmann’s thrombasthenia (GT) in a compound heterozygote with glycoprotein IIb gene: A proposal for the classification of GT based on the biosynthetic pathway of glycoprotein IIb-IIIa complex. Blood 1992, 79, 3212–3218. [Google Scholar] [CrossRef] [Green Version]
- Ambo, H.; Kamata, T.; Handa, M.; Taki, M.; Kuwajima, M.; Kawai, Y.; Oda, A.; Murata, M.; Takada, Y.; Watanabe, K.; et al. Three novel integrin beta3 subunit missense mutations (H280P, C560F, and G579S) in thrombasthenia, including one (H280P) prevalent in Japanese patients. Biochem. Biophys. Res. Commun. 1998, 251, 763–768. [Google Scholar] [CrossRef]
- Tanaka, S.; Hayashi, T.; Yoshimura, K.; Nakayama, M.; Fujita, T.; Amano, T.; Tani, Y. Double heterozygosity for a novel missense mutation of Ile304 to Asn in addition to the missense mutation His280 to Pro in the integrin beta3 gene as a cause of the absence of platelet alphaIIbbeta3 in Glanzmann’s thrombasthenia. J. Thromb. Haemost. 2005, 3, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Hayashi, T.; Hori, Y.; Terada, C.; Han, K.S.; Ahn, H.S.; Bourre, F.; Tani, Y. A Leu55 to Pro substitution in the integrin alphaIIb is responsible for a case of Glanzmann’s thrombasthenia. Br. J. Haematol. 2002, 118, 833–835. [Google Scholar] [CrossRef] [PubMed]
- Canault, M.; Alessi, M.C. RasGRP2 Structure, Function and Genetic Variants in Platelet Pathophysiology. Int. J. Mol. Sci. 2020, 21, 1075. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.W.; Lee, K.O.; Jung, C.W.; Oh, S.Y.; Kim, S.H.; Choi, C.W.; Kim, H.J. Hereditary platelet function disorder from RASGRP2 gene mutations encoding CalDAG-GEFI identified by whole-exome sequencing in a Korean woman with severe bleeding. Haematologica 2019, 104, e274–e276. [Google Scholar] [CrossRef]
- Ali, N.; Moiz, B.; Shaikh, U.; Adil, S.; Rizvi, B.; Rahman, Y. Diagnostic tool for Glanzmann’s thrombasthenia clinicopathologic spectrum. J. Coll. Physicians Surg. Pak. 2008, 18, 91–94. [Google Scholar]
- Canault, M.; Ghalloussi, D.; Grosdidier, C.; Guinier, M.; Perret, C.; Chelghoum, N.; Germain, M.; Raslova, H.; Peiretti, F.; Morange, P.E.; et al. Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding. J. Exp. Med. 2014, 211, 1349–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sevivas, T.; Bastida, J.M.; Paul, D.S.; Caparros, E.; Palma-Barqueros, V.; Coucelo, M.; Marques, D.; Ferrer-Marín, F.; González-Porras, J.R.; Vicente, V.; et al. Identification of two novel mutations in RASGRP2 affecting platelet CalDAG-GEFI expression and function in patients with bleeding diathesis. Platelets 2018, 29, 192–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sequencing Method | ID | Quality of the Sequencing Reads | Sequencing Depth | Mapping Quality Threshold | Not Paired Read (%) | Missing Read (Unmapped) (%) |
---|---|---|---|---|---|---|
TES | 1 | 31.9 | 83.7 | 30 | 0.28 | 0.16 |
TES | 2 | 32.6 | 112.3 | 30 | 0.28 | 0.05 |
TES | 3 | 33.4 | 145.5 | 30 | 0.57 | 0.06 |
TES | 4 | 32.0 | 92.9 | 30 | 0.1 | 0 |
TES | 5 | 33.0 | 84.5 | 30 | 0.32 | 0.06 |
TES | 6 | 33.9 | 97.8 | 30 | 0.24 | 0.04 |
TES | 7 | 32.3 | 79.6 | 30 | 0.32 | 0.08 |
TES | 8 | 32.5 | 134.2 | 30 | 0.47 | 0.1 |
TES | 9 | 33.5 | 106.0 | 30 | 0.36 | 0.06 |
TES | 10 | 34.0 | 127.6 | 30 | 0.16 | 0.04 |
TES | 11 | 32.1 | 94.7 | 30 | 0.29 | 0.16 |
Average | 32.8 | 105.3 | 30 | 0.31 | 0.073 | |
WGS | 10 | 33.4 | 41.0 | 20 | 2.1 | 0.1 |
Clinical Characteristics | N |
---|---|
Male:female ratio | 7:4 |
Age of symptom onset (months, range) | 1 (0–48) |
Bleeding symptoms | |
Easy bruising | 8 |
Gum bleeding | 6 |
Whole body petechiae after birth | 5 |
Persistent epistaxis | 4 |
Delayed wound healing | 2 |
Hematoma after vaccination | 1 |
Bleeding after procedure | 1 |
Melena | 1 |
Anal bleeding | 1 |
Hematemesis | 1 |
Muscle hematoma | 1 |
ID | Plt (× 109/L) | PFA-100, EPI (sec) (Reference) | PFA-100, ADP (sec) (Reference) | Light Transmission Aggregometry | Flow Cytometry | Gene | Genetic Variants | Classification |
---|---|---|---|---|---|---|---|---|
1 | 427 | 265 (60–180) | 220 (50–110) | NA | Decreased CD41 expression | ITGB3 | c.1913+5G>T | PV |
c.1451G>T (p.Gly484Val) | LPV | |||||||
2 | 491 | 166 (60–180) | 174 (50–110) | NA | NA | ITGB3 | c.1913+5G>T [Hm] | PV |
3 | 347 | 229 (60–180) | 236 (50–110) | NA | NA | ITGA2B | c.2975del (p.Glu992Glyfs*) | LPV |
c.2333A>C (p.Gln778Pro) | PV | |||||||
4 | 193 | NA | NA | Decreased response to ADP, COL, EPI, normal response to RIS | NA | ITGB3 | c.1913+5G>T [Hm] | PV |
5 | 313 | >300 (81–192) | 157 (61–110) | NA | Complete deficiency of CD61/CD41a expression in platelet | ITGB3 | c.917A>C (p.His306Pro) | PV |
c.1913+5G>T | PV | |||||||
6 | 234 | 244 (82–182) | 239 (62–109) | Decreased response to ADP, COL, EPI, normal response to RIS | NA | ITGB3 | c.1913+5G>T [Hm] | PV |
7 | 218 | NA | NA | Decreased response to ADP, COL, EPI, normal response to RIS | Decreased CD41 expression | ITGA2B | c.257T>C (p.Leu86Pro) | LPV |
c.2333A>C (p.Gln778Pro) | LPV | |||||||
8 | 392 | 223 (81–192) | 240 (61–110) | NA | Decreased CD41 expression | ITGA2B | c.1750C> T (p.Arg584*) | PV |
c.1184G>T (p.Gly395Val) | LPV | |||||||
9 | 309 | 234 (82–182) | 212 (62–109) | Decreased response to ADP, COL, EPI, normal response to RIS | Decreased CD41 expression | ITGA2B | c.2390del (p.Gly797Valfs*29) | PV |
c.2333A>C (p.Gln778Pro) | PV | |||||||
10 | 269 | NA | NA | Decreased response to ADP, COL, EPI, normal response to RIS | Decreased CD41 expression | ITGB3 | c.1913+5G>T | LPV |
c.1595G>T (p.Cys532Phe) | LPV | |||||||
11 | 442 | >300 (82–182) | >300 (62–109) | Decreased response to ADP, COL, EPI, normal response to RIS | NA | RASGRP2 | c.1479dup (p.Arg494Alafs*54) | LPV |
c.813+1G>A | LPV |
ID | Gene | Genetic Variants | Frequency in Population Database | Prediction by the In Silico Analysis | Classification |
---|---|---|---|---|---|
1 | ITGB3 | c.1451G>T (p.Gly484Val) a,b | 0 | Deleterious | LPV |
8 | ITGA2B | c.1184G>T (p.Gly395Val) a | 0 | Deleterious | LPV |
9 | ITGA2B | c.2390del (p.Gly797Valfs*29) a | 0 | Deleterious | PV |
10 | ITGB3 | c.1595G>T (p.Cys532Phe) a,c | 0 | Deleterious | LPV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, E.J.; Shim, Y.J.; Kim, H.S.; Lim, Y.T.; Im, H.J.; Koh, K.-N.; Kim, H.; Suh, J.K.; Park, E.S.; Lee, N.H.; et al. Genetic Confirmation and Identification of Novel Variants for Glanzmann Thrombasthenia and Other Inherited Platelet Function Disorders: A Study by the Korean Pediatric Hematology Oncology Group (KPHOG). Genes 2021, 12, 693. https://doi.org/10.3390/genes12050693
Yang EJ, Shim YJ, Kim HS, Lim YT, Im HJ, Koh K-N, Kim H, Suh JK, Park ES, Lee NH, et al. Genetic Confirmation and Identification of Novel Variants for Glanzmann Thrombasthenia and Other Inherited Platelet Function Disorders: A Study by the Korean Pediatric Hematology Oncology Group (KPHOG). Genes. 2021; 12(5):693. https://doi.org/10.3390/genes12050693
Chicago/Turabian StyleYang, Eu Jeen, Ye Jee Shim, Heung Sik Kim, Young Tak Lim, Ho Joon Im, Kyung-Nam Koh, Hyery Kim, Jin Kyung Suh, Eun Sil Park, Na Hee Lee, and et al. 2021. "Genetic Confirmation and Identification of Novel Variants for Glanzmann Thrombasthenia and Other Inherited Platelet Function Disorders: A Study by the Korean Pediatric Hematology Oncology Group (KPHOG)" Genes 12, no. 5: 693. https://doi.org/10.3390/genes12050693
APA StyleYang, E. J., Shim, Y. J., Kim, H. S., Lim, Y. T., Im, H. J., Koh, K. -N., Kim, H., Suh, J. K., Park, E. S., Lee, N. H., Choi, Y. B., Hah, J. O., Lee, J. M., Han, J. W., Lee, J. H., Lee, Y. -H., Jung, H. L., Ha, J. -S., Ki, C. -S., & on behalf of the Benign Hematology Committee of the Korean Pediatric Hematology Oncology Group (KPHOG). (2021). Genetic Confirmation and Identification of Novel Variants for Glanzmann Thrombasthenia and Other Inherited Platelet Function Disorders: A Study by the Korean Pediatric Hematology Oncology Group (KPHOG). Genes, 12(5), 693. https://doi.org/10.3390/genes12050693