Variants in the Myostatin Gene and Physical Performance Phenotype of Elite Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Ethics Approval
2.2. Phenotypic Data
2.3. Sequencing Analysis of the MSTN Gene
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filonzi, L.; Franchini, N.; Vaghi, M.; Chiesa, S.; Marzano, F.N. The potential role of myostatin and neurotrans mission genes in elite sport performances. J. Biosci. 2015, 40, 531–537. [Google Scholar] [CrossRef]
- Grade, C.V.C.; Mantovani, C.S.; Albares, L.E. Myostatin gene promoter: Structure, conservation and importance as a target for muscle modulation. J. Anim. Sci. Biotechnol. 2019, 10, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPherron, A.C.; Lawler, A.M.; Lee, S.J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Naturte 1997, 387, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jun, H.S. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front. Physiol. 2019, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Mosher, D.S.; Quignon, P.; Bustamante, C.D.; Sutter, N.B.; Mellersh, C.S.; Parker, H.G.; Ostrander, E.A. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 2007, 3, e79. [Google Scholar] [CrossRef] [PubMed]
- McPherron, A.C.; Lee, S.J. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 1997, 94, 12457–12461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, M.A.; Good, J.M.; Lawrence, E.C.; Ferrell, R.E.; Li, W.-H.; Nachman, M.W. Human adaptive evolution at Myostatin (GDF8), a regulator of muscle growth. Am. J. Hum. Genet. 2006, 79, 1089–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, V.K.; Demontis, F. GDF11/myostatin and aging. Aging 2014, 6, 351–352. [Google Scholar] [CrossRef] [PubMed]
- Szláma, G.; Trexler, M.; Buday, L.; Patthy, L. K153R polymorphism in myostatin gene increases the rate of promyostatin activation by furin. FEBS Lett. 2015, 589, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Arnold, H.B.; Della-Fera, M.A.; Azain, M.J.; Hartzell, D.L.; Baile, C.A. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem. Biophys. Res. Commun. 2002, 291, 701–706. [Google Scholar] [CrossRef]
- Guo, T.; Jou, W.; Chanturiya, T.; Portas, J.; Gavrilova, O.; McPherron, A.C. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS ONE 2009, 4, e4937. [Google Scholar] [CrossRef] [Green Version]
- Schuelke, M.; Wagner, K.R.; Stolz, L.E.; Hübner, C.; Riebel, T.; Kömen, W.; Braun, T.; Tobin, J.F.; Lee, S.J. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 2004, 350, 2682–2688. [Google Scholar] [CrossRef] [Green Version]
- Santiago, C.; Ruiz, J.R.; Rodríguez-Romo, G.; Fiuza-Luces, C.; Yvert, T.; Gonzalez Freire, M.; Gómez-Gallego, F.; Morán, M.; Lucia, A. The K153R polymorphism in the myostatin gene and muscle power phenotypes in young, non-athletic men. PLoS ONE 2011, 6, e16323. [Google Scholar] [CrossRef]
- Garatachea, N.; Pinos, T.; Camara, Y.; Rodriguez-Romo, G.; Emanuele, E.; Ricevuti, G.; Venturini, L.; Santos-Lozano, A.; Santiago-Dorrego, C.; Fiuza-Luces, C.; et al. Association of the K153R polymorphism in the myostatin gene and extreme longevity. Age 2013, 35, 2445–2454. [Google Scholar] [CrossRef] [Green Version]
- Tasar, P.T.; Sahin, S.; Karaman, E.; Oz, A.; Ulusoy, M.G.; Duman, S.; Berdeli, A.; Akcicek, F. Myostatin Gene Polymorphism in an Elderly Sarcopenic Turkish Population. Genet. Test. Mol. Biomark. 2015, 19, 457–460. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.J.; Tan, S.C.; Chew, P.L.; Liu, L.; Wang, L.; Wen, L.; Ma, L. The A55T and K153R polymorphisms of MSTN gene are associated with the strength training-induced muscle hypertrophy among Han Chinese men. J. Sports Sci. 2014, 32, 883–891. [Google Scholar] [CrossRef]
- Döring, F.; Onur, S.; Kürbitz, C.; Boulay, M.R.; Pérusse, L.; Rankinen, T.; Rauramaa, R.; Wolfarth, B.; Bouchard, C. Single nucleotide polymorphisms in the myostatin (MSTN) and muscle creatine kinase (CKM) genes are not associated with elite endurance 450 performance. Scand. J. Med. Sci. Sports 2011, 21, 841–845. [Google Scholar] [CrossRef]
- Karlowatz, R.J.; Scharhag, J.; Rahnenführer, J.; Schneider, U.; Jakob, E.; Kindermann, W.; Zang, K.D. Polymorphisms in the IGF1 signalling pathway including the myostatin gene are associated with left ventricular mass in male athletes. Br. J. Sports Med. 2011, 45, 36–41. [Google Scholar] [CrossRef]
- Zhang, Z.-L.; He, J.-W.; Qin, Y.-J.; Hu, Y.-Q.; Li, M.; Zhang, H.; Hu, W.-W.; Liu, Y.-J.; Gu, J.-M. Association between myostatin gene polymorphisms and peak BMD variation in Chinese nuclear families. Osteoporos. Int. 2008, 19, 39–47. [Google Scholar] [CrossRef]
- White, T.A.; LeBrasseur, N.K. Myostatin and Sarcopenia: Opportunities and Challenges–A Mini-Review. Gerontology 2014, 457 60, 289–293. [Google Scholar] [CrossRef]
- Corsi, A.M.; Ferrucci, L.; Gozzini, A.; Tanini, A.; Brandi, M.L. Myostatin polymorphisms and age-related sarcopenia in the Italian population. J. Am. Geriatr. Soc. 2002, 50, 1463. [Google Scholar] [CrossRef]
- Nishiyama, A.; Takeshima, Y.; Saiki, K.; Narukage, A.; Oyazato, Y.; Yagi, M.; Matsuo, M. Two novel missense mutations in the myostatin gene identified in Japanese patients with Duchenne muscular dystrophy. BMC Med. Genet. 2007, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, S.P.; Nigam, P.; Misra, A.; Guleria, R.; Luthra, K.; Jain, S.K.; Qadar Pasha, M.A. Association of the Myostatin gene with obesity, abdominal obesity and low lean body mass and in non-diabetic Asian Indians in north India. PLoS ONE 2012, 7, e40977. [Google Scholar]
- Ben-Zaken, S.; Meckel, Y.; Nemet, D.; Rabinovich, M.; Kassem, E.; Eliakim, A. Frequency of the MSTN Lys(K)-153Arg(R) poly-morphism among track & field athletes and swimmers. Growth Horm. IGF Res. 2015, 25, 196–200. [Google Scholar]
- Kostek, M.A.; Angelopoulos, T.J.; Clarkson, P.M.; Gordon, P.M.; Moyna, N.M.; Visich, P.S.; Zoeller, R.F.; Price, T.B.; Seip, R.L.; Thompson, P.D.; et al. Myostatin and follistatin polymorphisms interact with muscle phenotypes and ethnicity. Med. Sci. Sports Exerc. 2009, 41, 1063–1071. [Google Scholar] [CrossRef] [Green Version]
- Thomis, M.A.; Huygens, W.; Heuninckx, S.; Chagnon, M.; Maes, H.H.; Claessens, A.L.; Vlietinck, R.; Bouchard, C.; Beunen, G.P. 471 Exploration of myostatin polymorphisms and the angiotensin-converting enzyme insertion/deletion genotype in responses of human muscle to strength training. Eur. J. Appl. Physiol. 2004, 92, 267–274. [Google Scholar] [CrossRef]
- Fedoruk, M.N.; Rupert, J.L. Myostatin inhibition: A potential performance enhancement strategy? Scand. J. Med. Sci. Sports 2008, 18, 123–131. [Google Scholar] [CrossRef]
- Brown, L.E.; Weir, J.P. ASEP procedures recommendation I: Accurate assessment of muscular strength and power. J. Exerc. Physiol. Online 2001, 4, 1–21. [Google Scholar]
- Linthorne, N.P. Analysis of standing vertical jumps using a force platform. Am. J. Phys. 2001, 69, 1198–1204. [Google Scholar] [CrossRef] [Green Version]
- Nedeljkovic, A.; Mirkov, D.M.; Pazin, N.; Jaric, S. Evaluation of Margaria staircase test: The effect of body size. Eur. J. Appl. Physiol. 2007, 100, 115–120. [Google Scholar] [CrossRef]
- Fuku, N.; Alis, R.; Yvert, T.; Zempo, H.; Naito, H.; Abe, Y.; Arai, Y.; Murakami, H.; Miyachi, M.; Galeano, H.P.; et al. Muscle-related polymorphisms (MSTN rs1805086 and ACTN3 rs1815739) are not associated with exceptional longevity in Japanese centenarians. PLoS ONE 2016, 11, e0166605. [Google Scholar] [CrossRef]
- Fernandez-Santander, A.; Valveny, N.; Harich, N.; Kandil, M.; Luna, F.; Martin, M.A.; Rubio, J.C.; Lucia, A.; Gaibar, M. Polymorphisms influencing muscle phenotypes in North-African and Spanish populations. Ann. Hum. Biol. 2012, 39, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Khanal, P.; He, L.; Herbert, A.J.; Stebbings, G.K.; Onambele-Pearson, G.L.; Degens, H.; Morse, C.I.; Thomis, M.; Williams, A.G. The Association of Multiple Gene Variants with Ageing Skeletal Muscle Phenotypes in Elderly Women. Genes 2020, 11, 1459. [Google Scholar] [CrossRef]
- Sakuma, K.; Watanabe, K.; Sano, M.; Uramoto, I.; Totsuka, T. Differential adaptation of growth and differentiation factor 8/myostatin, fibroblast growth factor 6 and leukemia inhibitory factor in overloaded, regenerating and de-nervated rat muscles. Biochim. Biophys. Acta 2000, 1497, 77–88. [Google Scholar] [CrossRef] [Green Version]
Groups | N | Allele Frequency, % | p-Value Compared with Control | MSTN c.373+90delA Genotype Frequency, n (%) | p-Value Compared with Control | |||
---|---|---|---|---|---|---|---|---|
A | – | AA | A/– | (−/−) | ||||
Endurance-oriented | 44 | 71.6 | 28.4 | 0.014 | 25 (56.8) | 13 (29.6) | 6 (13.6) | 0.001 |
Sprint/power-oriented | 59 | 78.0 | 22.0 | 0.140 | 37 (62.7) | 18 (30.5) | 4 (6.8) | 0.060 |
All athletes | 103 | 75.2 | 24.8 | 0.022 | 62 (60.2) | 31 (30.1) | 10 (9.7) | 0.006 |
Controls | 127 | 84.3 | 15.7 | - | 88 (69.3) | 38 (29.9) | 1 (0.8) | - |
Phenotypic Characteristics | Endurance-Oriented (n = 44) | Sprint/Power-Oriented (n = 59) | p-Value |
---|---|---|---|
Height, cm | 180.2 ± 9.1 | 179.8 ± 8.7 | 0.597 |
Weight, kg | 72.5 ± 10.7 * | 77.8 ± 12.6 * | 0.007 |
BMI, kg/m2 | 22.2 ± 1.6 * | 23.8 ± 3 * | 0.000 |
Fat mass, kg | 8 ± 2.2 | 7.8 ± 3.8 | 0.637 |
Muscle mass, kg | 39.6 ± 8.9 * | 43.1 ± 8.7 * | 0.015 |
Right handgrip strength, kg | 54.1 ± 8.3 * | 61.4 ± 6.1 * | 0.000 |
Left handgrip strength, kg | 52.7 ± 7.1 * | 58.6 ± 10.9 * | 0.000 |
STEMP, W | 1858.5 ± 315.63 * | 2366.3 ± 372.1 * | 0.000 |
AAMP, W | 1131 ± 154.3 * | 1298.5 ± 208.8 * | 0.000 |
VO2max, mL/min/kg | 70.6 ± 3.3 * | 64.6 ± 4.7 * | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ginevičienė, V.; Jakaitienė, A.; Pranckevičienė, E.; Milašius, K.; Utkus, A. Variants in the Myostatin Gene and Physical Performance Phenotype of Elite Athletes. Genes 2021, 12, 757. https://doi.org/10.3390/genes12050757
Ginevičienė V, Jakaitienė A, Pranckevičienė E, Milašius K, Utkus A. Variants in the Myostatin Gene and Physical Performance Phenotype of Elite Athletes. Genes. 2021; 12(5):757. https://doi.org/10.3390/genes12050757
Chicago/Turabian StyleGinevičienė, Valentina, Audronė Jakaitienė, Erinija Pranckevičienė, Kazys Milašius, and Algirdas Utkus. 2021. "Variants in the Myostatin Gene and Physical Performance Phenotype of Elite Athletes" Genes 12, no. 5: 757. https://doi.org/10.3390/genes12050757
APA StyleGinevičienė, V., Jakaitienė, A., Pranckevičienė, E., Milašius, K., & Utkus, A. (2021). Variants in the Myostatin Gene and Physical Performance Phenotype of Elite Athletes. Genes, 12(5), 757. https://doi.org/10.3390/genes12050757